
A Mashup Tool for Collaborative Engineering of
Service-oriented Enterprise Documents

Nelly Schuster1, Raffael Stein2, Christian Zirpins2,

1 FZI Forschungszentrum Informatik, Haid-und-Neu-Straße 10-14,
76131 Karlsruhe Germany,

{nschust}@fzi.de
2 Karlsruhe Institute of Technology (KIT),

76131 Karlsruhe Germany,
{raffael.stein, christian.zirpins}@kit.edu

Abstract. Enterprise documents combine the representation of organizational
processes and rules with knowledge and data to support human communication
in a visual appealing and possibly interactive way. These characteristics are not
only beneficial for the support of highly structured and optimized business
processes but can be also leveraged to drive ad hoc collaborative innovation
processes. However, collaborative authoring requires content consolidation and
coordination mechanisms and while IT-supported document engineering for
structured and recurring collaboration processes is well established, engineering
of documents that emerge and evolve instantaneously still lacks appropriate
support. Subsequently we present the MoSaiC tool for collaborative document
engineering: MoSaiC supports a new type of service-oriented enterprise docu-
ments that are represented as mashups of content creation, transformation and
publication services. This ‘living’ format supports teams to rapidly regulate and
control collaborative activities by mapping them to services provided by team
members or enterprise systems and mashing them into document structure and
rules in an interactive, intuitive and dynamic way.

Keywords: service-oriented enterprise documents, collaborative document en-
gineering, situational document collaboration

1 Introduction

Enterprise documents provide a unique way to communicate information in a pur-
pose-optimized (structured, annotated, graphically appealing, legally binding) form of
representation in order to collect and share data between human recipients in the
course of collaborative work. Sophisticated enterprise documents encapsulate busi-
ness rules and serve as input to or output of business processes, thus enabling their
regulation and enforcement in a highly efficient manner; e.g. utilizing customer rela-
tionship, and workflow management systems (WfMS). While several enterprise
document engineering approaches exist for structured and recurring business proc-
esses [1,2], the engineering of documents which evolve during ad hoc collaboration
between members of a possibly virtual team still lacks appropriate tool support. Such

documents are subject to ad hoc changes as new contents from different sources –
humans and software systems – come in. Dependencies between different parts of a
document require coordination mechanisms and ad hoc process support for the
authors of the document. Examples can be found for instance in IT service manage-
ment or software engineering, where collaborators have to react on unexpected inci-
dents like bugs or are collaboratively developing solutions which are captured in
interrelated documents [3]. Another example is the collaborative development of a
research publication [4]. Various technologies and tools support either collaborative
creation and evolution of documents (e.g. CSCW technologies, wikis or other Web-
based collaborative writing applications [5]) or coordination of structured processes
(e.g. BPM technologies like WfMS). However, they largely fail to provide effective
support for collaborative document engineering which involves ad hoc processes.

In order to address this need, we have developed the MoSaiC approach for service-
oriented enterprise document engineering. We model enterprise documents as situ-
ational compositions (so called mashups) of human- or software-based content provi-
sion, transformation or publication services provided by human collaborators or Web-
based software services [6]. Lightweight coordination of collaborating authors and
auxiliary Web services is facilitated by interaction rules that are defined as part of the
document in a declarative way. Thus, a document is ‘alive’, reacting to changes of the
document itself and its underlying services.

In this paper, we present a Web-based mashup tool and platform that implement
our collaborative document engineering approach. In Chapter 2 we will sketch the
concept of collaborative document mashups. Chapter 3 outlines the architecture of our
mashup tool and platform. An exemplary use case is given in Chapter 4. We discuss
related work in Chapter 5. Chapter 6 concludes with a summary and outlook.

2 Concept of Collaborative Document Mashups

Collaborative document engineering requires coordination of team members that
jointly work on and evolve ad hoc documents as well as consolidation of content
coming from a variety of sources including team members but also data sources. Con-
tent consolidation in document mashups is achieved through representing manual as
well as automated activities through software services that are composed into the
document structure. Document mashups build on a hierarchical structure that repre-
sents the logical decomposition of a collaboration goal into tasks. This structure is
defined by one or more coordinating team members (coordinators). Subsequently,
tasks are bound to document services representing either collaborative activities of
team members (collaborators) or automated functions of software systems (robots)
that result in creation (e.g., writing text, drawing diagrams, accessing databases) or
transformation (e.g., proof-reading, translating, layout) of document contents like
chapters, paragraphs or figures. As soon as a service is bound to a document mashup
the service provider becomes a participant (either co-author or robot) of the document
collaboration responsible for the associated task.

The coordination of service providers (i.e. collaborators) in an evolving document
mashup builds on events and rules: each service exposes events indicating state transi-

tions of its underlying resources (i.e. activity results) which are consumed and reacted
upon by document mashups. An important part of document engineering is to define
ECA rules that are triggered by events and lead to corresponding actions thus express-
ing causal dependencies or temporal constraints between service instances; e.g., a rule
may specify that a proof-read service is called by the document mashup as soon as a
text-based content service emits an update event. Another example might be the recall
of all document services that failed to deliver results at a certain deadline.
Coordinators are free to specify any rules that fit the collaboration at hand.

We characterize document service mashups as ‘living’ because they are constantly
evolving in terms of structure and contents towards achieving a common goal. To a
large extend this dynamicity is driven by manual interaction of team members with
the document: Document engineers evolve and control the document structure and
rules. Collaborators create or transform document contents.

Additionally, certain aspects of document evolution are controlled by rules that re-
act on events and trigger activities of team members and data sources automatically.
Rules of a document mashup will immediately be executed when the event they listen
for is emitted. This might lead to further activities like service calls.

During the course of the collaboration, document content and structure transform
from a record of collaborative conversation to a meaningful result. As we do not
separate phases of design and enforcement, service calls will be made as soon as
services are added to a document mashup and each change of the document structure
immediately effects the control of a collaboration. Still, in order to enable the design
of critical document parts, mashups can be set ‘asleep’. This means, that the control of
document services is idle until the mashup is ‘woken up’ again.

3 MoSaiC Tool and Platform Architecture

In order to realize our concept of document service mashups we have developed a
Web-based platform and RIA to support collaborative document engineering. Figure
1 gives an overview of the architecture.

Users access the document collaboration environment through a graphical user in-
terface that runs on their Web browser. The UI communicates with the application
and persistence logic of the MoSaiC document mashup manager which might run on
an enterprise application server or in the cloud. The GUI uses AJAX calls to commu-
nicate with the server components. The collaboration system uses a communication
infrastructure for event-based interaction between services in document mashups.
This infrastructure – the document service bus – might be deployed independently
and is accessed through RESTful service interfaces.

The Web-based document collaboration tool integrates various graphical drag-and-
drop user interface components supporting mashup authoring, service provisioning
and participant management use cases:
− Fundamentally, the user management UI allows logging into the system or regis-

tering as a new user. Subsequently, the participant UI enables users to specify their
role in one or more document collaborations. This might include the responsibility
of a coordinator to participate in the engineering of the document itself. This might

also include the responsibility of a collaborator to carry out certain activities within
a collaboration and provide associated document services manually. As a variant,
users might delegate responsibility to a robot that provides document services by
means of automated Web services (e.g. to integrate contents from Flickr).

− Using the mashup editor UI, coordinators carry out the main document engineering
tasks including design and management of collaborative document mashups. Man-
agement includes administrating a repository of living documents. It also includes
state control of individual mashups which happens in sync with an ongoing design
process. To this end the editor represents and visualizes document mashups from
different perspectives of structure, collaboration and coordination. In the structure
perspective, engineers design the logical document structure on a canvas, e.g. a re-
search paper split into parts of the research methodology as well as result tables
and diagrams. In the collaboration perspective, the UI shows lists of content and
transformation services as well as possible providers. The coordinator can drag and
drop the services from this list on the canvas or assign providers to elements. The
coordination perspective allows definition and management of rules expressing
causal and temporal constraints as well as manual control of actions.

− In order to support collaborators of a document mashup in providing contributions
through service calls, the platform offers a service editor UI. This UI allows users
to receive service calls coming from a document mashup manager (the same or any
other), edit and persist appropriate content, e.g. the introduction of a research pa-
per, and communicate it back to the document mashup manager. However, there
are also other ways for collaborators to connect like an email bridge or plug-ins for
common word processors that enable them to handle document service calls.

Mashup logic is enforced by the mashup manager. Its persistence component stores
all mashups including structure, tasks, rules, services, participants, roles, contents and
control state. The persistence component listens to mashup and service update events

Figure 1: Architectural Overview of the MoSaiC Mashup Tool and Platform

and stores the information accordingly. The UI components learn about updates of a
mashup through polling the persistence component.

A mashup rule engine drives automatic enforcement of mashup logic. It is able to
process complex events and pre-configured with base rules, which are essential for
the enforcement of mashups. Rules follow the event-condition-action (ECA) princi-
ple: the engine listens for events indicating changes of the mashup or its services,
checks conditions and takes actions like calling another service. E.g. one of the base
rules declares that if a user gets assigned as collaborator, a ’create’ call is sent out to
its document service. In addition, coordinators specify rules that are mashup-specific.
E.g. the above base rule might be changed to express a causal dependency.

A document service bus enables service interaction. Fundamentally, the bus main-
tains a registry, which stores information about existing mashups, document services
and providers. The document service messaging component routes and queues all
service messages. Service calls generally conform to a uniform RESTful interface and
an asynchronous interaction protocol that allows requesting the creation of a new
service as well as getting, updating or deleting the content of an existing one.
Furthermore, a dedicated bus rule engine allows for a specific type of rules that
directly affect the interaction between services. Enforcing rules in the bus promises
more agile interactions since messages skip the mashup manager if possible. An ex-
ample is the automatic routing of certain text content through a translation service
before delivering it to the mashup manager.

4 Scenario and Use Case

Scientific publication involves collaboration of various researchers who provide dif-
ferent parts of a paper like texts, pictures and references. Furthermore the
collaborators need to coordinate in order to discuss the concepts, structure the docu-
ment, provide interrelated contents and proof-read the results thereby checking for
completeness, correctness and readability.

In our scenario, Alice, a scientist, is creating a research paper mashup and starts
with defining the structure of the document in the mashup editor. She drags several
document elements for different parts, texts and figures from a list to the mashup
canvas. Furthermore, she adds elements for an abstract and bibliography. For each
element Alice provides a meaningful task description and whenever she drops an
element on the canvas, the change in the mashup structure is immediately persisted.

Having established the first structural draft, Alice defines behavioral rules in the
coordination perspective. She creates a rule declaring that all chapters need to be
delivered three days before the conference deadline; i.e. each of the chapters has been
updated and its state set to final. A timer is defined, which triggers a notification to all
the authors who did not deliver content until the specified point of time. All rules are
stored within the mashup and within the rule engine.

In the document service list, Alice identifies a layout service that is able to format
mashups into an appropriate format and a submission service that uploads a formatted
document to the conference server. For both services there is a robot that she can add
to the mashup. She defines a rule that the mashup is formatted by the layout service

when all content elements are in final state. Afterwards a final proof-read by the first
author is required and, in case the proof-read is ok, the submission service uploads the
document to the conference server.

Having specified the rules, Alice uses the provider list in order to find collaborators
that can assist with the tasks at hand. She discovers Bob, Carol and Ted, who are
members of her research team and have already agreed to join the paper. Alice drags
the icon for Bob on the introduction document part; the association between him and
a document service representing the writing task is immediately stored. Bob uses the
same tool to provide his content as a document service. Now Alice wakes up the
mashup. Bob receives a notification that he has been assigned to write this paragraph.
The task is added to his personal to-do list, which is presented to him in the service
editor UI after logging into the mashup tool.

In the following weeks, the team does several changes to the initial mashup to
evolve the paper in terms of structure, tasks and, of course, contents. Three days be-
fore the deadline the rule engine triggers the “reminder” rule. It identifies the docu-
ment elements which are not in final state and triggers updates of the associated serv-
ices. Since Bob did not deliver yet, he receives another service call for his document
service to provide the text. He logs into the system, pastes the introduction text into
the service editor, refines the document element adding a picture element and marks
its state as final.

The rule engine observes the state change and triggers another rule, which declares
that as soon as all section elements are in final state, the mashup is to be sent to the
layout service. After the layout service returned a formatted document, the first author
is requested to proof-read. A reply indicating success triggers the final action: the
formatted document is sent out by the submission service.

5 Related Work

MoSaiC adopts concepts of collaborative document engineering and writing based on
service mashups for ad hoc composition of mostly human-based software services.

Collaborative document engineering has a long research history, which resulted in
various research prototypes and products. A prominent example is Google Docs
(http://docs.google.com/) that allows collaborative creation of rich text documents.
However, it is not possible to define any dependencies between document elements or
react to events. Thus, lightweight ad hoc processes cannot be specified or enforced.
Another related technology coming closer to our approach is Google Wave
(http://wave.google.com/). A wave is a collaboration of participants based on XML
documents consisting of wavelets. This is similar to the composition of document
services in a mashup. Waves might include automated robots that are comparable to
our automated document services. However, Google Wave focuses more on commu-
nication than on collaborative evolution of an enterprise document. Also, there is no
way to define interaction rules based on events and to re-use wavelets in other waves.

A study of tools for collaborative writing, including early Wiki software, is pre-
sented in [5]. The study shows, that the idea of splitting a document into fragments for
different authors and propagating updates of these fragments to other authors is not

new. However, we did not find a tool which supports coordination of the authors or
fragments through rules or the integration of different sources from the Web.

The term document engineering as used in [1] describes the analysis and design of
documents and rules which are input to business processes or serve as their interfaces.
This has similarities to our approach but focuses on structured, recurring processes.
There is no concept of document composition like in document mashups that would
support collaborative or active documents and ad hoc processes. Interactive Web
documents [7] define a REST protocol and format for Web based documents which
include data and behavior. However, although they mention a prototype, they do not
show how these documents can be collaboratively authored and coordinated.

Mashup technologies have recently gained broad attention from industry [8] and
are increasingly addressed by academic research. The mashup paradigm emphasizes
user-driven composition of situational apps from Web-based content and services.
Several mashup research tools and products exist. An example is IBM Mashup Center
(http://www-01.ibm.com/software/info/mashup-center/) that lets users compose wid-
gets which reference services. Based on the description which events a widget might
expose, a mashup developer can add rules which route data between widgets. How-
ever, since these events are mainly caused by user clicks and not by updating any
content and as they are exposed by widgets and not services or the mashup, it is not
possible to specify complex rules involving several events or conditions. Collabora-
tion support is also limited, since only the full mashup can be updated at a time. Also,
the mashup is still an application and cannot be used as an active document.

Loomp [9] allows users to specify content fragments and enrich them semantically.
These reusable fragments are readable by humans and machines alike and might be
interlinked and combined into mashups. Distribution of fragments or data can be done
through various channels, for instance as Wiki page, document or feed. However,
there seems to be no support for notification on updates of fragments or process sup-
port for collaborative document engineering.

6 Summary and Outlook

Shaping and driving ad hoc collaboration processes by means of enterprise document
engineering promises to enhance productivity and foster innovation but also poses
substantial requirements on flexibility of document structure and dynamicity of con-
tents. Respective documents need to reflect progressing states of multiple
collaborators and render their visual representation from various sources. Simultane-
ously, collaborators need reliable tools allowing them to evolve the structure of col-
laborative documents in highly interactive yet predictable ways. Our approach of
document service mashups establishes a basis to meet these requirements that we
would like to discuss and share with the community. Document mashups support
interactive specification of the structure and collaborative regulation of a shared
document in a flexible declarative way on the fly. Document services facilitate the
integration of dynamic content from various collaborators.

In this paper, we have presented a mashup tool and platform for collaborative en-
gineering of service-oriented enterprise documents. We have briefly outlined our

approach of collaborative document service mashups and demonstrated how to realize
it by means of contemporary service-oriented infrastructure technologies including
RESTful Web services, complex event processing and rich Web 2.0 Internet applica-
tions. Aiming for a practical perspective to present our work, we have illustrated our
general approach and the operation of our tool by means of a case study coming from
the familiar scenario of scientific collaboration.

For future work we plan to underpin and evolve the current basis of collaborative
document service mashups in various directions. At the moment we are thoroughly
evaluating our prototype platform by means of case study experiments. Simultane-
ously we are extending the mashup engineering methodology by formal verification
of rule declarations and service value network analysis. We further plan to extend
document mashups with versioning information that enable traceability of changes
and lead to more transparency. Finally, we aim to study document interaction patterns
for common control structures (like, e.g., the ‘four-eye principle’) for the specific case
of situational document collaboration. We intend to provide our findings as reusable
design patterns for ad hoc development of document mashups.

References

1. Glushko, R. J. and McGrath, T.: Document engineering: analyzing and designing docu-
ments for business informatics & web services. The MIT Press (2008)

2. Hull, R.: Artifact-Centric Business Process Models: Brief Survey of Research Results and
Challenges. In: OTM Conferences 2, Vol. 5332, pp. 1152-1163. Springer (2008)

3. Schuster, N., Zirpins, C., Tai, S., Battle, S., and Heuer, N.: A service-oriented approach to
document-centric situational collaboration processes. In: 18th IEEE Int. Workshops on
Enabling Technologies: Infrastructures for Collaborative Enterprises, pp. 221–226, IEEE
Comp. Society (2009)

4. Marchese, M., Giunchiglia, F., and Casati, F.: Liquid publications: Scientific publications
meet the web. Technical report DIT-07-073, University of Trento, Department of Informa-
tion Engineering and Computer Science (2007)

5. Noël, S., and Robert, J.-M.: How the Web is used to support collaborative writing. In:
Behaviour & IT, Vol. 22, Nr. 4, pp. 245-262 (2003)

6. Schuster, N., Zirpins, C., Schwuchow, M., Battle, S., and Tai, S.: The MoSaiC Model and
Architecture for Service-Oriented Enterprise Document Mashups. In: 3rd International
Workshop on Web APIs and Services Mashups (Mashups'09), OOPSLA, ACM (2009)

7. Boyer, J. M., Wiecha, C., and Akolkar, R. P.: A REST protocol and composite format for
interactive web documents. In: ACM Symposium on Document Engineering ACM, pp.
139-148 (2009)

8. Hoyer, V. and Fischer, M.: Market overview of enterprise mashup tools. In: ICSOC '08:
Proceedings of the 6th International Conference on Service-Oriented Computing Berlin,
pp. 708-721. Springer, Heidelberg (2008)

9. Luczak-Roesch, M., and Heese, R.: Linked Data Authoring for Non-Experts. In: Proceed-
ings of the WWW09, Workshop Linked Data on the Web LDOW2009 (2009)

