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Abstract

Timeline-based planning techniques have demonstratesl agdlication
possibilities in heterogeneous domains. However, a pnoldle a wider
diffusion of such technology still stems in the reduced camity that has
been studying formal properties of this planning approéglthis sense, we
are currently studying the connection between plan geioerahd execution
from the particular perspective of verifying a flexible pla@efore its actual
execution. Nevertheless, a complexity issue should beidersl. In fact,
validation and verification processes usually exploit farmethods, such as
model-checking, that present hard complexity. In this wer& explore how
a model-checking verification tool, based on UPPAAL-TIG#suitable for
verifying flexible temporal plans. In particular, we show fieasibility of our
own approach by reporting some preliminary empirical rssghthered in a
real-world case study.

1 Introduction

Timeline-based planning has been shown very effective for applicaitioreal-
world domains — see [17, 11, 9, 19]. A problem for a wider diffusion wdérs
technology stems in the limited community that has been studying with formal
methodologies the properties of this planning approach. These autherbéen
investigating the interconnection between timeline-based planning and standar
techniques for formal validation and verification (V&V) with the aim of building

a rich environment for knowledge engineering [6] and exploring pitageethat
concern temporal plans and their execution [7].

In this work, we consider the problem of flexible temporal plan verification.
Flexible temporal plans only impose minimal temporal constraints among the planned
activities, hence are able to on-line adapt to environmental changdstesaporal
flexibility makes plan verification complex and challenging (see [1] for a discu
sion). Here, we illustrate how this problem can be formalized and solvedibg u
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Timed Game Automata [14] and UPPAAL-TIGA [3]. In particular, to show the
feasibility of the approach, we tackle tleentrollability problem[21, 16]. Such
problem arises when a generated temporally flexible plan is to be executad by
executivesystem that manages controllable processes in the presence of ex®geno
events. In this scenario, the duration of the execution process is notetetgun-

der the control of the executive: the actions that are under the sctipe@fecutive
should be chosen so that they do not constrain uncontrollable events.[3i the
controllability problem has been addressed through the temporal netvatririh
derlies a temporal plan, here we show how our general purpose agdfienethod

can be deployed to solve this relevant problem in flexible plan verification.

The controllability problem can be addressed in polynomial time under some
simplifying assumptions [16]. [15] shows that this apparent low-ordgmumial
is misleading, because for many applications the input size may be very large in
practical terms (pseudo-polynomial complexity). While a general purpustel-
checker verification is PSPACE complete. Despite this theoretical complexity re
sult, we found that UPPAAL-TIGA algorithm [3] yields very encouragiper-
formance results in practice. Thus, the main contribution of the presest mp
to show the feasibility of our approach presenting some experimental results
preliminary tests focusing on the analysis of the dependency of plan a&iofic
performance from the degree ftéxibility. Results are gathered using a case study
derived from a real-world space application scenario.

In the following we first present some related literature then the basic defi-
nition that ground our work, namely time-line based planning and Timed Game
Automata. We then present the specific result of this work consisting in m@appin
temporal plans in timed automata and formally verifying the flexible plans. Hence
we evaluate the whole approach. Some conclusions end the paper.

2 Related Works

[1] proposes a mapping from temporal constraint-based planning pneklgo
UPPAAL-TIGA game-reachability problems providing a comparison of the two
planning approaches. Here, the authors main concern was plan sgnthleise

our current goal is flexible plan verification. The approach to problerdeho
ing is similar to ours, however, in that work the flexibility issue remains open.
Also in [12] we find a mapping from interval-based temporal relations models (
Domain Description Language models from RAX-PS) to timed automata models
of UPPAAL [13], however, again, flexible timeline verification is not ackex.
Furthermore, [20] proposes a mapping fr@ontingent Temporal Constraint Net-
works (a generalization of STPUs) fimed Game Automatahich is analogous

to the one exploited here. In this work, the use of a model checker is siagge
only to obtain a more compact representation, but not to verify plan giepem

a PDDL framework, [10] tackle temporal plan verification, however, thénars

do not address flexible temporal plans and other temporal features.



3 Timeline-Based Planning and Execution

Timeline-based planning is an approach to temporal planning [17] whegethe
erated plans are represented by sets of timelines. Each timeline denotes-the ev
lution of a particular feature in a dynamic system. A planning domain encodes
the possible evolutions of the timelines whose time points have to satisfy temporal
constraints, usually represented as Simple Temporal Problem (STR)tiess:

Here, we assume that the timelines in a planning domain are incarnations of
multi-valuedstate variabless in [17]. A state variable is characterized by a finite
set of values describing its temporal evolutions, and by minimal and maxinme dur
tion for each value. More formally, a state variable is defined by a tQpl&”, D)
where: (@)V = {v1,...,v,} is a finite set ofvalues (b) 7 : V — 2V is the
value transitionfunction; (¢)D : V — N x N is thevalue durationfunction,

i.e. a function that specifies the allowed duration of value¥ i(as an interval
[Ib, ub]). Given a state variable, its associatiedelineis represented as a sequence
of values in the temporal intervéd = [0, H). Each value satisfies previous (a-b-c)
specifications and is defined on a set of not overlapping time intervalsicedta
in H. We suppose that adjacent intervals present different values. A timeline
said completely specifiedver the temporal horizo#? when a sequence of non-
overlapping valued intervals exists and its union is equ&ltdA timeline is said
time-flexiblewhen is completely specified and transition events are associated to
temporal intervals (lower and upper bounds are given for them), insttad-

act temporal occurrences. In other words, a time-flexible timeline repese
set of timelines, all sharing the same sequence of values. It is worth notihg th
not all the timelines in this set are valid (satisfies a-b-c). The procetseline
extractionfrom a time-flexible timeline is the process of computing (if exists) a
valid and completely specified timeline from a given time-flexible timeline. In
timeline-based planning, planning domains defined as a set of state variables
{SV1,...,8V,} that cannot be considered as reciprocally decoupled. Thdm, a
main theoryis defined as a set of additional relations, ca#gdchronizationsthat
model the existing temporal constraints among state variables. A synchioniza
has the form7 £,v) — ({7L),....,TL)},{v],... ,U(TL,‘},R) where: 7 L is

the reference timeling; is a value oriZ £ which makes the synchronization ap-
plicable; {7 L}, ..., T L]} is a set of target timelines on which some valugs
must hold; andR is a set ofrelationswhich bind temporal occurrence of thefer-
encevaluev with temporal occurrences of thargetvaluesu], . . ., UIIT o) A plan

is defined as a set of timelindg L4, ...,7 L,,} over the same interval for each
state variable. A plan igsalid with respect to a domain theory if every temporal
occurrence of a reference value implies that the related target valltesrhtarget
timelines presenting temporal intervals that satisfy the expected relationsnA pla
istime flexiblef 37L; € {T L4, ..., TL,} such thatZ £, is time flexible.

At execution time, an executive cannot completely predict the behavioeof th
controlled physical system because the duration of certain procastestoning
of exogenous events is outside of its control. In these cases, the vatube tate



variables that are under the executive scope should be chosen soethdb not
constrain uncontrollable events. Thisntrollability problemis defined, e.g. in
[21] wherecontingentandexecutablerocesses are distinguished. The contingent
processes are not controllable, hence with uncertain durations, inbieagke-
cutable processes are started and ended by the executive systenol|&laility
issues have been formalized and investigated for the Simple Temporal iRsoble
with Uncertainty (STPU) in [21] where basic formal notions are giverdioramic
controllability (see also [15]). In the timeline-based framework, we intredhe
same controllability concept defined on STNU as follows. Given a plan esa s
flexible timelinesPL = {7 L,,...,7L,}, we callprojectionthe set of flexible
timelinesPL' = {TL'y,...,7TL',} derived fromPL setting to a fixed value the
temporal occurrence of each uncontrollable timepoint. ConsideYiras the set
of controllable flexible timepoints i L, aschedulel” is a mappindl’ : N — N
whereT'(z) is calledtimeof timepointz. A schedulés consistenif all value dura-
tions and synchronizations are satisfie®i. Thehistoryof a timepointz w.r.t. a
schedulél’, denoted by'{< =}, specifies the time of all uncontrollable timepoints
that occur prior tor. An execution strategy is a mappings : P — 7 whereP

is the set of projections arffl is the set of schedules. An execution strat&gg
viable if S(p) (denoted als®),) is consistent for each projectign Thus, a flexi-
ble planPL is dynamically controllablef there exists a viable execution strategy
S such thatS,1{< z} = Sp{=< z} = Spi(x) = Spa2(x) for each controllable
timepointa and projection®1 andp2.

4 Timed Game Automata

A fundamental conceptin Timed Automata is time. First, we give the formal defini-
tion of clocks and relations that can be defined over them. Welcaka nonnega-
tive, real-valued variable. Let be a finite set of clocks. We denote with{ X) the

set of constraint® generated by the grammab:::=z ~c|z—y ~c| P A D,
wherec € Z, z,y € X, and~€ {<,<,>,>}. We denote byB(X) the subset of
C(X) that uses only constraints of the form~ c.

Definition 1. ATimed Automaton (TA) [2]isatuple A = (@, g0, Act, X, Inv, F),
where: @ is a finite set oflocations ¢y € Q is theinitial location Act is a finite
set of actions X is a finite set of clockslnv : @ — B(X) is a function as-
sociating to each locatiog € @ a constraintinv(q) (the invariantof ¢), £ C
Q x B(X) x Act x 2% x @ is a finite set oftransitionsand each transitiond, g,

. Y
a,Y,q)is notedg % ¢,

A valuationof the variables inX is a mappingv from X to the setR> of
nonnegative reals. We denote will, the set of valuations o and with0 the
valuation that assigns the val¢o each clock. Iy C X we denote with/[Y] the
valuation (onX) assigning the value @(z))toanyz € Y (z € (X —Y)). For any
§ € RZ° we denote with4+ §) the valuation such that, for eaghc X, (v+0)(x)
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=wv(x) +4. Letg € C(X) andv be a valuation. We say thatsatisfiesv, notation
v [= g if constraintg evaluated on returns true. Astateof TA A is a pair(q,v)
thatq € @ andv is a valuation (onX). We denote withS the set of states ofl.
An admissiblestate forA is a stat€ g, v) thatv = Inv(q). A discrete transitiorfor
Ais 5-tuple(q, v) = (¢/,v") where(q,v), (¢,v') € S, a € Act and there exists a

transitiong “%" ¢ € E thatv = g, v’ = o[Y] andv’ = Inv(¢/). A time transition

for Ais 4-tuple(q, v) > (g,v') where(q,v) € S, (¢,v') € 5,6 € Ro,v' =v+5,

v = Inv(g) andv’ = Inv(q). A runof a TA A is a finite or infinite sequence of
alternating time and discrete transitions4f We denote with Rur{A, (¢, v)) the

set of runs oA starting from statéq, v) and write RungA) for RungA, (¢, 0)).

If pis a finite run we denote with lagt) the last state of rup. A network of

TA (nTA) is a finite set of TA evolving in parallel with a CSS style semantics for
parallelism. Formally, lefF = {A; | i = 1,...n} be a finite set of automata with
Ai = (Qi, ¢?, Act, X, Inv;, E;) for i = 1,...n. Note that the automata i have

all the same set of actions and clocks and disjoint sets of locationsnéitterk

of F (notation||.F) is the TAP = (Q, ¢°, Act, X, Inv, E) defined as follows. The
set of locationsy of P is the Cartesian product of the locations of the automata
in 7, thatisQ = Q1 x ...Q,. Theinitial state¢® of P is ¢" = (¢?, ... ¢°). The
invariant Inv for P is Inv(qi,...q,) = Invi(q1) A ... Inv,(g,). Thetransition
relation E for P is the synchronous parallel of those of the automat&.ihat is,

E consists of the set of 5-tupleg, (7, a, Y, ¢’) satisfying the following conditions:
Lg=(q,.---qn). ¢ =(q,...q,); 2. Therearé < j € {1,...n} such that for all

h e {1,...n},if h # 1, j theng, = ¢,. Furthermore, if = j then actioru occurs

only in automatonA4; of . 3. Both automata4; and.4; can make a transition
; ; : 9i,a,Y; 95+0,Y

with actiona. Thatis,g; =" q; € Ej,¢; "= " q; € Ej, g =giNgj, Y = Y;UY].

Definition 2. A Timed Game Automaton (TGA) is a TA where the set of actions

Act is split in two disjoint setsAct,. the set of controllable actions arikt, the

set ofuncontrollableactions.

The notions of network of TA, run, configuration are defined in a similay foa
TGA.

Given a TGAA and three symbolic configurationsit, Safe andGoal, the
reachability control problenor reachability gamé&G (A, Init, Safe Goal) consists
in finding astrategyf such that starting frormit and executing’, A stays inSafe
and reache&oal. More precisely, a strategy is a partial mappjhffom the set of
runs of A starting frominit to the set ActU{\} (A is a special symbol that denotes
"do nothing and just wait”). For a finite rup, the strategyf(p) may say (1) no
way to win if f(p) is undefined, (2) do nothing, just wait in the last configuration
pif f(p) = A, or (3) execute the discrete, controllable transition labeled iny
the last configuration of if f(p) = [. A strategyf is state-base@r memory-less
whenever its result depends only on the last configuration of the run.



5 Building TGA from Timeline-based Planning Specifica-
tions

The main contribution of this work is the description of how flexible timeline-
based plan verification can be performed by solving a Reachability Gamg usin
UPPAAL-TIGA. To this end, this section describes how a flexible timelineetdas
plan, state variables and domain theory can be formalized as an adeq@#e nT
Timelines and state variables are mapped into TGA. In additi@bhserverTGA
checks for both illegal values occurrences and synchronizationdiviada Here,
we distinguish between controllable and uncontrollable state variables/timelines to
simplifying the formalization.

Given a flexible pla? = {7 L,,...,7 L, }, we define a TGA for eaci £;.
For each valued interval in the timeline (also called plan step), we consider a lo
cation in the automaton. An additional final location, labejedl, is considered.
We consider a uniquglan clocke, over all the timelines automata. Then, for each
planned flexible timelin@ £, we define a Timed Game Automatgh» = (Q7,
qo0, ACtrr, X711, Invr o, E7r) as follows. For each i-th valued interval inC, we
considerl; in Q7 ., plus the final locatior,; (g0 is lp). For each allowed value
v € SV;, we consider an actiom,. If the related state variable is controllable (un-
controllable) we add,, in Act.7. (Act,7r.). The overall plan clock, is consid-
ered inX7.. For eachi-th valued interval (I £ and the related valug, associated
with the flexible interval timepoinflb, ub], we define Iny,(l;) := ¢, < ub and

. L. Y .
we define a transition = ¢ 7% ¢/ in Erz, whereq = 1;, ¢ = liv1,9 = ¢, > Ib,

a = v,!, Y = (. Finally, we define a final transition= ¢ 99Y /in B, where

q = ly (wherepl is the plan length)y’ = lgo0, g = 0, a = 0, Y = 0. The set
Plan = {Arr,,..., A7, } represents the planned flexible timelines description
as anTGA.

For each state variab&), we have a one-to-one mapping into a Timed Game
AutomatonAsy = (Qsv, qo, Actsy, Xsv, Invsy, Esy). In fact, for each al-
lowed valuev in V, we consider a locatioh in Qg (qo is set according to the ini-
tial value of the related planned timeline). Then, for each allowed vakd’, we
consider an action,. If the state variable is controllable (uncontrollable), we con-
sidera, in Act.sy (Act,sv). A local clockes, is considered inXgy. Finally, for
each allowed value € V and both the associatdd v) = {vs1, ..., vs,, } andD(v)

= (I, up), we define Ingy (v) := ¢, < up, and we define a transitian= ¢ 9oy o
whereq = 1, ¢ = lys; IN Esy, g = ¢sp > lp, @ = ays, 7, Y = {csp}. The set
SV = {Asw, ..., Asv, } represents the State Variables description. Note that the
use of actions as transitions label implements the synchronization between state
variables and planned timelines.

A last TGA is theObserverthat monitors synchronizations and values over
SV and Plan. Basically, two locations are considered to represemtect and
error status. For each possible cause of error, an appropriate transiticiniscie
forcing the Observer to hold the error location. In this sense, we defif@é/a
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Aobs = (Qovs, 90, ACtoss, Xows,INVors, Eops) as follows. We consideDops =
{loks lerr} (q0 18 lok), ACt,0bs = {afair}, Xovs = {cp}- INVoy is undefined. For
each pair plan step and associated planned vajjie,) for each timelineZ £ and

the related variabl&), we define an uncontrollable transitien= ¢ g q in

Eops, whereq = loy, ¢ = leyr, g = TLs, NSV, | = apqq, 7 = (). Moreover,
for each synchronizatiof7 £,v) — ({TL),...., 7L} {v},...,v,},R), we

define an uncontrollable transitien= ¢ “%" ¢’ in Eoy. whereq = Loy, ¢ = lomr,
g = —\'R(T,CU,TL;U;, ey TL;W;L)’ a = Qfail, Y = @

The nTGAPL composed by the set of automatd, = SV U Plan U {Apps}
encapsulates Flexible plan, State Variables and Domain Theory descriptions

6 Verifying Time Flexible Plans

Given the nTGAPL defined above, we can define a Reachability Game that en-
sures, if successfully solved, plan validity. In particular, we defd&(PL, Init,
Safe Goal) by consideringnit as the set of initial locations of each automaton in
PL, Safe= {I,} andGoal as the set of goal locations of ea@hC; in PL. In
[7], we demonstrate by construction that we obtain a one-to-one mappingdre
flexible behaviors, defined b, and automata behaviors, definedRian U SV.
While, the Observer holds the error location iff either an illegal value acour
a synchronization is violated. HencB/L adequately represents all and only the
behaviors defined by the flexible pl&h

To solve such a reachability game, we use UPPAAL-TIGA [3]. This toel ex
tends UPPAAL [13] by providing a toolbox for the specification, simulatiord a
verification of real-time games. If there is no winning strategy, UPPAALAIG
gives a counter strategy for the opponent (environment) to make theoltentr
lose. Given a nTGA, a set of goal statasr() and/or a set of bad statdege), four
types of winning conditions can be issued [3]. We ask UPPAAL-TIGA tuesthe
RG(PL, Init, Safe Goal) checking the formula = A [ Safe U Goal]in PL. In
fact, this formula means that along all the possible paths stays inSafestates
until Goal states are reached. In other words, winning the game corresponds to as
UPPAAL-TIGA to find a strategy that, for each possible evolution of utrabn
lable state variables, ensures goals to be reached and errors to bedavbils,
verifying with UPPAAL-TIGA the above property implies validating the flexible
temporal plan (see [7] for a formal account).

Moreover, we show the feasibility and effectiveness of our verificatiethod
by addressing the relevant issue of plan controllability. In fact, we céinenthat
each possible evolution of uncontrollable automata corresponds to a timedine pr
jection p. Each strategy/solution for thRG corresponds to a schedule And
a set of strategy represents an execution strategyhus, the winning strategies
produced by UPPAAL-TIGA constitute a viable execution stratédgr the flex-
ible timelines. The use of forward algorithms [3] guarantees tha such that



Spi{= x} = Spa{=< 2} = Spi(x) = Spa(x) for each controllable timepointand
projectionspl andp2. That is, the flexible plan is dynamically controllable.

7 Case Study and Preliminary Experiments

In this section, we present the application of our method in a specific cabe btu
our recent work we have considered variants of a real applicati@stadies [8, 6].
The same experience has been used here to derive a general plarobiem.
Basically, a remote space agent is to be controlled in order to accomplish some
required tasks (science, communication and maintenance activities). sk
be temporally synchronized with exogenous events that occur indepnftem
the agent control.
We represent the domain problem @

with two different types of state vari- ‘\\
ables: Controllable State Variables

which define the search space of the < /
problem, and whose timelines ultimately < [\‘/’

represent the solution to the problem;

Uncontrollable State Variablesrepre- 36681 Remote Space Agent
) ) i i tate Variable

senting values imposed over time which

can only be observed. Modeling the
agent activities, we use a single corfzigure 1:Value transitions for the a main

trollable state variable which specifieState variable describing the Remote Space
the temporal occurrence of science arfpent temporal behavior.

maintenance operations as well as the agent’s ability to communicate. Additional
values are considered in order to represarth pointingandslewing manoeuvres
(resp.Earth andSlewmodalities). The values that can be taken by this state vari-
able, their durations and the allowed transitions among them, are detailed im Figur
1.

In addition, we instantiate two uncontrollable state variables to represent con
tingent events such as orbit events and communication opportunity windaves.
state variable maintains the temporal occurrences of pericentres anehapsc
We are supposing the remote agent is operative around a target plamieenP
tre is the orbital closest to the target planet while apocentre is the orbithiar
from the planet. (“PERI” and "APQO” values on the timeline in Figure 2, top) of
the agent’s orbit (they are fixed in time), while the other state variable maintains
the visibility of ground stations (Ground Station Availability timeline in Figure 2,
bottom). This state variable has as allowed valifegilable, Unavailablé.

Any valid plan needs synchronizations among the agent timeline (Figure 2,
middle) and the uncontrollable timelines (represented as dotted arrows ie Rigur
science operations must occur during Pericentres, (meaning Beeacevalue
must start and end duringReri value); maintenance operations must occur in the
same time interval as Apocentres (meaning thistaént value must start and end

/@\\




exactly when théApo value starts and ends); communications must occur during
ground station visibility windows. (meaning thatGommvalue must start and
end during arvailablevalue). In addition to those synchronization constraints,
the operative mode timeline must respect transition constraints among vatlies an
durations for each value specified by the domain (see again Fig. 2).

7.1 Using UPPAAL-TIGA

We now show how planning domains _
. e . Orbit Events

can be encoded in the specification lan-  Timeline
guage of UPPAAL-TIGA. This requires EQUALS
defining a suitable set of automata anckemote space ‘

. -1 Agent Timeline ’Cum"{ Malm‘ conm H.SC L ‘
clocks. Automata are associated with
multi-valued state variables while clocks Slew
are necessary to represent time progreSg ound station )

For each state variable (and henceAﬁrir'laefl’iir']i;v
for each timeline) we have state vari- S S
able timed automatowhose modes cor- ime
respond. to pos.5|.ble state variable Va#igure 2: Timeline synchronizations in a
ues, while transitions represent changﬁﬁan_
of values. State variable definition in-
cludes temporal constraints specified by means of: value durationsaiats{in
terms of[min, maz]); sequencing constraints between values expressed through
Allen’s temporal relations.

Durations constraints (e.g., Science activity duratiof2ir60, 4080]) are en-
coded as both clock mode invariants and guards on the related outgoisitjdras
While sequencing constraints (e.g., ScienwetsSlew) are encoded defining ap-
propriate outgoing transitions. In Figure 3 we report the complete UPPAGA
module declaration for the agent state variable.

Plan verification requires an input model that encodes also the genplarted
Since a generated plan provides a set of value activations (associistetinve
points) (planned timeline) for each state variable, a plan describes thersequ
of values the state variables are to assume in a given time frame. To rdpresen
flexible plans, we consider an additional gengiain clockand we introduce an
automaton for each planned behavior. This automaton has a number of thatdes
equals the length of the plan: for each activation/decision available in thevglan
introduce a mode while a fingbalmode represents plan completion. An invariant
is considered to model maximum staying duration. Transitions between modes
represent plan steps, from initial value to the last one. For each transi®n
introduce a guard that enables transition at the minimum staying duration.

In order to consider both controllable and uncontrollable state variabkes, w
introduce uncontrollable TGA transitions for uncontrollable components.




process REMOTE_AGT() {
state
Earth, Earth_Conm
Sci ence {cl ockREMOTE_AGT <= 4080},
Mai nt enance {cl ockREMOTE_AGT <= 5400},
Sl ew {cl ockREMOTE_AGT <= 1800} ;
init Earth;
trans
Earth -> Slew { guard cl ockREMOTE_AGT >= 1;
sync pul se_Slew?; 1},
Earth -> Mintenance { guard cl ockREMOTE_AGT >= 1;
sync pul se_Mi nt enance?;
assign cl ockREMOTE_AGT : = 0;},
Earth -> Earth_Comm { guard cl ockREMOTE_AGT >= 1;
sync pul se_Earth_Com®;
assign cl ockREMOTE_AGT : = 0;},
Earth_Comm -> Earth { guard cl ockREMOTE_AGT >= 3600;
sync pul se_Earth?;
assign cl ockREMOTE_AGT : = 0;},
Eart h_Conm - > Mai ntenance { guard cl ockREMOTE_AGT >= 3600;
sync pul se_Mai nt enance?;
assign cl ockREMOTE_AGT : = 0;},
Earth_Comm -> Sl ew { guard cl ockREMOTE_AGT >= 3600;
sync pul se_Sl ew?;
assign cl ockREMOTE_AGT : = 0;},
Science -> Slew { guard cl ockREMOTE_AGT >= 2160;
sync pul se_Sl ew?;
assign cl ockREMOTE_AGT : = 0;},
Mai ntenance -> Earth { guard cl ockREMOTE_AGT >= 5400;
sync pul se_Earth?;
assign cl ockREMOTE_AGT : = 0;},
Mai nt enance -> Earth_Conm { guard cl ockREMOTE_AGT >= 5400;
sync pul se_Earth_Com®;
assign cl ockREMOTE_AGT : = 0;},
Slew -> Earth { guard cl ockREMOTE_AGT >= 1800;
sync pul se_Earth?;
assign cl ockREMOTE_AGT : = 0;},
Slew -> Earth_Conm { guard cl ockREMOTE_AGT >= 1800;
sync pul se_Eart h_Com®;
assign cl ockREMOTE_AGT : = 0;},
Sl ew -> Science { guard cl ockREMOTE_AGT >= 1800;
sync pul se_Sci ence?;
assign cl ockREMOTE_AGT : = 0;};

}
Figure 3:Module definition for the Remote Space Agent.
In Figure 4, tWO en- clockPlan >= 12439 clockPlan >= 14239
pulse_Slew! ulse_Science!
Coded plan automata are a State0  stepREMOTE_AGT++ \S[I_\alm StepREMOTE_AGT++ KS%M
deplcted: a) a erXIble plan clockPlan <= 12459 clockPlan <= 14259 clockPlan <= 16419
for the remote agent that is I
o . clocl jm >= 2T clockPlan >= 39300

to be verified; b) a behavior %% Lt s i g0
of the ground station avail- dlockPlan <= 27300 clockPlzn <= 39300 dlockPlan <= 50400

ability state variable. Note

that Synchronlgatlon Chan'Figure 4: TIGA models for timelines: a) controllable
nels are exploited to relateS

“state variable; b) uncontrollable state variable.
planned values to state vari-

ables automaton. For instance, the second transition in Figure 4a syizelsratith
related transition defined in Figure 3 between Slew and Science modes.

In addition, we introduce another automaton: tfserver automatorit is to
check the consistency of temporal constraints defined both on and anfiengrd
timelines, i.e., to check sequencing and synchronizations constraintshr8ync
nization constraints among different timelines are expressed in terms afagene

temporal relations on values.
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process nonitor() {
state OK, ERR;
init oK
trans
OK -u-> ERR { guard (stepREMOTE_AGT == 0)
and not (REMOTE_AGTEarth); },
OK -u-> ERR { guard (stepREMOTE_AGT == 1)
and not (REMOTE_AGTSlew); },
K -u-> ERR { guard ((REMOTE_AGTEarth_Conm)
and not (STATI ONSAvailable)); 1},
K -u-> ERR { guard ((REMOTE_AGTMai nt enance)
and not (ORBI T_EVENTSApocentre)); 1},
K -u-> ERR { guard ((REMOTE_AGTSci ence)
and not (ORBI T_EVENTSPericentre)); 1},
ERR -u-> ERR { };

Figure 5:Partial monitor module definition. Note that Monitor is untwllable.

Given the above input model, we ask UPPAAL-TIGA to verify the following
formula: control: A [not monitor.ERR U plan.Goal]This formula means that for
each possible evolution of uncontrollable components, the goal must tieecka
while monitor errors must be avoided. If verified, UPPAAL-TIGA retumeon-
trol execution strategy that, if respected, guarantees to reach plaroahgngall
possible world evolutions. Thus, verifying the above property implies vatiga
the flexible temporal plan.

Since the input model incorporates all domain temporal constraints, theAIRPA
TIGA verification algorithms guarantee that all time points in the strategy only
depend on occurrences of past events. Such a feature constitutestigon of
dynamic controllability for a flexible temporal plan. So, verifying the formul& no
only guarantees plan validity, but it also ensures dynamic controllability.

7.2 Empirical Results

It has been demonstrated [18] that model checking complexity is PSPAQE co
plete in the size of the system state space. Unfortunately, the number ahsyste
states is exponential in the size of the program defining the system (oty.iRpu
example, a 32 bit integer variable yiel?f¥ states. As a result, even a polynomial
verification algorithm (the best we can hope for, by [18]) will take anomemtial
amount of memorygtate explosion Fortunately, in most cases real world verifi-
cation problems are not hard instances. Indeed, the success of medking rests

on this fact and on the availability of verification algorithms that can sucaekyssf
exploit the specific structure of verification problems stemming from realdwor
applications.

Along the same line of thinking, our goal in this section is not to assess the
worst case complexity of our approach, (which is known to be exporiémtiae
input size), but rather to evaluate its effectiveness on meaningfuveéd exam-
ples.

In order to show the feasibility of our approach, we present experiresiats
on preliminary tests focusing on the analysis of the dependency of pldicaton
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performance from the degree ftéxibility.

We generate a flexible plan by introducing flexibility into a completely instan-
tiated plan. This is done by replacing a time pdint 7 in the instantiated plan
with a time interval € [t — A, 7 + A] in the flexible plan. The main parameters
we consider are: the numbérof time points that are replaced with time intervals
and the width duration) A of such intervals.

Here, we perform two kind of experiments. First, by keepingonstant (\ =
10), we study how plan verification time depends on the plan size (i.e., the number
of plan time points) and on the number of flexible time poifts Second, by
keeping constant the plan size (to 35 time points), we study how plan verificatio
time depends on the number of flexible time poifitand on the duratior.

We run our experiments on a Linux workstation endowed with a 64-bit AMD
Athlon CPU (3.5GHz) and 2GB RAM. Givef® and A, an experiment consists
in choosing at randon® plan time points, replacing such chosen time points with
time intervals of duratiod\, running the UPPAAL-TIGA verifier and, finally, mea-
suring the verification time. For each configuration, we repeat our Empet 5
times and compute the mean value (in msecs.) and variange-J for the verifi-
cation time.

We note that not all the experiments relative to given value®fandA vyield
a satisfiable flexible temporal plan. In fact, since the plan is only flexiblertgine
time points, the degrees of freedom may not suffice to recover fromagusy
delayed (or anticipated) actions. Of course, this is particularly the casa @h
is small with respect to the plan size. Accordingly, our verification times tefer
passing (i.e., the given flexible temporal plan is dynamically controllable) ds we
as failing (i.e., the given flexible temporal plan is not dynamically controllable)
experiments.

Table 1 shows our results for the first kind of experiments. From thisdigur
we see that the verification tool shows homogeneous performanceslbviee
configurations.

Table 2 shows our results for the second kind of experiments. From thre fig
we see that the verification tool handles well flexible plan with higher andehigh
degrees of flexibility both in terms @ and A.

Table 1: Experimental results collected varying plan length and the number of
flexible time points(Timings in msecs.)

o plan size 10 20 35
3 35.6+£0.8 | 36.6£1.7 37.4+0.5
6 35.24+0.4 36+0 37.4£0.5
9 36+1.8 36.24+0.4 | 39.2+1.9
12 34.84+0.4 | 36.44+0.5 37.8+£0.4
15 3540 36.24+0.4 | 43.6+10.2
18 3540 40+£8 39+0
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Table 2: Experimental results collected with a fixed plan length (Timing in msecs.).

& A 1 5 10 15 20
3 40+6 37.4£0.5 | 37.8£0.4 5147.8 37.8t1
6 38.4£0.5 | 38.6t1.2 38+0 44.4£8.5 | 38.2£0.4
9 38.4£0.5 38+0 39.2£1.9 3940 38.8+0.4
12 52.4£10.3 | 38.8:0.4 | 38.4£0.5 3940 39.4£0.5

15 39.2+0.4 52+13 39.2:0.4 | 39.2£0.4 | 39.8+0.4
18 39.6£0.5 | 39.6£0.8 | 40.4£1.5 | 48.8+9.1 40+0.6

8 Conclusion

This paper introduces a method to represent and verify flexible plang GS&A
and UPPAAL-TIGA. In particular, it describes the verification methodaiieg
the formal representation and the modeling methodology. To show the feasibility
and the effectiveness of the approach we have considered thentgbeghlem of
dynamic controllability checking.

As well known, [18], in the worst case model checking requires an ataiu
memory exponential in the input sizstéte explosion Fortunately, not all verifi-
cation problems fall in the worst case category. Indeed, dependingqrablem
at hand effective heuristics have been devised to carry out verificaiih a rea-
sonable amount of memory (and time). For example, UPPAAL-TIGA yieldg ver
encouraging performance results on some interesting classes of Wenifipeob-
lems [4]. In much the same vein, the results presented here show that WPPAA
TIGA allows effective verification of interesting flexible temporal plan veéfion
problems.

Thus, model-checking in UPPAAL-TIGA on the one hand provides aulisef
independent verification tool for flexible timelines, on the other hand perraits p
verification of the flexible plans produced by a black-box planner. B\@e it
produces results that can be further exploited as follows. First, framtichflexible
plan we can extract a strategy that can be used to safely execute theptane
Second, an invalid plan can be analyzed and information can be obtairtéé by
tool to diagnose the problem and get hints on how to obtain a valid plan.
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