
Comparing ASP and CP on Four Grid Puzzles

Mehmet Çelik, Halit Erdoğan, Fırat Tahaoğlu, Tansel Uras, and
Esra Erdem

Faculty of Engineering and Natural Sciences
Sabanci University, Istanbul / Turkey

Abstract

We study two declarative programming languages namely Answer
Set Programming (ASP) and Constraint Programming (CP) on four
grid puzzles: Akari, Kakuro, Nurikabe, and Heyawake. We represent
these problems in both formalisms in a systematic way and compute
their solutions using ASP system Clasp and CP system Comet. We
compare the ASP approach with the CP approach both from the point
of view of knowledge representation and from the point of view of
computational time and memory.

1 Introduction

Grid Puzzles have been studied in various areas of AI, and these studies
have led to interesting insights and useful approaches for solving them as
well as some real-life problems. In this paper, we study the representation
of four grid puzzles Akari, Kakuro, Nurikabe, and Heyawake in Answer Set
Programming (ASP) and in Constraint Programming (CP). The objective is
to compare these declarative programming paradigms both from the point of
view of representation and from the point of view of computational efficiency
on these puzzles. We prepared a website1 where you can find an extended
version of the paper, full ASP and CP encodings, CP encodings for other
solvers, puzzle instances, comparison of ASP solvers (with other grounders),
ongoing work and further results that do not fit into this paper.

Comparing ASP and CP from the point of view of representation First we
describe the constraints in a metalanguage, as precise and straightforward as
possible, and then formulate each constraint in each formalism. The idea is
to define concepts in each formalism in a similar way, and try to understand
how easy/hard it is to express these concepts in these declarative paradigms.

Comparing ASP and CP from the point of view of computational effi-
ciency We compute the solutions to the grid puzzles using the ASP system
Clasp2 and the CP system Comet3. We compare these computations in
terms of CPU time and program size.

1http://krr.sabanciuniv.edu/projects/gridpuzzle/
2http://www.cs.uni-potsdam.de/clasp/
3http://www.comet-online.org/

Proceedings of the 16th International RCRA workshop (RCRA 2009):
Experimental Evaluation of Algorithms for Solving Problems with Combinatorial Explosion
Reggio Emilia, Italy, 12 December 2009

Figure 1: A sample Akari puzzle and its solution. The black cells with
numbers are called “hints”. Gray cells are the light bulbs.

In the literature, there are several attempts to solve the puzzles that we
are interested in as well as the empirical works to compare several declara-
tive programming paradigms. For instance, [1] studies the representations
of some grid puzzles in ASP including Heyawake and Nurikabe. In [2] the
authors compare ASP, CP and ILP on Wire Routing problems and Hap-
lotype Inference problems. [10, 11] presents CP formulations of some grid
puzzles. In addition, in [7], the authors study the comparison of ASP and
CP on some puzzles. Similarly, [4] presents some experimental results for
comparing Constraint Logic Programming and Answer Set Programming on
some NP-complete problems.

In the rest of the paper, we show the representations of each puzzle in
the language of Lparse (grounder for the ASP solver Clasp) and in the
language of Comet, show the results of our experiments with Clasp and
Comet using these formulations and point out the weaknesses and strengths
of each approaches.

2 Akari

Akari, also known as Light-Up, uses a rectangular grid of black cells and
white cells. Hints (integers) are placed in black cells. Figure 1 is an example
of an initial Akari board and its solution. The player solves puzzles via
placing light bulbs in the white boxes according to following rules:

A1 Light bulbs are permitted to be placed at any white square. A hint
(numbered black square) indicates how many light bulbs are next to
it, vertically or horizontally.

A2 Each light bulb illuminates from itself to a black square or the outer
frame in its row and column, and every white square must be illumi-
nated.

A3 No light bulbs should illuminate each other.

2

Given an Akari problem, deciding whether a solution exists is NP-complete [9].

2.1 An ASP Formulation of Akari

Input: The initial board is described with two types of atoms:

• hint(Row, Column, Value) is used to specify hints. Row, Column speci-
fies the location of the hint4, Value specifies the value (constraint) of
the hint. For example, in Fig. 1, there is a hint at the bottom left
corner with the value 1 and represented by hint(1,1,1).

• black(Row, Column) specifies the black cells (including the hints). All
non-black cells are considered to be white. For example, there is
a black cell in Figure 1 at the top right corner and represented by
black(1,7).

Output: The output is described by atoms of the form bulb(Row, Column),
that means the cell (Row, Column) has a bulb in it.

The constraints are forced as follows in ASP:

A1 Light bulbs are permitted to be placed at any white square. A hint
(numbered black square) indicates how many light bulbs are next to
it, vertically and horizontally.

C{bulb(V1,H1) : adjacent(V,H,V1,H1) : white(V1,H1)}C :- hint(V,H,C).

A2-A3 Each light bulb illuminates from itself to a black square or the outer
frame in its row and column, and every white square must be illumi-
nated.

1{bulb(V,H) : reachable(V,H,V1,H1) : verticalIndex(V) :

horizontalIndex(H)}2

:- white(V1,H1),verticalIndex(V1),horizontalIndex(H1).

A cell is vertically (horizontally) reachable from another, if it is vertically
(horizontally) adjacent to it, or reachable from any of its vertical (horizontal)
adjacent cells.

4In all of the puzzle grids in this paper, the cell on the bottom left corner has the
location (1, 1), and the cell on the top right corner has the location (m,n), where m is the
number of columns and n is the number of rows.

3

2.2 A CP Formulation of Akari

Input: The input is given as a series of tuples for black cells, hints and ver-
tical and horizontal blocks. The hint inputs are tuples of 3: row, column,
and the value, while the black cells are identified by their rows and columns.
The vertical (or horizontal) blocks are identified by tuples of 3, the vertical
(or horizontal) index of the block and the horizontal (or vertical) beginning
and end indices of the block. So, all vertical and horizontal blocks are given
in input, according to these a neighborhood set is constructed for each cell,
which contains reachable cells from that cell.

Output: The output is an integer matrix board. For every (i, j), board(i, j)
is mapped to either 0 or 1, where board(i, j) = 1 indicates that the cell (i, j)
has a bulb.

Rules: The rules are enforced via constraints as follows:

A1-I Light bulbs are permitted to be placed at any white square.

forall(i in 1..nbB){

//read row and column index from input

m.post(board[r,c] == 0);}

A1-II A hint (numbered black square) indicates how many light bulbs are
next to it, vertically and horizontally.

forall(i in 1..nbH){

//read row, column and constraint from input

m.post(board[r,c] == 0);

m.post((board[r,c-1] + board[r,c+1] +

board[r-1,c] + board[r+1,c]) == v);

}

A2-A3 Each light bulb illuminates from itself to a black square or the outer
frame in its row and column, and every white square must be illumi-
nated.

for all block x{

//that block should have at most 1 bulb

m.post(sum(i in x) board[i.r, i.c] <= 1);

forall(row in RowRange)

forall(column in ColumnRange)

if(the cell is white){

//every white cell should be lighted

m.post(sum(j in neighborhood[row,column])

board[j.r, j.c] >= 1);}}

4

Figure 2: A sample Kakuro puzzle and its solution.

3 Kakuro

Kakuro uses a rectangular grid of black and white cells. Black cells may
contain hints (integers) as in Akari. The number below the diagonal divider
is the hint for cells below, the number above the diagonal divider is the hint
for cells to the right. Figure 2 shows an example and solution for a Kakuro
problem. The goal is to fill the white cells while satisfying the following
rules:

K1 Each white cell should contain a single value between 1-9.

K2 All numbers in a continuous block of white cells must be pairwise
different.

K3 The sum of a continuous block of white cells in horizontal (or vertical)
direction must be equal to the hint given in the black cell to the left
(above).

Deciding whether there is a solution for a Kakuro instance is NP-complete [6]

3.1 An ASP Formulation of Kakuro

Input: The initial board is described with three types of atoms:

• hHint(Row, Column, Sum, Extent) is used to specify horizontal hints.
Row, Column specifies the location of the hint, Sum specifies the sum
constraint of the hint and Extent specifies how many cells the hint
covers. For example, in Figure 2, there is a horizontal hint which
requires 3 cells and with the constraint value 6 on the bottom left
corner of the grid and represented by hHint(1,1,6,3).

• vHint(Row, Column, Sum, Extent) is used to specify vertical hints, sim-
ilar to the horizontal one.

5

• black(Row, Column) specifies the black cells (including the hints). All
non-black cells are considered to be white. For example, the cell (1, 5)
is black and represented by black(2,4).

Output: The output is described by atoms of the form cellVal(Row, Column, Value),
meaning the cell Row, Column is assigned Value that ranges between 1 and 9.

The rules are enforced via constraints and are as follows:

K1 For each white cell, there must be exactly one cellVal atom

1{cellVal(R,C,Val) : val(Val)}1 :- not black(R,C), row(R),

column(C).

K2 For any hint block and any two different cells in it, the value of the
cells cannot be the same

:- vHint(R, C, Sum, E), cellVal(R1, C, Val),

cellVal(R2,C,Val), row(R1; R2),

R < R1, R1 < R2, R2 <= R + E, val(Val).

% Same rule applies for the horizontal hint (hHint)

K3 The enforcement of the sum constraint is a bit harder. Basically, for
each hint (horizontal or vertical) we sum the values of the cells starting
from the farthest cell in the hint block all the way to the first cell of
the hint. Then the total sum is forced to be equal to the value of the
hint. Step by step:

1. The end points for the hints are determined and the sums up to
these points are set to 0.

horSum(R,C+E,0) :- hHint(R,C,Sum,E).

verSum(R+E,C,0) :- vHint(R,C,Sum,E).

2. The horizontal and vertical sums are computed all the way to the
hints

verSum(R-1,C,Sum+Val)

:- not black(R,C), verSum(R,C,Sum),

cellVal(R,C,Val), sum(Sum), val(Val).

% Same rule applies for the horizontal sum (horSum)

3. The total sum cannot be different than the value of the hint

:- vHint(R,C,Sum,E), verSum(R,C,Sum2),

sum(Sum2), Sum != Sum2.

% Same rule applies for the horizontal hint (hHint)

6

3.2 A CP Formulation of Kakuro

Input: The input is given as a series of tuples for vertical hints, horizontal
hints and black cells. The hint inputs are tuples of 4: row, column, sum
and extent of the hint, while the black cells are identified by their rows and
columns. The input for vertical and horizontal hints are processed in the
program to form an array called hints where a hint consists of a set of cells
associated with it and its sum constraint.

Output: The output is an integer matrix called board, representing the puz-
zle. The values in each cell range between 0-9 where 0 means the cell is
black and 1-9 is the fill value of a white cell.

For each hint the following function is called with the solver, the hint itself
and the board:

function void postHint(Solver<CP> m, block bl, var<CP>{int}[,]

board)

This function contains the following parts:

K1 All white cells are non-black (their domains are 1-9)

forall (a in bl.cells)

m.post(board[a.r,a.c]>=1);

K2 All cells in the hint’s set should contain different values

m.post(alldifferent(all(a in bl.cells) board[a.r,a.c]));

K3 The sum of the values of the cells in the hint’s set should satisfy the
sum constraint of the hint

m.post(sum(a in bl.cells) board[a.r,a.c] == bl.sumC);

Also, all of the black cells are forced to be 0 in the input reading phase.

4 Nurikabe

Nurikabe is played on a rectangular grid of cells where some cells are num-
bered. The challenge is to paint some of the cells black while obeying the
following set of constraints and definitions.

N1 The “walls” are made of connected adjacent white cells in the grid of
cells.

7

Figure 3: A sample Nurikabe puzzle and its solution.

N2 At the start of the puzzle, each numbered cell defines (and is one
block in) a wall, and the number indicates how many white cells the
wall must contain. The solver is not allowed to add any further walls
beyond these.

N3 Walls shall not connect to each other.

N4 Any cell which is not a block in a wall is part of “the maze” – meaning
that is a black cell.

N5 The maze must be a single orthogonally (vertically or horizontally)
contiguous whole.

N6 The maze is not allowed to have any “rooms” – meaning that the maze
may not contain any 2x2 squares of black cells.

Deciding whether there is a solution to Nurikabe is NP-complete [8].

4.1 An ASP Formulation of Nurikabe

Problem representation in ASP is nearly identical with the representation
in [1]. We try some modifications in the representation but they did not
affect the search of the ASP solver, and produce negligible changes in the
computational time and efficiency.

4.2 A CP Formulation of Nurikabe

Input and Output: The input is represented as two list of values. Tuples
for the rows, columns to express the position of the numbered cells and the
values of the numbered cells in the grid. The output is a binary matrix
board where [i, j] is 1 if the cell is painted white and 0 otherwise.

In the CP formulation, all constraints related to neighborhood relations
are represented as follows:

8

N2 At the start of the puzzle, each numbered cell defines a wall, and the
number indicates how many white cells the wall must contain.

forall(k in 1..NumberedCellsRange)

m.post((sum(i in 1..r, j in 1..c) board[i,j]==k))

== Number[k]);

N3 Walls shall not connect to each other.

forall(i in 2..r-1) //without matrix borders

forall(j in 2..c-1)

m.post(board[i,j] != 0 =>(

(board[i+1,j] == 0 || board[i+1,j] == board[i,j])

&& (board[i,j+1] == 0 || board[i,j+1] == board[i,j])

&& (board[i,j-1] == 0 || board[i,j-1] == board[i,j])

&& (board[i-1,j] == 0 || board[i-1,j] == board[i,j])));

N6 The maze is not allowed to have any “rooms” (meaning that the maze
may not contain any 2x2 squares of black cells).

forall(i in 1..r-1)

forall(j in 1..c-1)

m.post(board[i,j] != 0 || board[i+1,j] != 0

|| board[i,j+1] != 0 || board[i+1,j+1] != 0);

N1 and N4 are definitions needed for the implementations of the other
constraints. The most challenging part of the CP formulation of this puzzle
is to represent N5. This constraint forces all the black cells in the solution to
be reachable to each other. The CP representation of “reachability” is not
as easy as in ASP, since Comet does not allow transitive closure. Therefore,
we have not represented this constraint explicitly in CP, but we do change
the search mechanism: we ensure that Comet goes over each computed
solution and checks whether the solution satisfies the reachability constraint
by performing a depth first search from a black cell to other black cells. If
we encounter all the black cells in the search than we say it satisfies N5.

5 Heyawake

Heyawake is played on a rectangular grid whose cells are white or numbered,
like in Nurikabe. Furthermore, different from Nurikabe, the grid is divided
into rooms, as shown in Figure 4. The goal is, like in Nurikabe, to paint
some cells black Figure 4, but obeying a different set of rules:

H1 Painted cells may never be orthogonally connected.

9

Figure 4: A sample Heyawake puzzle and its solution.

H2 All white cells must be interconnected.

H3 A number (also known as room black cell size) indicates exactly how
many painted cells there must be in that particular room.

H4 A room which has no number may contain any number of painted cells
(including the possibility of zero cells).

H5 Where a straight (orthogonal) line of connected white cells is formed,
it must not contain cells from more than two rooms. In other words,
any such line of white cells which connects three or more rooms is
forbidden.

Deciding whether there is a solution to Heyawake is NP-complete [5].

5.1 An ASP Formulation of Heyawake

We modify the ASP representation of Heyawake in [1] for a better compu-
tational efficiency.

Input: The initial board is described with two types of atoms:

• room(N,R1,C1,R2,C2) indicates the boundaries of the room N as the
rows between R1 − R2 and the columns between C1 − C2. For ex-
ample, in Figure 4, the first room in the top left corner of the grid is
represented as room(1,1,9,2,10).

• has(N,V) indicates that the room N must contain V black cells. For
example, the room in the bottom left corner of the grid is the third
room and has a black cell size of 0 and represented by has(3,0).

10

Output: Atoms of the form black(R,C) which indicates that the cell (R,C)
is black.

We have observed that, in the ASP representation of Heyawake in [1]
the most time consuming part of the representation is the formulation of
the constraint H5 : The atoms that represent length of the vertical (or
horizontal) path between two cells, take six arguments, and thus require
a lot of time and space consumption since the grounding results in huge
number of rules. Therefore, we have reformulated the constraint H5. In
this representation: nroom(X,Y) describes that the rooms X and Y are
neighbor rooms and inroom(C,R,T) represents that the cell (C,R) is in
room T . In addition, the atoms of the form vconnected(C,R,C1, R1) (resp.
hconnected(C,R,C1, R1)) represent a vertical (resp. horizontal) straight
path between (C,R) and (C1, R1). Using these atoms, we reformulate the
constraint H5 as below. It is not allowed that two white cells are connected
by a orthogonal path and included in rooms that are not neighbors. The
representations of other constraints are the same as in [1].

% H5: It is not allowed that two white cells are straight connected

% and included in non neighbor rooms.

:- vconnected(C,R,C1,R1), inroom(C,R,T), inroom(C1,R1,T1), not

nroom(T,T1), num(T;T1).

:- hconnected(C,R,C1,R1), inroom(C,R,T), inroom(C1,R1,T1), not

nroom(T,T1), num(T;T1).

5.2 A CP Formulation of Heyawake

Input: The input is very similar to the input of ASP formulation except
that, instead of atoms, we obtain tuples of integers for the boundaries and
black cell sizes of the rooms. We preprocess the input and have a ma-
trix NeighborRooms where NeighborRooms[R1,R2] determines whether the
rooms R1 and R2 are neighbor or not.

Output: The output is a binary matrix that represents the solution of the
puzzle, where the 1s denote the black cells and 0s denote the white cells.

In the CP representation, we have a binary decision variable Grid[i,j]

which is 1 if the cell (i, j) in the solution is black; it is 0 if the cell is white.
Using this decision variable we represent the constraints as follows:

H1 Painted cells can never be orthogonally connected.

11

forall(i in 1..noofRows)

forall(j in 1..noofColumns){

if((i-1) > 0)

m.post(Board[i,j] + Board[i-1,j] < 2);

if((i+1) <= noofRows)

m.post(Board[i,j] + Board[i+1,j] < 2);

if((j-1) > 0)

m.post(Board[i,j] + Board[i,j-1] < 2);

if((j+1) <= noofColumns)

m.post(Board[i,j] + Board[i,j+1] < 2);

}

H3 & H4 A number (also known as room black cell size) indicates exactly how
many painted cells there must be in that particular room. A room
which has no number may contain any number of painted cells

forall(room in 0..noofRooms)

if(RoomBlackCellSize[room] > -1)

m.post((sum(cell in RoomContains[room])

(Board[cell.r, cell.c]==1))==RoomBlackCellSize[room]);

H5 A straight (orthogonal) line of connected white cells is formed, it must
not contain cells from two different rooms.

forall(i in 1..noofRows)

forall(j1 in 1..noofColumns)

forall(j2 in j1..noofColumns)

if(AdjRooms[CellInRoom[i,j1],CellInRoom[i,j2]] != 1)

m.post((Board[i,j1] + Board[i,j2] == 0) =>

((sum(k in j1..j2) Board[i,k]) > 0));

As in Nurikabe, we have not represented the constraint H1 since it re-
quires reachability. Instead, Comet goes over the computed solutions (with
a depth first search fashion) and determine whether there is a solution which
satisfies reachability.

6 Experimental Results and Discussion

In this section, we present the experimental results for the formulations de-
scribed in the previous sections. The ASP representations are tested on the
ASP solver Clasp (with default settings) version 1.2.1 (Lparse as grounder)
and the CP representations are tested on the CP solver Comet (with de-
fault settings) version 2. Table 1 shows the results for each puzzle instance.
For each puzzle instance we show the computational time that is consumed
by each solver5. We compare the program sizes, in terms of number of

5All CPU times are in seconds, for a workstation with a 2.1GHz Intel Core2 Duo T6570
processor and 2,96GB RAM, running MS Windows XP 32 bit.

12

atoms and number of rules for Clasp and number of variables and number
of constraints for Comet. In addition, we compare the search strategies of
the solvers by means of “number of choices” and “number of conflicts” for
Clasp, and number of choices and number of fails for Comet. The number
of choices, conflicts, and fails will give us insights about how much/less the
solvers search while finding the solution.

When we look at the results for the Akari instances, we can see that
both solvers do not have much difficulty solving these puzzles. For the
small instances, Clasp performs better; whereas, for the large instances
Comet performs better. One can see that number of choices made both by
Comet and Clasp are outnumbered by the choices made in other puzzles.
In addition, few number of encountered conflicts and fails indicate that both
solvers solve this problem with few number of search steps.

For the Kakuro instances, Comet finds solutions by doing less search,
spending less computational time in comparison with clasp. For these
instances, we can say that Comet outperforms clasp. The strength of
Comet for these instances can be explained by the usage of the alldifferent
propagator which is known to be very efficient constraint. As regards the
ASP representation, we have recursive definitions for the summations which
results in huge program after grounding. The summations are handled more
easily in CP with an iterative approach.

On the other hand, for the Nurikabe and Heyawake instances, Clasp
performs much better than Comet. There are instances for which Clasp
finds solutions in a couple of seconds where Comet cannot find a solution in
10 minutes. Most reasonable explanation for that is the unnatural handling
of reachability in CP. In ASP, we represent reachability easily since it allows
recursive transitive closure definitions. On the other hand, we could not find
an effective reachability representation in CP. Not posting reachability as a
constraint but going over the found solutions consumes a lot of time.

As interesting future work, we would like to represent reachability in
constraint programming via enumerating all possible paths with all possible
lengths between two cells. For that, we keep decision variables for each path
between each two cells with each length. As a result, we will force that
there exists a path of any length between two cells; by doing that we force
reachability of two cells. However, our initial test results using Gecode6,
does not seem to be impressing from the point of view of computational
efficiency. According to the results of our discussions with Helmut Simonis,
we believe that implementing propagators for reachability can be another
way for representing reachability in CP, and this will be more effective to
solve Heyawake and Nurikabe. Furthermore, we can use the CP solvers that
includes built-in propagators for reachability, like ECLIPSe7. We also try

6http://www.gecode.org
7http://87.230.22.228/

13

to use the Gecode library for graph concepts, cp(graph) [3], which allows
representation of reachability in Gecode; but, we could not manage to use
it properly.

References

[1] M. Cayli, A. G. Karatop, E. Kavlak, H. Kaynar, F. Ture, and E. Erdem.
Solving challenging grid puzzles with answer set programming. In Proc.
of ASP, pages 175–190, 2007.

[2] E. Coban, E. Erdem, and F. Ture. Comparing ASP, CP, ILP on two
challenging applications: wire routing and haplotype inference. In Proc.
of LaSh, 2008.

[3] G. Dooms, Y. Deville, and P. Dupont. Cp(graph): Introducing a graph
computation domain in constraint programming. In Proc. of CP, pages
211–225. Springer-Verlag, 2005.

[4] A. Dovier, A. Formisano, and E. Pontelli. An experimental comparison
of constraint logic programming and answer set programming. In AAAI,
pages 1622–1625. AAAI Press, 2007.

[5] M. Holzer and O. Ruepp. Fun with Algorithms, chapter the troubles
of interior design: a complexity analysis of the game heyawake, pages
198–212. Springer Berlin / Heidelberg, 2007.

[6] G. Kendall, A. J. Parkes, and K. Spoerer. A Survey of NP-Complete
Puzzles. International Computer Games Association Journal, 31(1):13–
34, 2008.

[7] T. Mancini, D. Micaletto, F. Patrizi, and M. Cadoli. Evaluating ASP
and Commercial Solvers on the CSPLib. Constraints, 13(4):407–436,
2008.

[8] B. McPhail. Nurikabe is NP-Complete. NW Conference of the CCSC,
Poster Session, October 2004. Student poster.

[9] B. McPhail. Light Up is NP-Complete. Unpublished manuscript, Febru-
ary 2005. Available from www.cs.umass.edu/~mcphailb/papers/

#lightup.

[10] H. Simonis. Sudoku as a constraint problem. In Proc. of fourth Int.
Works. on Modelling and Reformulating Constraint Satisfaction Prob-
lems, 2005.

[11] H. Simonis. Kakuro as a constraint problem. In Proc. seventh Int.
Works. on Constraint Modelling and Reformulation, 2008.

14

Table 1: Experimental results for the puzzle instances for Akari (a1...a10),
Kakuro (k1...k10), Nurikabe (n1...n10), and Heyawake (h1...h10). No result
showed if the solver cannot find a solution in 10 minutes.

Clasp Comet

Puzzle Grid time # of # of # of # of time # of# of # of # of
Instancesize (sec.) atoms rules choicesconflicts(sec.) vars.cons. choicesfail
a1 7x7 0.206 1337 2778 2 1 0.541 81 868 3 1
a2 0.223 1353 2834 0 0 0.431 81 866 1 0
a3 0.208 1348 2804 0 0 0.441 81 1138 4 0
a4 0.195 1255 2524 6 4 0.451 81 1307 14 1
a5 0.184 1135 2198 0 0 0.419 81 887 1 0
a6 10x101.146 3214 8596 0 0 0.705 144 4012 7 0
a7 0.993 2929 7430 0 0 0.629 144 3316 1 0
a8 0.749 2440 5627 7 4 0.63 144 4397 10 2
a9 14x144.996 5079 14497 8 4 1.29 256 138469 4
a10 4.922 5016 14256 11 7 1.33 256 1384113 6
k1 8x8 0.686 8541 55200 830 383 0.461 49 101 5 4
k2 12x101.309 15600 1037071844 831 0.418 99 214 19 13
k3 10x141.971 18093 1204546001 2673 0.429 117 221 31 38
k4 12x121.801 18588 1240933794 1685 0.433 121 248 24 22
k5 14x122.425 21593 1459029846 5118 0.453 143 280 316 557
k6 12x162.756 24596 1664875061 2007 0.458 165 352 43 42
k7 20x124.717 30583 2075486874 2587 0.455 209 427 35 19
k8 16x165.865 32520 2213326566 2778 0.455 225 461 68 79
k9 20x146.298 35528 24276812380 5088 0.535 247 521 270 368
k10 32x2232.36587705 61221038499 10798 2.492 651 1327 6135 8729
n1 5x5 0.156 1505 5060 59 20 0.29 25 70 79 84
n2 0.171 1509 5100 32 11 0.305 25 71 45 45
n3 0.156 1510 5064 176 57 0.317 25 70 322 402
n4 0.171 1514 5103 49 22 0.298 25 71 31 27
n5 7x7 0.89 5298 20010 213 60 0.318 49 143 118 152
n6 1.203 5286 19809 1112 582 7.022 49 140 159349224779
n7 0.828 5294 19941 285 70 0.342 49 142 757 1069
n8 0.875 5294 19942 554 124 0.548 49 142 4769 7159
n9 10x107.64 21991 85376 1168 304 - - - - -
n10 12x1223.40642899 1794131152 218 - - - - -
h1 6x6 0.239 3085 7705 22 15 0.386 36 160 296 396
h2 0.26 3220 7843 18 5 0.455 36 162 204 235
h3 0.234 3150 7796 25 13 0.575 36 171 647 776
h4 0.239 3064 7696 75 40 2.555 36 164 6200 6837
h5 7x7 0.355 6522 15333 12 5 0.616 49 298 342 440
h6 0.375 5792 14503 55 25 2.468 49 251 2273 2668
h7 10x101.271 26923 64353 36 19 4.491 100 731 3443 4392
h8 1.514 24820 62240 186 53 56537100 725 59972 87180
h9 1.94 26014 63546 447 164 - - - - -
h10 15x1510.2681344723283721090 139 - - - - -

15

