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Abstract

Timeline-based planning techniques have demonstrated wide application
possibilities in heterogeneous domains. However, a problem for a wider
diffusion of such technology still stems in the reduced community that has
been studying formal properties of this planning approach.In this sense, we
are currently studying the connection between plan generation and execution
from the particular perspective of verifying a flexible planbefore its actual
execution. Nevertheless, a complexity issue should be considered. In fact,
validation and verification processes usually exploit formal methods, such as
model-checking, that present hard complexity. In this work, we explore how
a model-checking verification tool, based on UPPAAL-TIGA, is suitable for
verifying flexible temporal plans. In particular, we show the feasibility of our
own approach by reporting some preliminary empirical results gathered in a
real-world case study.

1 Introduction

Timeline-based planning has been shown very effective for applicationsin real-
world domains – see [17, 11, 9, 19]. A problem for a wider diffusion of such
technology stems in the limited community that has been studying with formal
methodologies the properties of this planning approach. These authors have been
investigating the interconnection between timeline-based planning and standard
techniques for formal validation and verification (V&V) with the aim of building
a rich environment for knowledge engineering [6] and exploring properties that
concern temporal plans and their execution [7].

In this work, we consider the problem of flexible temporal plan verification.
Flexible temporal plans only impose minimal temporal constraints among the planned
activities, hence are able to on-line adapt to environmental changes. Such temporal
flexibility makes plan verification complex and challenging (see [1] for a discus-
sion). Here, we illustrate how this problem can be formalized and solved by using
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Timed Game Automata [14] and UPPAAL-TIGA [3]. In particular, to show the
feasibility of the approach, we tackle thecontrollability problem[21, 16]. Such
problem arises when a generated temporally flexible plan is to be executed byan
executivesystem that manages controllable processes in the presence of exogenous
events. In this scenario, the duration of the execution process is not completely un-
der the control of the executive: the actions that are under the scope ofthe executive
should be chosen so that they do not constrain uncontrollable events. Since [21] the
controllability problem has been addressed through the temporal network that un-
derlies a temporal plan, here we show how our general purpose verification method
can be deployed to solve this relevant problem in flexible plan verification.

The controllability problem can be addressed in polynomial time under some
simplifying assumptions [16]. [15] shows that this apparent low-order polynomial
is misleading, because for many applications the input size may be very large in
practical terms (pseudo-polynomial complexity). While a general purposemodel-
checker verification is PSPACE complete. Despite this theoretical complexity re-
sult, we found that UPPAAL-TIGA algorithm [3] yields very encouragingper-
formance results in practice. Thus, the main contribution of the present paper is
to show the feasibility of our approach presenting some experimental resultson
preliminary tests focusing on the analysis of the dependency of plan verification
performance from the degree offlexibility. Results are gathered using a case study
derived from a real-world space application scenario.

In the following we first present some related literature then the basic defi-
nition that ground our work, namely time-line based planning and Timed Game
Automata. We then present the specific result of this work consisting in mapping
temporal plans in timed automata and formally verifying the flexible plans. Hence
we evaluate the whole approach. Some conclusions end the paper.

2 Related Works

[1] proposes a mapping from temporal constraint-based planning problems into
UPPAAL-TIGA game-reachability problems providing a comparison of the two
planning approaches. Here, the authors main concern was plan synthesis, while
our current goal is flexible plan verification. The approach to problem model-
ing is similar to ours, however, in that work the flexibility issue remains open.
Also in [12] we find a mapping from interval-based temporal relations models (i.e.,
Domain Description Language models from RAX-PS) to timed automata models
of UPPAAL [13], however, again, flexible timeline verification is not addressed.
Furthermore, [20] proposes a mapping fromContingent Temporal Constraint Net-
works(a generalization of STPUs) toTimed Game Automatawhich is analogous
to the one exploited here. In this work, the use of a model checker is suggested
only to obtain a more compact representation, but not to verify plan properties. In
a PDDL framework, [10] tackle temporal plan verification, however, the authors
do not address flexible temporal plans and other temporal features.
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3 Timeline-Based Planning and Execution

Timeline-based planning is an approach to temporal planning [17] where thegen-
erated plans are represented by sets of timelines. Each timeline denotes the evo-
lution of a particular feature in a dynamic system. A planning domain encodes
the possible evolutions of the timelines whose time points have to satisfy temporal
constraints, usually represented as Simple Temporal Problem (STP) restrictions.

Here, we assume that the timelines in a planning domain are incarnations of
multi-valuedstate variablesas in [17]. A state variable is characterized by a finite
set of values describing its temporal evolutions, and by minimal and maximal dura-
tion for each value. More formally, a state variable is defined by a tuple〈V, T ,D〉
where: (a)V = {v1, . . . , vn} is a finite set ofvalues; (b) T : V → 2V is the
value transitionfunction; (c)D : V → N × N is the value durationfunction,
i.e. a function that specifies the allowed duration of values inV (as an interval
[lb, ub]). Given a state variable, its associatedtimelineis represented as a sequence
of values in the temporal intervalH = [0, H). Each value satisfies previous (a-b-c)
specifications and is defined on a set of not overlapping time intervals contained
in H. We suppose that adjacent intervals present different values. A timelineis
saidcompletely specifiedover the temporal horizonH when a sequence of non-
overlapping valued intervals exists and its union is equal toH. A timeline is said
time-flexiblewhen is completely specified and transition events are associated to
temporal intervals (lower and upper bounds are given for them), insteadof ex-
act temporal occurrences. In other words, a time-flexible timeline represents a
set of timelines, all sharing the same sequence of values. It is worth noting that
not all the timelines in this set are valid (satisfies a-b-c). The process oftimeline
extractionfrom a time-flexible timeline is the process of computing (if exists) a
valid and completely specified timeline from a given time-flexible timeline. In
timeline-based planning, aplanning domainis defined as a set of state variables
{SV1, . . . ,SVn} that cannot be considered as reciprocally decoupled. Then, ado-
main theoryis defined as a set of additional relations, calledsynchronizations, that
model the existing temporal constraints among state variables. A synchronization
has the form〈T L, v〉 −→ 〈{T L′

1, . . . , T L′
n}, {v

′
1, . . . , v

′
|T L′|

},R〉 where:T L is
the reference timeline;v is a value onT L which makes the synchronization ap-
plicable; {T L′

1, . . . , T L′
n} is a set of target timelines on which some valuesv′j

must hold; andR is a set ofrelationswhich bind temporal occurrence of therefer-
encevaluev with temporal occurrences of thetargetvaluesv′1, . . . , v

′
|T L′|

. A plan

is defined as a set of timelines{T L1, . . . , T Ln} over the same interval for each
state variable. A plan isvalid with respect to a domain theory if every temporal
occurrence of a reference value implies that the related target values hold on target
timelines presenting temporal intervals that satisfy the expected relations. A plan
is time flexibleif ∃T Li ∈ {T L1, . . . , T Ln} such thatT Li is time flexible.

At execution time, an executive cannot completely predict the behavior of the
controlled physical system because the duration of certain processes or the timing
of exogenous events is outside of its control. In these cases, the values for the state

3



variables that are under the executive scope should be chosen so thatthey do not
constrain uncontrollable events. Thiscontrollability problemis defined, e.g. in
[21] wherecontingentandexecutableprocesses are distinguished. The contingent
processes are not controllable, hence with uncertain durations, insteadthe exe-
cutable processes are started and ended by the executive system. Controllability
issues have been formalized and investigated for the Simple Temporal Problems
with Uncertainty (STPU) in [21] where basic formal notions are given fordynamic
controllability (see also [15]). In the timeline-based framework, we introduce the
same controllability concept defined on STNU as follows. Given a plan as a set of
flexible timelinesPL = {T L1, . . . , T Ln}, we callprojection the set of flexible
timelinesPL′ = {T L′

1, . . . , T L′
n} derived fromPL setting to a fixed value the

temporal occurrence of each uncontrollable timepoint. ConsideringN as the set
of controllable flexible timepoints inPL, ascheduleT is a mappingT : N → N

whereT (x) is calledtimeof timepointx. A scheduleis consistentif all value dura-
tions and synchronizations are satisfied inPL. Thehistoryof a timepointx w.r.t. a
scheduleT , denoted byT{≺ x}, specifies the time of all uncontrollable timepoints
that occur prior tox. An execution strategyS is a mappingS : P → T whereP
is the set of projections andT is the set of schedules. An execution strategyS is
viable if S(p) (denoted alsoSp) is consistent for each projectionp. Thus, a flexi-
ble planPL is dynamically controllableif there exists a viable execution strategy
S such thatSp1{≺ x} = Sp2{≺ x} ⇒ Sp1(x) = Sp2(x) for each controllable
timepointx and projectionsp1 andp2.

4 Timed Game Automata

A fundamental concept in Timed Automata is time. First, we give the formal defini-
tion of clocks and relations that can be defined over them. We callclocka nonnega-
tive, real-valued variable. LetX be a finite set of clocks. We denote withC(X) the
set of constraintsΦ generated by the grammar:Φ ::= x ∼ c | x − y ∼ c | Φ ∧ Φ,
wherec ∈ Z, x, y ∈ X, and∼∈ {<,≤,≥, >}. We denote byB(X) the subset of
C(X) that uses only constraints of the formx ∼ c.

Definition 1. ATimed Automaton (TA) [2] is a tupleA = (Q, q0, Act, X, Inv, E),
where: Q is a finite set oflocations, q0 ∈ Q is the initial location, Act is a finite
set of actions, X is a finite set of clocks,Inv : Q → B(X) is a function as-
sociating to each locationq ∈ Q a constraintInv(q) (the invariant of q), E ⊆
Q × B(X) × Act × 2X × Q is a finite set oftransitionsand each transition (q, g,

a, Y , q′) is notedq
g,a,Y
→ q′.

A valuationof the variables inX is a mappingv from X to the setR≥0 of
nonnegative reals. We denote withRX

≥0 the set of valuations onX and with~0 the
valuation that assigns the value0 to each clock. IfY ⊆ X we denote withv[Y ] the
valuation (onX) assigning the value 0 (v(z)) to anyz ∈ Y (z ∈ (X−Y )). For any
δ ∈ R≥0 we denote with (v+δ) the valuation such that, for eachx ∈ X, (v+δ)(x)
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= v(x) + δ. Let g ∈ C(X) andv be a valuation. We say thatg satisfiesv, notation
v |= g if constraintg evaluated onv returns true. Astateof TA A is a pair(q, v)
thatq ∈ Q andv is a valuation (onX). We denote withS the set of states ofA.
An admissiblestate forA is a state(q, v) thatv |= Inv(q). A discrete transitionfor
A is 5-tuple(q, v)

a
→ (q′, v′) where(q, v), (q′, v′) ∈ S, a ∈ Act and there exists a

transitionq
g,a,Y
→ q′ ∈ E thatv |= g, v′ = v[Y ] andv′ |= Inv(q′). A time transition

for A is 4-tuple(q, v)
δ
→ (q, v′) where(q, v) ∈ S, (q, v′) ∈ S, δ ∈ R≥0, v′ = v+δ,

v |= Inv(q) andv′ |= Inv(q). A run of a TA A is a finite or infinite sequence of
alternating time and discrete transitions ofA. We denote with Runs(A, (q, v)) the
set of runs ofA starting from state(q, v) and write Runs(A) for Runs(A, (q,~0)).
If ρ is a finite run we denote with last(ρ) the last state of runρ. A network of
TA (nTA) is a finite set of TA evolving in parallel with a CSS style semantics for
parallelism. Formally, letF = {Ai | i = 1, . . . n} be a finite set of automata with
Ai = (Qi, q

0
i , Act, X, Invi, Ei) for i = 1, . . . n. Note that the automata inF have

all the same set of actions and clocks and disjoint sets of locations. Thenetwork
of F (notation||F) is the TAP = (Q, q0, Act, X, Inv, E) defined as follows. The
set of locationsQ of P is the Cartesian product of the locations of the automata
in F , that isQ = Q1 × . . . Qn. The initial stateq0 of P is q0 = (q0

1, . . . q0
n). The

invariant Inv for P is Inv(q1, . . . qn) = Inv1(q1) ∧ . . . Invn(qn). The transition
relationE for P is the synchronous parallel of those of the automata inF . That is,
E consists of the set of 5-tuples (q, g, a, Y , q′) satisfying the following conditions:
1. q = (q1, . . . qn), q′ = (q′1, . . . q′n); 2. There arei ≤ j ∈ {1, . . . n} such that for all
h ∈ {1, . . . n}, if h 6= i, j thenqh = q′h. Furthermore, ifi = j then actiona occurs
only in automatonAi of F . 3. Both automataAi andAj can make a transition

with actiona. That is,qi
gi,a,Yi→ q′i ∈ Ei, qj

gj ,a,Yj
→ q′j ∈ Ej , g = gi∧gj , Y = Yi∪Yj .

Definition 2. A Timed Game Automaton (TGA) is a TA where the set of actions
Act is split in two disjoint sets:Actc the set of controllable actions andActu the
set ofuncontrollableactions.

The notions of network of TA, run, configuration are defined in a similar way for
TGA.

Given a TGAA and three symbolic configurationsInit, Safe, andGoal, the
reachability control problemor reachability gameRG(A, Init, Safe, Goal) consists
in finding astrategyf such that starting fromInit and executingf , A stays inSafe
and reachesGoal. More precisely, a strategy is a partial mappingf from the set of
runs ofA starting fromInit to the set Actc∪{λ} (λ is a special symbol that denotes
”do nothing and just wait”). For a finite runρ, the strategyf(ρ) may say (1) no
way to win if f(ρ) is undefined, (2) do nothing, just wait in the last configuration
ρ if f(ρ) = λ, or (3) execute the discrete, controllable transition labeled byl in
the last configuration ofρ if f(ρ) = l. A strategyf is state-basedor memory-less
whenever its result depends only on the last configuration of the run.
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5 Building TGA from Timeline-based Planning Specifica-
tions

The main contribution of this work is the description of how flexible timeline-
based plan verification can be performed by solving a Reachability Game using
UPPAAL-TIGA. To this end, this section describes how a flexible timeline-based
plan, state variables and domain theory can be formalized as an adequate nTGA.
Timelines and state variables are mapped into TGA. In addition, aObserverTGA
checks for both illegal values occurrences and synchronizations violations. Here,
we distinguish between controllable and uncontrollable state variables/timelines to
simplifying the formalization.

Given a flexible planP = {T L1, . . . , T Ln}, we define a TGA for eachT Li.
For each valued interval in the timeline (also called plan step), we consider a lo-
cation in the automaton. An additional final location, labeledgoal, is considered.
We consider a uniqueplan clockcp over all the timelines automata. Then, for each
planned flexible timelineT L, we define a Timed Game AutomatonAT L = (QT L,

q0, ActT L, XT L, InvT L, ET L) as follows. For each i-th valued interval inT L, we
considerli in QT L, plus the final locationlgoal (q0 is l0). For each allowed value
v ∈ SV i, we consider an actionav. If the related state variable is controllable (un-
controllable) we addav in ActcT L (ActuT L). The overall plan clockcp is consid-
ered inXT L. For each i-th valued interval inT L and the related valuevp associated
with the flexible interval timepoint[lb, ub], we define InvT L(li) := cp ≤ ub and

we define a transitione = q
g,a,Y
→ q′ in ET L, whereq = li, q′ = li+1, g = cp ≥ lb,

a = vp!, Y = ∅. Finally, we define a final transitione = q
g,a,Y
→ q′ in ET L, where

q = lpl (wherepl is the plan length),q′ = lgoal, g = ∅, a = ∅, Y = ∅. The set
Plan = {AT L1

, ...,AT Ln
} represents the planned flexible timelines description

as a nTGA.
For each state variableSV, we have a one-to-one mapping into a Timed Game

AutomatonASV = (QSV , q0, ActSV , XSV , InvSV , ESV ). In fact, for each al-
lowed valuev in V, we consider a locationlv in QSV (q0 is set according to the ini-
tial value of the related planned timeline). Then, for each allowed valuev ∈ V, we
consider an actionav. If the state variable is controllable (uncontrollable), we con-
siderav in ActcSV (ActuSV ). A local clockcsv is considered inXSV . Finally, for
each allowed valuev ∈ V and both the associatedT (v) = {vs1, ..., vsn} andD(v)

= [lb, ub], we define InvSV (v) := csv ≤ ub and we define a transitione = q
g,a,Y
→ q′,

whereq = lv, q′ = lvsi
in ESV , g = csv ≥ lb, a = avsi

?, Y = {csv}. The set
SV = {ASV1

, ...,ASVn
} represents the State Variables description. Note that the

use of actions as transitions label implements the synchronization between state
variables and planned timelines.

A last TGA is theObserverthat monitors synchronizations and values over
SV andPlan. Basically, two locations are considered to representcorrect and
error status. For each possible cause of error, an appropriate transition is defined,
forcing the Observer to hold the error location. In this sense, we define aTGA
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AObs = (QObs, q0, ActObs, XObs,InvObs, EObs) as follows. We considerQObs =
{lok, lerr} (q0 is lok), ActuObs = {afail}, XObs = {cp}. InvObs is undefined. For
each pair plan step and associated planned value (sp, vp) for each timelineT L and

the related variableSV, we define an uncontrollable transitione = q
g,l,r
→ q′ in

EObs, whereq = lok, q′ = lerr, g = T Lsp
∧ ¬SVvp

, l = afail, r = ∅. Moreover,
for each synchronization〈T L, v〉 −→ 〈{T L′

1, . . . , T L′
n}, {v

′
1, . . . , v

′
n} ,R〉, we

define an uncontrollable transitione = q
g,a,Y
→ q′ in EObs whereq = lok, q′ = lerr,

g = ¬R(T Lv, T L
′

1v
′

1

, . . . , T L
′

nv
′

n
), a = afail, Y = ∅.

The nTGAPL composed by the set of automataPL = SV ∪ Plan ∪ {AObs}
encapsulates Flexible plan, State Variables and Domain Theory descriptions.

6 Verifying Time Flexible Plans

Given the nTGAPL defined above, we can define a Reachability Game that en-
sures, if successfully solved, plan validity. In particular, we defineRG(PL, Init,
Safe, Goal) by consideringInit as the set of initial locations of each automaton in
PL, Safe= {lok} andGoal as the set of goal locations of eachT Li in PL. In
[7], we demonstrate by construction that we obtain a one-to-one mapping between
flexible behaviors, defined byP, and automata behaviors, defined byPlan∪ SV.
While, the Observer holds the error location iff either an illegal value occurs or
a synchronization is violated. Hence,PL adequately represents all and only the
behaviors defined by the flexible planP.

To solve such a reachability game, we use UPPAAL-TIGA [3]. This tool ex-
tends UPPAAL [13] by providing a toolbox for the specification, simulation, and
verification of real-time games. If there is no winning strategy, UPPAAL-TIGA
gives a counter strategy for the opponent (environment) to make the controller
lose. Given a nTGA, a set of goal states (win) and/or a set of bad states (lose), four
types of winning conditions can be issued [3]. We ask UPPAAL-TIGA to solve the
RG(PL, Init, Safe, Goal) checking the formulaΦ = A [ Safe U Goal]in PL. In
fact, this formula means that along all the possible paths,PL stays inSafestates
until Goalstates are reached. In other words, winning the game corresponds to ask
UPPAAL-TIGA to find a strategy that, for each possible evolution of uncontrol-
lable state variables, ensures goals to be reached and errors to be avoided. Thus,
verifying with UPPAAL-TIGA the above property implies validating the flexible
temporal plan (see [7] for a formal account).

Moreover, we show the feasibility and effectiveness of our verificationmethod
by addressing the relevant issue of plan controllability. In fact, we can notice that
each possible evolution of uncontrollable automata corresponds to a timeline pro-
jection p. Each strategy/solution for theRG corresponds to a scheduleT . And
a set of strategy represents an execution strategyS. Thus, the winning strategies
produced by UPPAAL-TIGA constitute a viable execution strategyS for the flex-
ible timelines. The use of forward algorithms [3] guarantees thatS is such that
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Sp1{≺ x} = Sp2{≺ x} ⇒ Sp1(x) = Sp2(x) for each controllable timepointx and
projectionsp1 andp2. That is, the flexible plan is dynamically controllable.

7 Case Study and Preliminary Experiments

In this section, we present the application of our method in a specific case study. In
our recent work we have considered variants of a real application case studies [8, 6].
The same experience has been used here to derive a general planningproblem.
Basically, a remote space agent is to be controlled in order to accomplish some
required tasks (science, communication and maintenance activities). Taskshave to
be temporally synchronized with exogenous events that occur independently from
the agent control.

Figure 1:Value transitions for the a main
state variable describing the Remote Space
Agent temporal behavior.

We represent the domain problem
with two different types of state vari-
ables: Controllable State Variables,
which define the search space of the
problem, and whose timelines ultimately
represent the solution to the problem;
Uncontrollable State Variables, repre-
senting values imposed over time which
can only be observed. Modeling the
agent activities, we use a single con-
trollable state variable which specifies
the temporal occurrence of science and
maintenance operations as well as the agent’s ability to communicate. Additional
values are considered in order to representearth pointingandslewing manoeuvres
(resp.Earth andSlewmodalities). The values that can be taken by this state vari-
able, their durations and the allowed transitions among them, are detailed in Figure
1.

In addition, we instantiate two uncontrollable state variables to represent con-
tingent events such as orbit events and communication opportunity windows.One
state variable maintains the temporal occurrences of pericentres and apocentres.
We are supposing the remote agent is operative around a target planet. Pericen-
tre is the orbital closest to the target planet while apocentre is the orbital faraway
from the planet. (“PERI” and “APO” values on the timeline in Figure 2, top) of
the agent’s orbit (they are fixed in time), while the other state variable maintains
the visibility of ground stations (Ground Station Availability timeline in Figure 2,
bottom). This state variable has as allowed values{Available, Unavailable}.

Any valid plan needs synchronizations among the agent timeline (Figure 2,
middle) and the uncontrollable timelines (represented as dotted arrows in Figure 2):
science operations must occur during Pericentres, (meaning that aSciencevalue
must start and end during aPeri value); maintenance operations must occur in the
same time interval as Apocentres (meaning that aMaint value must start and end
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exactly when theApo value starts and ends); communications must occur during
ground station visibility windows. (meaning that aCommvalue must start and
end during anAvailablevalue). In addition to those synchronization constraints,
the operative mode timeline must respect transition constraints among values and
durations for each value specified by the domain (see again Fig. 2).

7.1 Using UPPAAL-TIGA

Figure 2: Timeline synchronizations in a
plan.

We now show how planning domains
can be encoded in the specification lan-
guage of UPPAAL-TIGA. This requires
defining a suitable set of automata and
clocks. Automata are associated with
multi-valued state variables while clocks
are necessary to represent time progress.

For each state variable (and hence
for each timeline) we have astate vari-
able timed automatonwhose modes cor-
respond to possible state variable val-
ues, while transitions represent changes
of values. State variable definition in-
cludes temporal constraints specified by means of: value durations constraints (in
terms of[min, max]); sequencing constraints between values expressed through
Allen’s temporal relations.

Durations constraints (e.g., Science activity duration in[2160, 4080]) are en-
coded as both clock mode invariants and guards on the related outgoing transitions.
While sequencing constraints (e.g., SciencemeetsSlew) are encoded defining ap-
propriate outgoing transitions. In Figure 3 we report the complete UPPAAL-TIGA
module declaration for the agent state variable.

Plan verification requires an input model that encodes also the generatedplan.
Since a generated plan provides a set of value activations (associated with time
points) (planned timeline) for each state variable, a plan describes the sequence
of values the state variables are to assume in a given time frame. To represent
flexible plans, we consider an additional generalplan clockand we introduce an
automaton for each planned behavior. This automaton has a number of modesthat
equals the length of the plan: for each activation/decision available in the planwe
introduce a mode while a finalgoalmode represents plan completion. An invariant
is considered to model maximum staying duration. Transitions between modes
represent plan steps, from initial value to the last one. For each transition, we
introduce a guard that enables transition at the minimum staying duration.

In order to consider both controllable and uncontrollable state variables, we
introduce uncontrollable TGA transitions for uncontrollable components.
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process REMOTE_AGT() {
state

Earth, Earth_Comm,
Science {clockREMOTE_AGT <= 4080},
Maintenance {clockREMOTE_AGT <= 5400},
Slew {clockREMOTE_AGT <= 1800};

init Earth;
trans

Earth -> Slew { guard clockREMOTE_AGT >= 1;
sync pulse_Slew?; },

Earth -> Maintenance { guard clockREMOTE_AGT >= 1;
sync pulse_Maintenance?;
assign clockREMOTE_AGT := 0;},

Earth -> Earth_Comm { guard clockREMOTE_AGT >= 1;
sync pulse_Earth_Comm?;
assign clockREMOTE_AGT := 0;},

Earth_Comm -> Earth { guard clockREMOTE_AGT >= 3600;
sync pulse_Earth?;
assign clockREMOTE_AGT := 0;},

Earth_Comm -> Maintenance { guard clockREMOTE_AGT >= 3600;
sync pulse_Maintenance?;
assign clockREMOTE_AGT := 0;},

Earth_Comm -> Slew { guard clockREMOTE_AGT >= 3600;
sync pulse_Slew?;
assign clockREMOTE_AGT := 0;},

Science -> Slew { guard clockREMOTE_AGT >= 2160;
sync pulse_Slew?;
assign clockREMOTE_AGT := 0;},

Maintenance -> Earth { guard clockREMOTE_AGT >= 5400;
sync pulse_Earth?;
assign clockREMOTE_AGT := 0;},

Maintenance -> Earth_Comm { guard clockREMOTE_AGT >= 5400;
sync pulse_Earth_Comm?;
assign clockREMOTE_AGT := 0;},

Slew -> Earth { guard clockREMOTE_AGT >= 1800;
sync pulse_Earth?;
assign clockREMOTE_AGT := 0;},

Slew -> Earth_Comm { guard clockREMOTE_AGT >= 1800;
sync pulse_Earth_Comm?;
assign clockREMOTE_AGT := 0;},

Slew -> Science { guard clockREMOTE_AGT >= 1800;
sync pulse_Science?;
assign clockREMOTE_AGT := 0;};

}

Figure 3:Module definition for the Remote Space Agent.

Figure 4: TIGA models for timelines: a) controllable
state variable; b) uncontrollable state variable.

In Figure 4, two en-
coded plan automata are
depicted: a) a flexible plan
for the remote agent that is
to be verified; b) a behavior
of the ground station avail-
ability state variable. Note
that synchronization chan-
nels are exploited to relate
planned values to state vari-
ables automaton. For instance, the second transition in Figure 4a synchronizes with
related transition defined in Figure 3 between Slew and Science modes.

In addition, we introduce another automaton: theobserver automaton. It is to
check the consistency of temporal constraints defined both on and among different
timelines, i.e., to check sequencing and synchronizations constraints. Synchro-
nization constraints among different timelines are expressed in terms of general
temporal relations on values.
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process monitor() {
state OK, ERR;
init OK;
trans

OK -u-> ERR { guard (stepREMOTE_AGT == 0)
and not (REMOTE_AGTEarth); },

OK -u-> ERR { guard (stepREMOTE_AGT == 1)
and not (REMOTE_AGTSlew); },

...
OK -u-> ERR { guard ((REMOTE_AGTEarth_Comm)

and not (STATIONSAvailable)); },
OK -u-> ERR { guard ((REMOTE_AGTMaintenance)

and not (ORBIT_EVENTSApocentre)); },
OK -u-> ERR { guard ((REMOTE_AGTScience)

and not (ORBIT_EVENTSPericentre)); },
ERR -u-> ERR { };

}

Figure 5:Partial monitor module definition. Note that Monitor is uncontrollable.

Given the above input model, we ask UPPAAL-TIGA to verify the following
formula: control: A [not monitor.ERR U plan.Goal]. This formula means that for
each possible evolution of uncontrollable components, the goal must be reached
while monitor errors must be avoided. If verified, UPPAAL-TIGA returnsa con-
trol execution strategy that, if respected, guarantees to reach planning goal in all
possible world evolutions. Thus, verifying the above property implies validating
the flexible temporal plan.

Since the input model incorporates all domain temporal constraints, the UPPAAL-
TIGA verification algorithms guarantee that all time points in the strategy only
depend on occurrences of past events. Such a feature constitutes thecondition of
dynamic controllability for a flexible temporal plan. So, verifying the formula not
only guarantees plan validity, but it also ensures dynamic controllability.

7.2 Empirical Results

It has been demonstrated [18] that model checking complexity is PSPACE com-
plete in the size of the system state space. Unfortunately, the number of system
states is exponential in the size of the program defining the system (our input). For
example, a 32 bit integer variable yields232 states. As a result, even a polynomial
verification algorithm (the best we can hope for, by [18]) will take an exponential
amount of memory (state explosion). Fortunately, in most cases real world verifi-
cation problems are not hard instances. Indeed, the success of model checking rests
on this fact and on the availability of verification algorithms that can successfully
exploit the specific structure of verification problems stemming from real world
applications.

Along the same line of thinking, our goal in this section is not to assess the
worst case complexity of our approach, (which is known to be exponential in the
input size), but rather to evaluate its effectiveness on meaningful realworld exam-
ples.

In order to show the feasibility of our approach, we present experimental results
on preliminary tests focusing on the analysis of the dependency of plan verification
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performance from the degree offlexibility.
We generate a flexible plan by introducing flexibility into a completely instan-

tiated plan. This is done by replacing a time pointt = τ in the instantiated plan
with a time intervalt ∈ [τ − ∆, τ + ∆] in the flexible plan. The main parameters
we consider are: the numberΦ of time points that are replaced with time intervals
and the width (duration) ∆ of such intervals.

Here, we perform two kind of experiments. First, by keeping∆ constant (∆ =
10), we study how plan verification time depends on the plan size (i.e., the number
of plan time points) and on the number of flexible time pointsΦ. Second, by
keeping constant the plan size (to 35 time points), we study how plan verification
time depends on the number of flexible time pointsΦ and on the duration∆.

We run our experiments on a Linux workstation endowed with a 64-bit AMD
Athlon CPU (3.5GHz) and 2GB RAM. GivenΦ and∆, an experiment consists
in choosing at randomΦ plan time points, replacing such chosen time points with
time intervals of duration∆, running the UPPAAL-TIGA verifier and, finally, mea-
suring the verification time. For each configuration, we repeat our experiment 5
times and compute the mean value (in msecs.) and variance (±var) for the verifi-
cation time.

We note that not all the experiments relative to given values forΦ and∆ yield
a satisfiable flexible temporal plan. In fact, since the plan is only flexible at certain
time points, the degrees of freedom may not suffice to recover from previously
delayed (or anticipated) actions. Of course, this is particularly the case when Φ
is small with respect to the plan size. Accordingly, our verification times referto
passing (i.e., the given flexible temporal plan is dynamically controllable) as well
as failing (i.e., the given flexible temporal plan is not dynamically controllable)
experiments.

Table 1 shows our results for the first kind of experiments. From this figure
we see that the verification tool shows homogeneous performances overall the
configurations.

Table 2 shows our results for the second kind of experiments. From this figure
we see that the verification tool handles well flexible plan with higher and higher
degrees of flexibility both in terms ofΦ and∆.

Table 1: Experimental results collected varying plan length and the number of
flexible time points(Timings in msecs.)

P
P

P
P

PP
Φ

plan size
10 20 35

3 35.6±0.8 36.6±1.7 37.4±0.5

6 35.2±0.4 36±0 37.4±0.5

9 36±1.8 36.2±0.4 39.2±1.9

12 34.8±0.4 36.4±0.5 37.8±0.4

15 35±0 36.2±0.4 43.6±10.2

18 35±0 40±8 39±0
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Table 2: Experimental results collected with a fixed plan length (Timing in msecs.).
H

H
H

H
Φ

∆
1 5 10 15 20

3 40±6 37.4±0.5 37.8±0.4 51±7.8 37.8±1

6 38.4±0.5 38.6±1.2 38±0 44.4±8.5 38.2±0.4

9 38.4±0.5 38±0 39.2±1.9 39±0 38.8±0.4

12 52.4±10.3 38.8±0.4 38.4±0.5 39±0 39.4±0.5

15 39.2±0.4 52±13 39.2±0.4 39.2±0.4 39.8±0.4

18 39.6±0.5 39.6±0.8 40.4±1.5 48.8±9.1 40±0.6

8 Conclusion

This paper introduces a method to represent and verify flexible plans using TGA
and UPPAAL-TIGA. In particular, it describes the verification method, detailing
the formal representation and the modeling methodology. To show the feasibility
and the effectiveness of the approach we have considered the relevant problem of
dynamic controllability checking.

As well known, [18], in the worst case model checking requires an amount of
memory exponential in the input size (state explosion). Fortunately, not all verifi-
cation problems fall in the worst case category. Indeed, depending on the problem
at hand effective heuristics have been devised to carry out verification with a rea-
sonable amount of memory (and time). For example, UPPAAL-TIGA yields very
encouraging performance results on some interesting classes of verification prob-
lems [4]. In much the same vein, the results presented here show that UPPAAL-
TIGA allows effective verification of interesting flexible temporal plan verification
problems.

Thus, model-checking in UPPAAL-TIGA on the one hand provides a useful
independent verification tool for flexible timelines, on the other hand permits plan
verification of the flexible plans produced by a black-box planner. Moreover, it
produces results that can be further exploited as follows. First, from a valid flexible
plan we can extract a strategy that can be used to safely execute the given plan.
Second, an invalid plan can be analyzed and information can be obtained bythe
tool to diagnose the problem and get hints on how to obtain a valid plan.
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