Self-Adaptive Data Quality Web Services

Tobias Vogel
Hasso-Plattner-Institut fir Softwaresystemtechnik GmbH
. Universitat Potsdam
tobias.vogel@hpi.uni-potsdam.de

ABSTRACT

Data Quality Web Services are services that enhance the
quality of data in the sense of making it fit for use. This
paper concentrates on duplicate detection, which identifies
multiple representations of real-world objects within large
datasets where these representations are similar to a certain
degree. Measures to estimate this similarity are one of the
major research efforts in the community since many years.

However for Web Services, these heuristics differ in the amount
of underlaying meta information, which is usually much poorer.

The type of missing meta data is analyzed and classified in
this paper. It also examines on different ways of making
the duplicate-containing data available to the Data Quality
Web Service.

1. DATA QUALITY

Data quality plays an important role for entrepreneurial suc-
cess. However, many companies do not recognize the im-
portance of data quality in their ERP or CRM systems,
as recent studies show. Many different technical measures
can be employed to increase data quality, e.g., data nor-
malization, duplicate detection, and data fusion (Fig. 1).
While the need to clean data is ubiquitous, particularly big
enterprises spend money on dedicated data cleansing tech-
niques and policies. To achieve this, they buy data cleansing
frameworks and install and maintain them within their en-
vironments, not only spending money on license fees, but
also paying the consultants or IT staff permanently, even if
batch processing of their data only occurs once a month.

However, smaller enterprises share the same needs for good
data quality, too. They need cleansing actions in the same
frequency, while the amount of data might be smaller, but
still too much for manual processing. E.g., for looking in a
dataset 1,000 of, say, customer profiles, 500,000 comparisons
are needed for finding duplicate (or near-duplicate) entries.

Due to the aforementioned difficulties and costs, measures

Duplicate
Detection

Element
Data > Selection » Data Fusion

Nomalization

Similarity
Estimation

Figure 1: Data cleansing workflow

ensuring data quality are often omitted. This can also be
formulated as a need for ad-hoc, fair-priced, simple, low-
configuration data cleansing. The Software as a Service
paradigm promises to be a valid solution for this need since
it employs services (most frequently in the shape of Web
Services) as basic building blocks.

2. DUPLICATE DETECTION

Detection of duplicates is the process of identifying multi-
ple representations of same real world objects. Traditional
duplicate detection (also called deduplication or record link-
age) employs well-established algorithms and heuristics, see
Elmagarmid [2] and Winkler [11] for surveys.

Typically, those algorithms concentrate on (a) the selection
of duplication candidates and/or on (b) a measure to es-
timate the similarity between two items. For (a) the goal
is to find an elaborate selection of candidate pairs to avoid
comparison of all (O(n?)) pairs of elements, where the over-
whelming number of comparisons will not be promising. For
(b) the goal is to compare elements efficiently, i.e., with a
good estimation of the actual similarity or in short time.

2.1 Web Services for Duplicate Detection

The comparison of two elements bases on data type and
value of their attributes and additional information to iden-
tify these pairs as possible duplicates. However, sometimes
the amount of available information is restricted or — as in
Web Services — just not available: the schema might not
be up-to-date, the field-mapping is unclear, privacy issues
prevent full access to all the data, etc.

Thus, the question is how a good similarity measure can
be created under the described conditions while still achiev-

ing appropriate results and while remaining as general as
possible. Therefore, it has to be examined which informa-
tion is essential for a duplicate detection process and which
information therefore has to be inferred from the data or
retrieved from other sources.

Web Service implementations of data cleansing — resp. du-
plication detection — methods (Data Quality Web Services)
are invoked on-demand with exactly the information that is
to be decided about, e.g., in case of only a small number of
items that shall be tested for similarity in an ad-hoc manner.
Further, they provide a clearly specified functionality while
remaining as general as possible to ensure a broad number
of possible service requesters. These properties turn Web
Services into the ideal foundation for evaluating duplicate
detection algorithms with the limitations described above.

2.2 Large Scale Duplicate Detection

Without the assumption of a Web Service to deduplicate
only a small number of elements, further problems arise.
The issue of how the data have to be made accessible to
the services is covered by Faruquie et al. [3]. Furthermore,
without this restriction, goal (a) becomes relevant in a Web
Service scenario, too.

3. SIMILARITY MEASURES

Successful duplicate detection within unforeseeable data and
structure requires some efforts before the actual detection
of duplicates can take place. Different pieces of information
may be missing, i.e., “semantics” of data, attribute names
of data, mapping between fields, and attribute separators.
All those terms are explained in the following. The lack of
information can be seen as different levels of challenges for
a good similarity measure. These levels are presented in the
following.

3.1 Challenges for Similarity Measure Selec-
tion

Level 0 This represents the “traditional” scenario for sim-
ilarity measures as depicted in Table 1. The record’s
attributes have proper names, the mapping is reliable
(the last name of the first record has to be compared
to the last name of the second record), and, of course,
separators are available (represented by the table grid).
Finally, the “semantics” are also clear due to the fact
that the database managers are at hand and can pro-
vide this kind of information.

Therefore, specific measures such as a fine-grained heu-

ristic for birthdates would detect that 1955[10]05 and

10.05.1955 mean the same date. Furthermore, it might
be clear that the person’s title is often guessed or omit-

ted and thus, Mr. and an empty entry would match.

The only requirement here is that these specialized

similarity measures are available.

Level 1 If the data are provided without expert knowledge,
e.g. in the XML-like shape illustrated in Figure 2, spe-
cialized similarity measures cannot be applied directly.
First, attributes have to be classified. The result of this
classification is some degree of certainty that a similar-
ity measure is appropriate. To achieve this knowledge,
the occurring values as well as the attribute names can

Table 1: Homer Simpson (Relational Data)

Attribute Record 1 Record 2
Title Mr.

First Name | Homer Jay | H. J.

Last Name | Simpson Simpspn
Birthday 1955|10|05 | 10.05.1955

<address record="1">
<title>Mr.</title>
<firstname>Homer Jay</firstname>
<lastname>Simpson</lastname>
<birthday>1955|10]05</birthday>
</address>

<address record="2">
<title/>
<firstname>H. J.</firstname>
<lastname>Simpspn</lastname>
<birthday>10.05.1955</birthday>
</address>

Figure 2: XML

be used. A particular challenge is to find out language-
specific features, e.g., the order of month and day in
a date field. Therefore, correlating data such as the
domain of names or location information, should be
considered, too. Note that the kind of representations
is independent from the lack of expert knowledge.

Level 2 Different records might have a different schema or
no schema at all, e.g., because they come from different
data sources or different owners. Figure 3 illustrates
two records, where the first one is in XML format,
the second one is in CSV format. It is obvious, that
the schema is not clear. Not only are the entries in
different order, also the occurrence of some attributes
is different (e.g., the telephone number). Moreover,
the granularity differs. The first record has separated
title and name, the second one has separated family
name from the rest.

It is commonly not clear, which attributes have to be
compared with each other. The names of attributes
might support the creation of a corresponding map-
ping, however those are not always available. More-
over, the telephone number of the second record might
match the birthday of the first entry better than both
birthdays match one another. Using meta information,
such as thesauri or ontologies, help resolve synonym
relations between terms, e.g., “surname” and “family
name”.

Level 3 The fields of a record might not be clearly distin-
guishable (c.f. Figure 4). E.g., the separator is not
known or the record is represented as un- or semi-
structured text. Therefore, the separator has to be
found and entities have to be recognized, respectively.
While the first separator (;) is rather common, the
second one (|) is less frequent and might normally not
be automatically recognized as an attribute separator.

<address record="1">
<title>Mr.</title>

<name>Homer Jay Simpson</name>
<lastname>Simpson</lastname>
<birthday>1955|10|05</birthday>
</address>

Simpson, Mr. Homer J, Springfield,
10.05.1955, (019) 55 10 05

Figure 3: XML vs. CSV

Homer Jay;Simpson;742 Evergreen Terrace;Springfield

4. DEALING WITH LARGE AMOUNT OF
DATA

As described as goal (a) earlier, checking for duplicates in
a large set of data poses additional challenges, which are
discussed here.

4.1 Data Transfer
There are three principles of how data transfer between the
customer’s database and the processing unit (the Web Ser-
vice) can be done. All have different requirements on net-
work bandwidth, ease of use and requirements towards the
customer’s infrastructure.

Mr. |Homer Jay|Simpson|742 Evergreen Terrace|Springfield Bulk File Transfer The relevant records can be exported

\charrsid87854 \par Homer Simpson}{\rtlch\fcsl
\a£31507 \ltrch\fcsO \lang1033\langfe1033
\1langnp1033\insrsid6695672\charrsid87854

\par }{\rtlch\fcs1l \af31507 \ltrch\fcsO
\lang1033\langfe1033\langnp1033\insrsid87854
\charrsid87854 \par 742 Evergreen-Terrace \par }
{\rtlch\fcs1l \af31507 \ltrch\fcsO \insrsid87854
Springfield \par USA \par \par }{*\themedata 504b03

Figure 4: Different separators

The third example in this figure shows an RTF snippet
kwhere these terms occur, too.

3.2 Similarity Challenges Tree

The challenges presented in Section 3.1 can be arranged in a
tree as pictured in Figure 5. Each black node represents the
decision for the existence of a specific piece of information,
starting from the top (whether or not attribute separators
are available) and reaching to the bottom (whether or not
insights in the “semantics” of the attributes are present). If
the corresponding information is available, the left subtree is
investigated further, else the right one. Each pass leads to a
leaf node that holds one of seven scenarios which have been
elaborated on in the previous section. The best results for a
similarity measure can be achieved if the left-most scenario
is selected.

Read the tree in the following way: For example to infer a
mapping between the attributes, the separators (resp. the
entities and their attributes) have to be identified before.
This is also the reason for the tree being very unbalanced.
For example, it makes no sense to try to detect the data
type if it is unclear, where one attribute ends and another
one starts. However, there might be an overlap for this de-
tection process. To find a valid mapping it can be necessary
to check the similarity of different candidate pairs on an at-
tribute value level. Recall the example in Figure 4. When
creating a mapping between the two record’s attributes, dif-
ferent matching candidate pairs have to be examined, here
<birthday>1955|10|05</birthday> with both, 10.05.1955
and (019) 55 10 05.

from the customer’s database into a flat file and then
be transfered as-is to the Web Service. Technical re-
strictions such as the file being too large can be tack-
led by compressing the file or by splitting the file into
smaller parts. The overall network usage is minimized
here, first if compression is used and second, because
each record is only transferred once. Moreover, the
transfer is rather atomic from the point of view of the
customer. There is no need to continuously being in
charge of providing data.

ODBC Access The Web Service could be provided with a
possibility to directly access the customer’s database.
In this case, Web Service (SOAP) requests are only
needed for the control connection, the actual data is
transferred directly. However, this is only possible, if
the customer is able and willing to provide a way to ac-
cess the database. Most probably, the network topol-
ogy (firewalls, NAT) and security policies will compli-
cate this access. The overhead is also higher in this ap-
proach, because the Web Service will either send many
independent queries to the database or (most proba-
bly) will just issue a SELECT * FROM relevant_records
query to retrieve the needed data. Then, the data
transfer is not as condensed as the approach above.

Web Service The third possibility for the customer is to
provide a (Web Service) API to his database. This will
on the one hand reduce network topology problems,
but on the other hand drastically increase bandwidth
usage and CPU load, since much SOAP en- and de-
coding is to be under way. Furthermore, the customer
has to provide an environment where this API is em-
bedded. However, if the total amount of data is fairly
small, the API already exists and the duplicate detec-
tion shall be very autonomous, this might also render
an appropriate approach.

4.2 Candidate Selection

If the data is on the Web Service’s side once, processing can
begin. Assuming that the challenges described in Section 3
are successfully managed, duplicate detection can take place
as usual. However in this scenario, many customers are to be
served at the same time (with potentially also large amounts
of data). Therefore, parallelized algorithms for searching
for duplicates in relatively promising subsets of the whole
dataset are needed.

PN

d Mapping?

3 Attribute names?

d Separator?

(7) Semi-/unstructured
documents

3 Attribute names?

3 Datatypes? (3) Value list with mapping 3 Datatypes? (6) Value list without other
information (e.g., order) information (e.g.,
unordered) + Schema
Matching
(1) Trad. duplicate (2) XML/JSON/CSV with (4) Trad. duplicate (5) XML/JSON/CSV with
detection task header line detection task + Schema header line + Schema
Matching Matching

Figure 5: Tree of Different Classification Certainty Levels

In principle, two basic algorithms are widely used, Sorted
Neighborhood and Blocking. In the Sorted Neighborhood
approach [4], the whole dataset is sorted after specific sort-
ing keys and then iterated over with a sliding window com-
paring all adjacent elements within this window. The other
approach, Blocking, splits up the dataset into several smaller
sets within all contained elements are compared pairwise.

Blocking is seen as the algorithm of choice [3, 8] when paral-
lelizing algorithms. With this, different processing units can
work independently from each other on different subsets of
data, thus enabling a near-linear scale. However, selecting
proper subsets is crucial since no inter-subset-duplicates can
be found.

S. RELATED WORK

The different classes are already in focus of ongoing research,
separately. For example, duplicate detection in XML struc-
tures [10] is examined by Weis et al.

Research in duplicate detection for unstructured or semi-
structured texts is often applied in plagiarism detection sys-
tems as MOSS (Schleimer et al. [9]) or YAP3 (Wise [12]).

Navarro [7], Winkler [11], and Elmagarmid et al. [2] give
surveys on existing string comparison algorithms, based on
edit distances as for example the Levenshtein Distance [6]
and outline the specific usefulness for the corresponding val-
ues.

Faruquie et al. [3] examines challenges and benefits of bring-

ing data cleansing (including duplicate detection) into the
cloud. However, he does not provide any details on the pro-
posed similarity measure or recommendations on the large
scale data discussion points covered in Section 4.

There are a couple of approaches for parallelizing data cleans-
ing, for example Anthill (Santos et al. [8]), Febrl (Christen
et al. [1]), and P-Swoosh (Kawai et al. [5]).

There are a number of providers and registries for Data
Quality Web Services. They provide services for data align-
ment (e.g., format telephone numbers properly), data com-
pletion (e.g., add postcodes to cities), or data verification
(e.g., check ISBNs against book titles). However, there are
no Web Services for duplicate detection.

6. SUMMARY

The process of Data Cleansing commonly comprises the nor-
malization of data, the identification of duplicates within
these data and the elimination of these duplicates by fusing
or discarding duplicate elements. Employing services for this
task is beneficial, because set-up and maintenance costs are
low and they are only paid for on a by-use scheme.

Duplicate detection commonly faces two challenges: having
a good, efficient similarity measure and selecting the “right”
records to compare. In a Web Service application, the sim-
ilarity measure is especially hard, since one or more of dif-
ferent (meta) data can be missing: “semantics”, datatypes,
mappings, and field separators. These information have to
be inferred from the available data to decide for appropriate

comparison operators.

Another challenge is the selection of promising duplicate
candidates which becomes even more tricky when it comes
to parallelization efforts. Depending on this is also the de-
cision on the way of how to bring the customer’s data to
the service. Currently, there is no best practice commonly
agreed upon.

7.
1]

2]

[10]

[11]

[12]

REFERENCES

P. Christen, T. Churches, and M. Hegland. A parallel
open source data linkage system, 2004.

A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios.
Duplicate Record Detection: A Survey. IEEE
Transactions on Knowledge € Data Engineering, 19,
2007.

T. Faruquie, H. Prasad, V. Subramaniam,

M. Mohania, G. Venkatachaliah, S. Kulkarni, and

P. Basu. Data Cleansing as a Transient Service. In
Proceedings of the ICDE, 2010.

M. A. Hernéndez and S. J. Stolfo. The merge/purge
problem for large databases. SIGMOD Rec.,
24(2):127-138, 1995.

H. Kawai, H. Garcia-Molina, O. Benjelloun,

D. Menestrina, E. Whang, and H. Gong. P-swoosh:
Parallel algorithm for generic entity resolution.
Technical Report 2006-19, Stanford InfoLab,
September 2006.

V. I. Levenshtein. Binary Codes Capable of Correcting
Deletions, Insertions and Reversals. Technical report,
1966.

G. Navarro. A Guided Tour to Approximate String
Matching. ACM Computing Surveys, 1999.

W. Santos, T. Teixeira, C. Machado, W. M. Jr.,

R. Ferreira, D. Guedes, and A. S. D. Silva. A Scalable
Parallel Deduplication Algorithm. Symposium on
Computer Architecture and High Performance
Computing, 0:79-86, 2007.

S. Schleimer, D. S. Wilkerson, and A. Aiken.
Winnowing: Local Algorithms for Document
Fingerprinting. In Special Interest group on
Management of Data Conference, 2003.

M. Weis and F. Naumann. DogmatiX - Track Down
Duplicates in XML. In Special Interest group on
Management of Data Conference, 2005.

W. E. Winkler. Overview of Record Linkage and
Current Research Directions. Technical report, Bureau
of the Census, 2006.

M. J. Wise. YAP3: Improved Detection of Similarities
in Computer Program and Other Texts. In
Twenty-Seventh Special Interest Group on Computer
Science Education Technical Symposium, 1996.

