
Benchmarking a B-tree compression method?

Filip Křižka, Michal Krátký, and Radim Bača

Department of Computer Science, Technical University of Ostrava, Czech Republic
{filip.krizka,michal.kratky,radim.baca}@vsb.cz

Abstract. The B-tree and its variants have been widely
applied in many data management fields. When a com-
pression of these data structures is considered, we follow
two objectives. The first objective is a smaller index file,
the second one is a reduction of the query processing time.
In this paper, we apply a compression scheme to fit these
objectives. The utilized compression scheme handles com-
pressed nodes in a secondary storage. If a page must be re-
trieved then this page is decompressed into the tree cache.
Since this compression scheme is transparent from the tree
operation’s point of view, we can apply various compression
algorithms to pages of a tree. Obviously, there are compres-
sion algorithms suitable for various data collections, and
so, this issue is very important. In our paper, we compare
the B-tree and compressed B-tree where the Fast Fibonacci
and invariable coding compression methods are applied.

Key words: B-tree and its variants, B-tree compression,
compression scheme, fast decompression algorithm

1 Introduction

The B-tree represents an efficient structure for the
finding of an ordered set [6]. The B-tree has been often
used as the backbone data structure for the physical
implementation of RDBMS or file systems. Its most
important characteristic is that keys in a node have
very small differences to each others. We utilize this
feature in the B-tree compression. In this case, nodes
are compressed in the secondary storage and they are
decompressed during their reading into the cache. Due
to the fact that the random access in the secondary
storage is a rather expensive operation, we save time
when reading the nodes.

In work [11], authors summarize some methods
for organizing of B-trees. A prefix B-tree, introduced
in [7], provides the head and tail compression. In the
case of the head compression, one chooses a common
prefix for all keys that the page can store, not just the
current keys. Tail compression selects a short index
term for the nodes above the data pages. This index
needs merely to separate the keys of one data node
from those of its sibling and is chosen during a node
split. Tail compression produces variable length index

? Work is partially supported by Grants of GACR
No. 201/09/0990 and IGA, FEECS, Technical Univer-
sity of Ostrava, No. BI 4569951, Czech Republic.

entries, and [7] describes a binary search that copes
with variable length entries.

Work [9] describes a split technique for data. Rows
are assigned tag values in the order in which they are
added to the table. Note that tag values identify rows
in the table, not records in an individual partition or
in an individual index. Each tag value appears only
once in each index. All vertical partitions are stored
in the B-tree with the tag value as the key. The novel
aspect is that the storage of the leading key is reduced
to a minimal value.

Unlike these works, in our work we suppose the
B-tree compression without changes of the B-tree
structure. We mainly utilize the fast decompression al-
gorithm. In the case of the previously depicted papers,
B-tree compression is possible using a modification of
the B-tree structure. In work [7], B-tree is presented by
B∗-index and B∗-file. The keys stored in the B∗-index
are only used to searching and determining in which
subtree of a given branch node a key and its associ-
ated record will be found. The B∗-index itself is a con-
ventional B-tree including prefixes of the keys in the
B∗-file. This prefix B-tree combines some of the advan-
tages of B-trees, digital search trees, and key compres-
sion without sacrificing the basic simplicity of B-trees
and the associated algorithms and without inheriting
some of the disadvantages of digital search trees and
key compression techniques. Work [9] describes an ef-
ficient columnar storage in B-trees. Column-oriented
storage formats have been proposed for query process-
ing in relational data warehouses, specifically for fast
scans over non-indexed columns. This data compres-
sion method reuses traditional on-disk B-tree struc-
tures with only minor changes yet achieves storage
density and scan performance comparable to special-
ized columnar designs. In work [1], B-tree compression
is used for minimizing the amount of space used by
certain types of B-tree indexes. When a B-tree is com-
pressed, duplicate occurrences of the indexed column
values are eliminated. It is compressed by clustering
the same keys and their unindexed attributes.

This paper is organized as follows. In Section 2, we
briefly summarize basic knowledge about the B-tree.
Section 3 shows a compression scheme used [3]. Sec-
tion 4 describes two compression methods. Section 5
shows results of the compression methods. The com-
pressed B-tree is compared with a proper B-tree. In

38 Filip Křižka et al.

Section 6, we summarize the paper content and out-
line possibilities of our future work.

2 B-tree and its variants

The B-tree is a tree structure published by Rudolf
Bayer and Edward M. McCreight in 1972 [6]. The
B-tree keeps data sorted and allows searches, inser-
tions, and deletions in logarithmic amortized time. It is
optimized for systems that read and write large blocks
of data. A B-tree is kept balanced by requiring that all
leaf nodes are at the same depth. This depth will in-
crease slowly as elements are added to the tree, but an
increase in the overall depth is infrequent, and results
in all leaf nodes being one more node further away
from the root.

B-trees have substantial advantages over alterna-
tive implementations when node access times far ex-
ceed access times within nodes. This usually occurs
when most nodes are in secondary storage such as
hard drives. By maximizing the number of child nodes
within each internal node, the height of the tree de-
creases, balancing occurs less often, and efficiency in-
creases. Usually this value is set such that each node
takes up a full disk block or an analogous size in sec-
ondary storage.

A B-tree of order m (the maximum number of chil-
dren for each node) is a tree which satisfies the follow-
ing properties:

– Every node has at most m children.
– Every node (except root and leaves) has at least

m
2 children.

– The root has at least two children if it is not a leaf
node.

– All leave nodes are in the same level.
– All inner nodes with k children contain k–1 links

to children.

Each internal node’s elements act as separation values
which divide its subtrees. For example, if an internal
node has three child nodes (or subtrees) then it must
have two separation values or elements a1 and a2. All
values in the leftmost subtree will be less than a1, all
values in the middle subtree will be between a1 and a2,
and all values in the rightmost subtree will be greater
than a2.

Internal nodes in a B-tree – nodes which are not
leaf nodes – are usually represented as an ordered set
of elements and child pointers. Every internal node
contains a maximum of U children and – other than
the root – a minimum of L children. For all internal
nodes other than the root, the number of elements is
one less than the number of child pointers; the number
of elements is between L−1 and U−1. The number U

must be either 2 ·L or 2 ·L−1; thus each internal node
is at least half full. This relationship between U and L
implies that two half-full nodes can be joined to make
a legal node, and one full node can be split into two
legal nodes (if there is an empty space to push one
element up into the parent). These properties make it
possible to delete and insert new values into a B-tree
and adjust the tree to preserve the B-tree properties.

Leaf nodes have the same restriction on the num-
ber of elements, but have no children, and no child
pointers. The root node still has the upper limit on
the number of children, but has no lower limit. For
example, when there are fewer than L-1 elements in
the entire tree, the root will be the only node in the
tree, and it will have no children at all.

A B-tree of depth n+1 can hold about U times as
many items as a B-tree of depth n, but the cost of
search, insert, and delete operations grows with the
depth of the tree. As with any balanced tree, the cost
increases much more slowly than the number of ele-
ments.

Some balanced trees store values only at the leaf
nodes, and so have different kinds of nodes for leaf
nodes and internal nodes. B-trees keep values in every
node in the tree, and may use the same structure for all
nodes. However, since leaf nodes never have children,
a specialized structure for leaf nodes in B-trees will
improve performance. The best case height of a B-tree
is: logM n. The worst case height of a B-tree is: log M

2
n.

Where M is the maximum number of children a node
can have.

There exists many variants of the B-tree:
B∗-tree [13], B∗∗-tree [15], B+-tree [17]. In the case
of the B+-tree, data is only stored in leaf nodes and
inner nodes include keys. Leaf nodes hold links to the
previous and next nodes. Moreover, many paged data
structures like UB-tree [5, 12], BUB-tree [8], and
R-tree [10] are based on the B-tree.

3 A compression scheme for tree-like
data structures

In this section, we describe a basic scheme which can
be utilized for most paged tree data structures [3].
Pages are stored in a secondary storage and retrieved
when the tree requires a page. This basic strategy is
widely used by many indexing data structures such as
B-trees, R-trees, and many others. They utilize cache
for fast access to pages as well, since access to the
secondary storage can be more than 20 times slower
compared to access to the main memory. We try to de-
crease the amount of disc access cost (DAC) to a sec-
ondary storage while significantly decreasing the size
of a tree file in the secondary storage.

Benchmarking a B-tree compression method 39

Let us consider a common cache schema of per-
sistent data structures in Figure 1(a). When a tree
requires a node, the node is read from the main mem-
ory cache. If the node is not in the cache, the node
page is retrieved from the secondary storage.

An important issue of the compression schema is
that tree pages are only compressed in the secondary
storage. In Figure 1(b), we can observe the basic idea
of the scheme. If a tree data structure wants to retrieve
a page, the compressed page is transfered from the
secondary storage to the tree’s cache and it is decom-
pressed there. Function TreeNode:: Decompress()
performs the decompression. Afterwards, the decom-
pressed page is stored in the cache. Therefore, the
tree’s algorithms only work with decompressed pages.
Obviously, the tree is preserved as a dynamic data
structure and in our experiments we show the page
decompression does not significantly affect query per-
formance because we save time with the lower DAC.

PageNode
Data structure

Data structure's
cache

in main memory Secondary
storage

(a)

Compreseed
pageNode

Data structure
Data structure's

cache
in main memory Secondary

storage

(b)

Fig. 1. (a) Transfer of tree’s pages between the secondary
storage and tree’s cache. (b) Transfer of compressed pages
between the secondary storage and tree’s cache.

3.1 How the compression scheme affects tree
algorithms

When the compression scheme is taken into considera-
tion, the tree insert algorithm only needs to be slightly
modified. When we insert or modify a record in a page,
we have to perform the function TreeNode::Compress
Test() which tests whether the node fits into the page.
If not, the node needs to be split. Also, during the
split, we have to make sure that the final nodes fit
into the page. This means that the maximum capac-
ity of a page can vary depending on the redundancy of
the data. The maximum capacity of each tree’s page
must be determined by a heuristic:

Cc =
Cu

CRA
,

where CRA is the assumed maximum compression ra-
tio, Cu is the capacity of the uncompressed page. For
example, the size of the page is 2,048 B, Cu = 100,
CRA = 1/5, then Cc = 500. The size of the page for
the capacity is 10,240B. This means that all pages in
the tree’s cache have Cc = 500, although their S size in
the secondary storage is less than or equal to 2,048B.
Let us note that

CR =
compressed size

original size
.

The TreeNode::Compress() function is called when
the page must be stored in the secondary storage.

Every page in the tree has its minimal page utiliza-
tion Cc/2. Let Sl denote the byte size of a compressed
page. After deleting one item in the page, the byte size
of the page is denoted by Sc. Without loss of general-
ity, we can assume that Sc ≤ Sl. If items are deleted
from the page, we must check whether capacity is less
than or equal to Cc/2. If so, the page is stretched into
other pages according to the tree deleting algorithm.

Query algorithms are not affected at all because
page decompression is processed only between cache
and secondary storage and the tree can utilize decom-
pressed pages for searching without knowing that they
have been previously compressed.

This basic idea of the compression scheme can be
applied to any paged tree data structure. It is not de-
pendent upon an applied split algorithm, nor on the
key type stored in the tree’s pages. We test this scheme
on B+-tree data structure because this data structure
has remained very popular in recent years and it is
suitable for further page compressing.

4 B-tree compression methods

In this article, we have applied two compression meth-
ods: Fast Fibonacci (FF) and Invariable Coding (IC).
Since keys in a node are close to each another, we use
the well-known difference compression method [14].
Similar algorithms were used in the case of the R-tree
compression [3, 16].

4.1 Fast Fibonacci compression

In this method, we apply the Fibonacci coding [2]
which uses the Fibonacci numbers; 1, 2, 3, 5, 8, 13,
A value is coded as the sum of the Fibonacci numbers
that are represented by the 1-bit in a binary buffer.
Special 1-bit is added as the lowest bit in this binary
buffer after the coding is finished. For example, the

40 Filip Křižka et al.

Algorithm 1: Fast Fibonacci Compression Algo-
rithm

function : CompressionLeafNode(node)
Write item11

for i in 2 .. node.count do2

num ←3

FibonacciCodder(node.key(i)-node.key(i-1))
Write num4

num ← FibonacciCodder(node.nonatrr(i))5

Write num6

end7

Write links8

function : CompressionNode(node)
Write item19

for i in 2 .. node.count do10

num ←11

FibonacciCodder(node.key(i)-node.key(i-1))
Write num12

end13

Write links14

function : Compression(node)
if node.isLeaf is leaf then15

CompressionNode(node)16

end17

else18

CompressionLeafNode(node)19

end20

function : CompressionTest(node)
tmp ← Compression(node)21

if tmp.size > page.size then22

return false23

end24

else25

return true26

end27

value 20 is coded as follows: 0101011 (13 + 5 + 2).
Due to the fact that we need the compression algo-
rithm as fast as possible, we use the Fast Fibonacci
decompression introduced in [4].

Algorithm of the Fast Fibonacci compression is
shown in Algorithm 1. We explain the algorithm in
the following paragraphs.
Compression of inner nodes:

– Keys are compressed by the Fibonacci coding. The
first value, obviously minimal, is stored. We com-
pute the difference of each neighboring value and
the difference is coded by Fibonacci coding. (see
Lines 10-13)

– Child and parent links are not compressed.
(Line 14)

Compression of leaf nodes:

– Keys are compressed in the same way as the keys
in an inner node. (Lines 3-4)

– Unindexed attribute values are compressed by Fi-
bonacci coding. (Lines 5-6)

– Parent, previous, and next nodes links are not
compressed. (Line 8)

4.2 Invariable coding compression

As in the previous method, we work with the difference
of each neighboring value. Since, we use invariable cod-
ing, we must first compute the difference of the last,
maximal value, and the first value. The result of this
computation is the number of bits necessary for a stor-
age of the maximal value and, obviously, each value of

Algorithm 2: Invariable Coding Compression
Method

function : CompressionLeafNode(node)
Write maxBits(node.key(1),node.key(n))1

Write node.key(1)2

for i in 2 .. node.count do3

num ← ICCodder(node.key(i)-node.key(i-1))4

Write num5

end6

Write maxBits(node.nonatrr(1),node.nonatrr(n))7

Write node.nonatrr(min)8

for i in 2 .. node.count do9

num ←10

ICCodder(node.nonatrr(i)-node.nonatrr(min))
Write num11

end12

Write links13

function : CompressionNode(node)
Write maxBits(node.key(1),node.key(n))14

Write node.key(1)15

for i in 2 .. node.count do16

num ← ICCodder(node.key(i)-node.key(i-1))17

Write num18

end19

Write links20

function : Compression(node)
if node.isLeaf is leaf then21

CompressionNode(node)22

end23

else24

CompressionLeafNode(node)25

end26

function : CompressionTest(node)
tmp ← Compression(node)27

if tmp.size > page.size then28

return false29

end30

else31

return true32

end33

Benchmarking a B-tree compression method 41

RND 8 RND 16
B+-tree FF IC B+-tree FF IC

Height 2 2 2 2 2 2

Domain 8b 16b

DAC Read 20,858,473 12,115,647 10,010,790 5,996,536 5,872,078 5,739,912

Creating time [s] 15,288 65,618 44,201 6,360 11,897 10,605

Cache Time [s] 7,357 5,398 1,565 6,020 1,495 1,181

Compress time [s] 0 867 652 0 883 636

Decompress time [s] 0 53,524 35,908 0 9,276 8,567

Inner nodes 35 17 9 33 17 9

Leaf nodes 7,746 3,350 2,431 5,695 2,596 2,114

Avg. node items 222.3 198 271 172.58 153.65 235.8

Avg. leaf node items 129.1 298.5 411.4 176.58 385.21 473

Index size [kB] 15,564 6,736 4,882 11,394 5,228 4,248

Compression ratio 1 0.56 0.69 1 0.54 0.63

Table 1. Building B+-tree index, result for RND 8 and RND 16.

RND 24 RND 32
B+tree FF IC B+tree FF IC

Height 2 2 2 2 2 2

Max item value 24b 32b

DAC Read [all] 5,996,536 5,907,459 5,830,822 5,996,536 5,931,627 5,889,079

Creating time [s] 7,377 12,098 12,435 7,629 13,686 13,154

Cache Time [s] 7,001 1,556 1,690 7,203 2,935 2,267

Compress time [s] 0 882 664 0 885 597

Decompress time [s] 0 9,419 9,828 0 9,595 10,003

Inner nodes 33 17 17 33 26 17

Leaf nodes 5,663 2,717 3,099 5,663 2,800 3,756

Avg node items 172.58 160.76 183.24 172.58 108.65 221.88

Avg leaf node items 176.58 368.05 322.68 176.58 357.14 266.24

Tree size [kB] 11,394 5,470 6,234 11,394 5,654 5,272

Compression ratio 1 0.52 0.45 1 0.50 0.54

Table 2. Building B+-tree index, results for RND 24 and RND 32.

RND 8 RND 16 RND 24 RND 32
B+tree FF IC B+tree FF IC B+tree FF IC B+tree FF IC

Query time [s] 182.4 37.6 33.5 38.2 34.2 31.7 38.1 34.2 35.2 38.2 45.3 37.2

Decompress time [s] 0 6.8 5.7 0 6.7 5.0 0 6.6 6.1 0 6.8 6.8

Cache Time [s] 149.1 3.8 1.8 5.0 2.0 1.3 5.6 2.4 2.5 7.2 12.7 3.0

DAC Read 64,813 28,123 20,516 47,068 21,897 17,610 47,068 22,469 25,700 47,068 23,200 31,296

Table 3. B-tree querying results for RND 8, RND 16, RND 24 and RND 32.

42 Filip Křižka et al.

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9

1

Compress
ratio

RND_8 RND_16 RND_24 RND_32

B+tree
FF Compress
IC Compress

0
20
40
60
80

100
120
140
160
180
200

Query
processing

time [s]

RND_8 RND_16 RND_24 RND_32

B+tree
FF Compress
IC Compress

(a) (b)

0

10000

20000

30000

40000

50000

60000

70000

DAC

RND_8 RND_16 RND_24 RND_32

B+tree
FF Compress
IC Compress

(c)

Fig. 2. Experiment results: (a) Compression ratio (b) Query processing time (c) DAC.

the node. For example, if the difference of the maximal
and minimal value is 20, all values are stored in 5bits.

Algorithm of the IC compression is shown in Al-
gorithm 1. We explain the algorithm in the following
paragraphs.

Compression of inner nodes:

– Keys are compressed by the above proposed
method. We store the first value and the num-
ber of bits necessary for a storage of the maxi-
mal value. After, all difference values are stored.
(Lines 14-19)

– Child and parent links are not compressed.
(Line 20)

Compression of leaf nodes:

– Keys are compressed in the same way as the keys
in an inner node. (Lines 1-6)

– Unindexed attribute values are similarly com-
pressed as keys, however the maximal value is not
the last value – it must be found by a sequence
scan.

– Parent, previous, and next nodes links are not
compressed. (Line 13)

5 Experimental results

In our experiments1, we test previously described com-
pression methods. These approaches are implemented
in C++. We use four synthetic collections which differ
in values included. Collection RND 8 includes values
in 〈0; 255〉, RND 16 includes values in 〈0; 65, 535〉. In
this way, we create collections RND 24 and RND 32
as well. Each collection contains 1,000,000 items.

For each collection, we test index building and
querying by processing time and DAC. In all tests, the
page size is 2,048B and cache size is 1,024 nodes. The
cache of the OS was turned off.

Results of index building are depicted in Table 1
and 2. We see that the compression ratio decreases for
increasing size of domains. FF compression is more
efficient for lower values; on the other hand, the IC
compression is more efficient for higher values. Obvi-
ously, due to features of the compressed scheme used,
we obtain the high compress time. Consequently, the

1 The experiments were executed on an AMD Opteron 865
1.8Ghz, 2.0 MB L2 cache; 2GB of DDR333; Windows
2003 Server.

Benchmarking a B-tree compression method 43

time of creating of B+-tree with the FF compression
is 1.6 − 4.3× higher then the time of creating for the
B+-tree. In the case of the IC compression, the creat-
ing time is 1.7 − 2.9× higher. The compression ratio
is shown is Figure 4.2(a) as well.

In our experiments, we test 50 random queries and
the results are then averaged. The results are shown
in Table 3. The number of DAC is 2.1 − 3.5× lower
for the FF compression when compared to the B+-
tree and 1.5 − 3.6× for the IC compression. This re-
sult influences the query processing time. The query
processing times is 0.84 − 4.85× more efficient in the
case of the FF compression when compared to the B+-
tree and the time is 1.03− 5.4× more efficient for the
IC compression. Obviously, if the compression ratio is
over a threshold then the B+-tree overcomes the com-
pressed indices. In Figure 4.2(b) and (c), we see the
query processing time and DAC.

6 Conclusion

In this article, we propose two methods for B-tree com-
pression. If the compression ratio is below a threshold
then the query processing performance of the com-
pressed index overcomes the B-tree. However, there
are still some open issues. The first one is the high
creating time. In this case, we must develop a more
efficient method or we must use and test the bulkload-
ing (see [3, 16]). Additionally, we must test our method
for a real data collection. Finally, we should test differ-
ent compression and coding methods (i.e. Elias-delta
code, Elias-gamma code, Golomb code [14]).

References

1. C. Antognini: Troubleshooting Oracle Performance.
Apress, 2008.

2. A. Apostolico and A. Fraenkel: Robust transmission
of unbounded strings using Fibonacci representations.
IEEE Trans. Inform., 33, 2, 1987, 238–245.

3. R. Bača, M. Krátký, and V. Snášel: A compression
scheme for the R-tree data structure. In Submitted in
Information Systems, 2009.

4. R. Bača, V. Snášel, J. Platoš, M. Krátký,
and E. El-Qawasmeh: The fast Fibonacci de-
compression algorithm. In arXiv:0712.0811v2,
http://arxiv.org/abs/0712.0811, 2007.

5. R. Bayer: The universal B-tree for multidimensional
indexing: general concepts. In Proceedings of World-
Wide Computing and Its Applications (WWCA 1997),
Tsukuba, Japan, Lecture Notes in Computer Science,
Springer–Verlag, 1997, 198–209.

6. R. Bayer and E. M. McCreight: Organization and
maintenance of large ordered indices. Acta Informat-
ica, 1972, 173–189.

7. R. Bayer and K. Unterauer: Prefix B-trees. ACM
Trans. on Database Systems, 2, 1, 1977, 11–26.

8. R. Fenk: The BUB-tree. In Proceedings of 28rd VLDB
International Conference on Very Large Data Bases
(VLDB’02), Hongkong, China, Morgan Kaufmann,
2002.

9. G. Goetz: Efficient columnar storage in B-trees. In
Proceedings of SIGMOD Conference, 2007.

10. A. Guttman: R-Trees: a dynamic index structure for
spatial searching. In Proceedings of ACM International
Conference on Management of Data (SIGMOD 1984),
ACM Press, June 1984, 47–57.

11. D. Lomet: The evolution of effective B-tree page orga-
nization and techniques: a personal account. In Pro-
ceedings of SIGMOD Conference, Sep. 2001.

12. V. Markl: Mistral: Processing relational queries
using a multidimensional access technique. Ph.D.
thesis, Technical University München, Germany, 1999,
http://mistral.in.tum.de/results/publications/

Mar99.pdf.
13. Y. Sagiv: Concurrent operations on B*-trees with over-

taking. In Journal of Computer and System Sciences,
1986.

14. D. Salomon: Data Compression The Complete Refer-
ence. Third Edition, Springer–Verlag, New York, 2004.

15. A.A. Toptsis: B**-tree: a data organization method for
high storage utilization. In Computing and Informa-
tion, 1993.

16. J. Walder, M. Krátký, and R. Bača: Benchmarking
coding algorithms for the R-tree compression. In Pro-
ceedings of DATESO 2009, Czech Republic, 2009.

17. N. Wirth: Algorithms and Data Structures. Prentice
Hall, 1984.

