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Abstract. Extensions of Description Logics (DLs) to reason aboutdg[iiy and
defeasible inheritance have been largely investigatethisnpaper, we consider
two such extensions, namely (i) the extension of DLs withpclity operator
T, having the properties of Preferential nonmonotonic émet P, and (ii) its
variant with a typicality operator having the propertiestioé stronger Rational
entailmentR. The first one has been proposed in [1, 2]. Here, we investit&t
second one and we show, by a representation theorem, tlsae@uivalent to
the approach to preferential subsumption proposed in [&].cdmpare the two
extensions, preferential and rational, and argue that ttstedine is more suitable
than the second one to reason about typicality, as the latids to unintuitive
inferences.

1 Introduction

Description logics (DLs) represents one of the most impuftaamalisms of knowledge
representation. Their success can be explained by two kegnéabjes characterizing
them. On the one hand, DLs have a well-defined semantics loasigt-order logic;
on the other hand, they offer a good trade-off between ezpigsand complexity. DLs
have been successfully implemented by a range of systemthapdre at the base of
languages for the semantic web such as OWL.

In a DL framework, a knowledge base (KB) comprises two conembst an inten-
sional part, called the TBox, containing the definition ohcepts (and possibly roles)
as well as a specification of inclusion relations among theamd, an extensional part,
called the ABox, containing instances of concepts and r@age the very objective
of the TBox is to build a taxonomy of concepts, the need ofes@nting prototypical
properties and of reasoning about defeasible inheritahseich properties naturally
arises.

The traditional approach is to handle defeasible inhecgadny integrating some
kind of nonmonotonic reasoning mechanism. This has leditysionmonotonic exten-
sions of DLs [4-9]. However, as the same authors have pooutdll these proposals
present some difficulties, and finding a suitable nonmorio®xtension for inheritance
with exceptions is far from obvious. To give a brief accol#htproposes the extension
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of DL with Reiter’s default logic. However, the same authlease pointed out that this
integration may lead to both semantical and computatioiffitulties. Furthermore,
Reiter’s default logic does not provide a direct way of mauginheritance with ex-
ceptions. This has motivated the study of extensions of Ditls pvioritized defaults [9,
5]. A more general approach is undertaken in [7], where a@reskbn of DL is proposed
with two epistemic operators. This extension, callkdC/C s+, allows one to encode
Reiter's default logic as well as to express epistemic cptecand procedural rules.
However, this extension has a rather complicated modal strsaso that the integra-
tion with the existing systems requires significant changéke standard semantics of
DLs. [10] extends the work in [7] by providing a translatioinem ALC/KC s+ KB to an
equivalentflat KB and by defining a simplified tableau algorithm for flat KBshieh
includes an optimized minimality check. In [6] an extensidd®L with circumscription
is proposed to express prototypical properties with exoept by introducing “abnor-
mality” predicates whose extension is minimized. The arghpwovide algorithms for
checking satisfiability, subsumption and instance chegwihich are proved to have an
optimal complexity, but are based on massive nondetertitigigessing. A calculus for
circumscription in DL has not been developed yet. Moredberuse of circumscription
to model inheritance with exceptions is not that straighrd. We refer to Section 5.1
in [1, 2] for a broader discussion on the above mentioned rmomtonic extensions of
DLs.

Here, we consider an alternative approach, based on norioroo@ntailment as
defined by Kraus, Lehmann and Magidor (KLM) in [11, 12]. Thigoeoach is adopted
by [2,1] and [3]. The main advantage of this approach oveviptes ones is that the
semantics of the resulting description logics is very semgd close to standard se-
mantics for DLs. Furthermore, at least for what concerng][1here is a calculus for
the proposed logic, and the logic can be extended in ordegdbvdth inheritance with
exceptions.

We start by considering the logid£C + T proposed in [2, 1], that extends the
well-known description logicALC by a typicality operato. The intended meaning
of the operatofT, for any concept, is thatT(C') singles out the instances 6f that
are considered as “typical”’. Thus, an assertion like

“typical writers are brillant”

is represented by
T(Writer) C Brillant.

An ALC + T TBox can consistently contain the above inclusion togettitr
T (Writer 1 Depressed) = —Brillant

(typical depressed writers are not brillant). It is worthicimg that, if the same prop-
erties were expressed by ordinary inclusions, suchiager T Brillant, we would
simply get that there are not depressed writers, thus the Kl dvcollapse. This col-
lapse is avoided ildLC + T, as it is not assumed thdt is monotonic, that is to say
C C D does notimplyI'(C') C T(D).
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The semantics of th& operator is defined by a set of postulates that are essgntiall
a restatement of axioms and rules of nonmonotonic entatimeureferential logidP,
as defined by KLM. The logi® introduces a nonmonotonic entailmentin order
to formalize conditional assertions of the form |~ B, whose intuitive meaning is
that “normally the As are Bs”. The semanticsBfis given by means of a preference
relation < on individuals, so that typical instances of a conaéptan be defined as
the instances of” that are minimal with respect ta. In this modal logic,< works
as an accessibility relatioR with R(z,y) = y < x, so thatT(C) can be defined
asC M O-=C. The preference relatioa does not have infinite descending chains as
the so-called Smoothness condition is assumed. As a comsegthe corresponding
modal operatofl has the same properties as in Godel-Lob modal logic G tfragtic
provability.

The family of KLM logics contains other interesting memberstably the stronger
logic R, known as Rational Preferential Logic [12]. The axiomét@aof the logicR is
obtained from the axiomatization &fby adding the following rule, known astional
monotonicity

RM. (A~ B) A =(A R =0)) — ((ANC) ~ B)

The intuitive meaning of rational monotonicity is as follevif A ~ B and—(A |~ —C)
hold, then one can infed A C' |~ B. This rule allows a conditional to be inferred from
a set of conditionals in absence of other information. Maecisely, “it says that an
agent should not have to retract any previous defeasibldwesinon when learning about
a new fact the negation of which was not previously derivalilg].

In this paper, we consider whether the propertie¥ afl ALC + T are the correct
ones, by comparing them with the properties that would tdsulT if we adopted
the stronger logic of nonmonotonic entailmdnt We call ALC + Tgr the resulting
Description Logic. We provide some examples to show Ehé better suited thaR
sinceR would force some inferences that we consider counteriméuisingR, for
instance, we would be forced to conclude that typical wsitne not brillant from the
simple fact that there is a certain Mr. John who is a typicdlamt person (he has,
for instance, a lot of social success), who is a writer but vghnot a typical writer
(since he has never succeeded in publishing anything). Waaer this as an unwanted
inference, and therefore argue that the propertié® afe too strong fofl", and that?
must be preferred.

In section 4.2 we also show that the logicCC + Tr is equivalent to the logic
for defeasible subsumptions in DLs proposed by [3], whersimared with ALC as
the underlying DL. The idea underlying the approach by [3}ésy similar to that
underlying ALC + T and ALC + Tr: some objects in the domain are more typical
than others. In the approach by [3]js at least as typical agif = > y. The properties
of > in [3] correspond to those &f in ALC + Tr. At a syntactic level the two logics
differ, so that in [3] one finds the defeasible inclusighs: D instead ofI'(C) C D of
ALC + Tr. But the idea is the same: in the two cases the inclusion hibtde most
preferred (typical’'s are alsdDs. Indeed, it can be shown that the logic of preferential
subsumption can be translated id@C + Tr by replacingC' C D with T(C) C D.
The approach in [3] therefore inherits the above critici$arsextensions of DLs that
useR.
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2 The lLogicALC + T

In this section we briefly recall the description logdCC + T introduced in [1]. We
consider an alphabet of concept nar@esf role namesz, and of individualsO.

The languageC of the logic ALC + T is defined by distinguishingonceptsand
extended concepés follows:

— ConceptsiA € C and T areconceptof £; if C,D € LandR € R, thenC' M
D,CuD,-C,VR.C,3R.C areconceptof L;

— Extended concepts: {f' is a concept, the@’ andT(C') areextended conceptand
all the boolean combinations of extended concepts are éstbooncepts of .

A knowledge base is a pair (TBox,ABox). TBox contains subgtionsC' C D,
whereC € L is an extended concept of the form eit@ror T(C’), andD € L is
a concept. ABox contains expressions of the fd'ta) anda Rb whereC € L is an
extended concepR € R, anda,b € O.

In order to provide a semantics to the operdihrwe extend the definition of a
model used in “standard” terminological logieLC:

Definition 1 (Semantics ofT with selection function).A model is any structureA, I, fr)
where:
— Ais the domain;
— I is the extension function that maps each extended cor¢eptC! C A, and
each roleR to a R C A x A. I assigns to each atomic concepte C a set
AT C A anditis extended as follows:

TI=A
1I=9
(~C)f = A\C!

(cnbD)Y =ctnD!

(CuD) =ctuD!

(VR.C)! ={a € A|Vb.(a,b) € RT —be Cl}

(3R.C)! ={a € A|3b.(a,b) € R}

(T(C)! = fx(CT)

— GivenS C A, fris afunctionfr : Pow(A) — Pow(A) satisfying the following

properties:

e (fr—1) T(S) cs

o (fr—2)ifS#0, henalsofT( ) #0;

e (fr—3)if fr(S) C R, thenfr(S) = fr(SNR);
o (fr—4) fr(US:) CUfr(S:);

e (fr—5)Nfr(S:) C fr(US:).

Intuitively, given the extension of some concépt fr selects thaypical instances of
C. (fr — 1) requests that typical elements §fbelong toS. (fr — 2) requests that
if there are elements i, then there are alsiypical such elements. The next proper-
ties constraint the behavior ¢gfr wrt N andU in such a way that they do not entail
monotonicity. According to fr — 3), if the typical elements of are in R, then they
coincide with the typical elements ¢f N R, thus expressing a weak form of mono-
tonicity (namelycautious monotonicily (fT — 4) corresponds to one direction of the
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equivalencer (| Si) = U fr(S:), so that it does not entail monotonicity. Similar con-
siderations apply to the equatigh((1.5;) = () fr(S:), of which only the inclusion
N fr(Si) C fr(N S:) is derivable. fr — 5) is a further constraint on the behavior of
fr wrt arbitrary unions and intersections; it would be derledb fr were monotonic.

In [1, 2] an alternative semantics fdi based on a preference relation is provided.
The idea is that there is a global preference relation amodiyiduals and that the
typical members of a conceft, i.e. selected by'r(CT), are the minimal elements of
C wrt this preference relation. Observe that this notion @bgl, that is to say, it does
not compare individuals with respect to a specific concephéthing likey is more
typical thanz wrt conceptC'). In this framework, an objeat € A is atypical instance
of some concept, if z € C! and there is n@-element inA more typicathanz. The
typicality preference relation is partial since it is naval/s possible to establish which
object is more typical than which other.

Let us first define the concept of minimal elements of a givenSs& A wrt a
relation<:

Definition 2 (Minimal elements of S). Given a relation< over a domairl, and given
anyS C A, we define:

Min.(S)={r:z € Sandfy € Ss.ty <z}

Moreover, we say that a relatien over a setA satisfies th&&moothness Condition
iff forall S C A, forallz € S, eitherz € Min(S) or Jy € Min(S) such that
y <.

In [1, 2] the following Representation Theorem has beenguov

Theorem 1 ([1]). Given any modelA, I, fr), fr satisfies postulate§fr — 1) to
(fr — 5) iff there exists an irreflexive and transitive relatienover A satisfying the
Smoothness Condition, such that for 8liC A, fr(S) = Min(S).

The above representation theorem allows to use the follpsémantics fodLC + T,
which is similar to the one of Preferential lodicas defined by KLM.

Definition 3 (Semantics of ALC + T). A modelM of ALC + T is any structure
(A, I, <) where:
— Ais the domain;
— < is anirreflexive and transitive relation ovek satisfying the Smoothness Condi-
tion (Definition 2)
— I is the extension function that maps each extended cor¢eptC! C A, and
each roleR to a R’ C A x A. I assigns to each atomic concepite C a set
Al C Aanditis extended as follows:

TI=A
11=0
(-C) = A\C!

(cnbDyl=ctnpD!
(CuD) =ctuDbD!
(VR.C)! ={a € A|Vb.(a,b) € RT - beC}
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e AR.C)! ={ae A|3b.(a,b) € R}
o (T(C)) = Min(CY)

As mentioned before, the intuitive idea is as follows: tgbielements of a concept
C, i.e. instances of the extended conc@i{t”) (thus, belonging tqT(C))!) corre-
spond to minimal elements @f, i.e. to elements id/in (C!). An inclusion relation
T(C) C D is satisfied in a modeM if Min.(C!) C D!. This is stated in a rigorous
manner by the following definition:

Definition 4 (Model satisfying a Knowledge Base)Consider a modeM, as defined
in Definition 3. We extend so that it assigns to each individualof © an element’
of the domaimA. Given a KB (TBox,ABox), we say that:

— M satisfies TBox if for all inclusion€ T D in TBox, and all elements ¢ A, if
z € CT thenz € D'.

— M satisfies ABox if: (i) for allC'(a) in ABox, we have that’ ¢ C7, (i) for all
aRb in ABox, we have that!,b’) € R'.

M satisfies a knowledge base if it satisfies both its TBox anksBtsx.

If a model does not satisfy an inclusiechC D, we will say thatC' IZ D holds in
the model.

The following equation between the typicality operdidrand the nonmonotonic
entailment operatox in KLM logic P (describing what can begpically derived from
a given premise) holds:

C ~ Diff T(C)C D

3 Extension of ALC + T with a modular preference relation: the
logic ALC + Tg

In the Introduction we have recalled that the family of KLMylos contains other in-
teresting members, notably the stronger Idgjdknown as Rational Preferential Logic
[12]. The axiomatization of the logiR is obtained from the axiomatization &f by
adding the rule of rational monotonicity:

RM. (A~ B) A =(A r =0)) — ((ANC) ~ B)

Let us now consider the properties that would resultToif we adopted the stronger
logic of nonmonotonic entailmem. If we added to the conditions above fff the
following condition of Rational Monotonicity:

(fT — R) if fT(S) NR 75 @, thenfT(S n R) - fT(S)

we would obtain a stronger DL based on Rational Entailmentlescribed in [12].
(fr—R) forces again a form of monotonicity: if there is a typiéahaving the property
R, then all typicalS and Rs inherit the properties of typicals. We callALC + Tgr
the logic resulting from the addition ¢f'r — R) to the propertie§fr — 1) — (ft —5).
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Definition 5 (Semantics ofALC 4+ Tgr with selection function fr ). An ALC + Tr
model with selection function is any structytd, I, fr), defined as in Definition 1, in
which fr satisfied fr — R).

As for the logicALC + T, the semantics afALC + Tgr can be formulated in terms
of possible world structure&A, I, <) in which < is modular, i.e. for eachr, y, z, if
x < y, then either < yorzx < z.

Definition 6 (Semantics of ALC + Tr). An ALC + Tr modelM is any structure
(A, 1, <), defined as in Definition 3, in which is further assumed to be modular.

The equivalence between this semantics and the one foredubdth fr is proven by
the representation theorem below (Theorem 6). First ofxsdlneed to recall Lemma
2.1in[2]:

Lemmal (Lemma 2.1 in [2], page 5)If fr satisfies(fr — 1) — (fr — 5), then
fr(SUR)NS C fr(S).

Now we are able to prove the representation theorem:

Theorem 2 (Representation Theorem)A KB is satisfiable in amd£C 4+ Tr model
described in Definition 6 iff it is satisfiable in a moded, I, fr) where fr satisfies
(fr — 1) = (fr — 5) plus(fr — R), and(T(C))" = fr(C7).

Proof. Here we only consider the propeftfir — R). For the other properties, we refer
to the proof of the Representation TheoremAEC + T, as presented in [2], Theorem
2.1, page 5. Thenly if direction is trivial and left to the reader. For tHalirection, as
in [2], we define the< relation as follows:

—forallz,y € A, weletx < yif VS C A,ify € fr(9), then (@)x ¢ S and (b)
JR C Asuchthats C Randz € fr(R).

Notice that giver{ fT — R), this condition is equivalent to the simplified conditiomth
only contains (a). Indeed, if (a) holds, it follows that a{®) holds. To be convinced,
take anysS such thaty € fr(S), andx ¢ S. We show that: € fr(S U {z}), hence (b)
holds. For a contradiction, suppase? fr(S U {z}), then by(fr — 1) and(ft — 2),
fr(Su{z})nS # 0, and by(fr —R), fr(S) = fr((SU{z})NS) C fr(SU{z}).
Hencey € fr(SU{z}), which contradicts (a), given thate S U {z}. Therefore, we
will consider the simplified definition of:

—forallz,y € A, weletz < yif VS C A, if y € fr(S), thenz ¢ S.

We then show that if t satisfies(fr — R), then< is modular. Letr < y. Considerz
and suppose £ y. This means that there B such thaty € fr(R), andz € R We
reason as follows. First, notice that by Lemma % fr({y, z}) (given thaty, z € R,
y € fr(RU{y, z})N{y, z}, hence € fr({y, z})). In order to show that is modular,
we want to show that < z. For a contradiction, suppose thatt z. Then there isZ
suchthat € fr(Z) andx € Z. ConsiderZ U {y, z}, by (fr — 1), fr(Z U {y,z}) C
ZU{y, z},and by(fr —2), fr(ZU{y, z}) # 0. Hence, eithefr(ZU{y,2})NZ # 0
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or fr(ZU{y, z})NZ = 0, andfr(ZU{y, z})N{y, 2} # 0. Inthe last caseg; € fr(ZU
{y.2}). Inthefirstcase, byfzr —R), fr(Z) = fr((ZU{y, z})NZ) C fz(ZUy, 2}).
hencez € fr(Z U {y,z}). From this, we derive thatr(Z U {y,2}) N {y, 2z} # 0,
hence, bY(fr — R), fr({y, 2}) = fo((Z U{y, 2}) N {y, 2}) € fr(Z U {y,z}), and
y € fr(Z U{y,z}). In both cases, we have thate fr(Z U {y, z}), however this is
impossible, given that € Z U {y, z} andz < y. We therefore conclude thatif £ y,

thenz < z, hence modularity holds. -

The following facts hold inA£C + Tr:

(R) (T(A)NBZ 1) impliesT(AM B) C T(A)
*) (T(A)NBKZ L1)impliesT(B)MALC T(A)

Proof. For simplicity, we consider here the semantics4£C + Tr with selection
function (Definition 5). By the Representation Theorem ahdhis is equivalent to
considering the semantics gf£C + Tr with < (Definition 6). It is immediate to see
that R) holds in anALC + Tr model with selection function satisfying'r — R).

For (*): If (T(A) 1 B Z 1) holds in a model, therfr(A”) N BT # (), hence by
(fr — R), fr((An B)I) C fr(A!). On the other hand, from Lemma 1, we have that
fr(BHYn AT C fr((An BY). Hence fr(BY)n AT C fr((AnB)!) C fr(A!),and

T(B) N A C T(A) holds. .

Both properties allow us to draw conclusions from the sinfpkt that there ione
individual that (i) is a typical instance of the conceptand that (ii) has the property
B. From R), we derive thagll typical A and Bs are typicalds. From(x) we derive
something about typicdBs, even ifA and B are unrelated properties. In particular, we
derive that typicalBs that also have the properttyare typicalAs.

From (*) we derive the counterintuitive example of the Intwation, where from an
empty TBox and an ABox containing the following facts:

(a) T(Brillant)(john)
(b) Writer(john)
(¢) =T ( Writer)(john)

we can then conclude that
(d) T(Writer) C —=Brillant

Indeed, from the ABox we can first obtain tHR{ Brillant) 1 Writer £ T(Writer),
then, by making the contrapositive of), we getT( Writer) M Brillant C L, from
which we can immediately concludé) T( Writer) C —Brillant.

As a further example, given the following ABox:

T(Graduated)(andras)
SoccerPlayer (andras)

T (SoccerPlayer)(lilian)
Graduated (lilian)
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and an empty TBox, we can get that:
T (SoccerPlayer)(andras)

which does not make sense given thiatn is a different person not related t@.dras,
hence we do not want to uséian’'s properties to make inferences abautiras.

In our opinion, the inferences that holdACC + Tr are rather arbitrary and coun-
terintuitive. In conclusion, we believe that the logicis too strong and unsuitable to
reason about typicality.

4 ALC + Tg vs Preferential Subsumption

In [3] a general preferential semantic framework for deffdassubsumption in DLs is
presented. Here we recall this approach applied to the atdrdgic ALC, in order
to compare it with the logicALC + Tgr. We call the resulting logicALC-. The idea
underlying ALC is very similar to that underlyinglLC + T and ALC + Tgr: some
objects in the domain are more typical than othersAC, x is more typical thary
if x > y. The properties of in ALC- correspond to those &f in ALC + Tr. Ata
syntactic level the two logics differ, so thatCC- one finds the defeasible inclusions
C C D instead ofT'(C) C D of ALC + Tr. But the idea is the same: in the two cases
the inclusion holds if the most preferred (typicéaly are alsdDs.

We show that the logicALC is equivalent to the logicALC + Twr, namely we
show that the logic1LC - of preferential subsumption can be translated &C + Tr
by replacingC = D with T(C) C D. Therefore we conclude that the approach in [3]
inherits the above criticisms for extensions of DLs thatRse

4.1 Preferential Subsumption

In [3] it is considered an alphabet of concept narfiesf role namesk, and of indi-
vidualsO. Concepts of the languageof the logic ALC- are defined as for standard
ALC, that is to say:A € C and T areconceptf £; if C,D € LandR € R, then
cnbD,CuD,-C,VR.C,3AR.C areconceptf L.

A knowledge base is a pair (TBox,ABox). TBox contains subgtionsC T D
as well as preferential (or defeasible) subsumptiorns D, whereC, D € L. ABox
contains expressions of the foif{a) anda Rb whereC' € L is a conceptR € R, and
a,beO.

The basic idea of the semantics for preferential subsumgitnat it is assumed that
some objects of the domaid are viewed as more typical than others. Before giving
a formal description of a model fod£C-, we introduce the following definition of
maximalelements of a givets C A. As usual, given a partial ordet, we have that
x =y ifand only ifx < y andy < x, so thatx # y if and only if eitherz £ y or
y L.

Definition 7 (Maximal elements of S). Given a relation< over a domain4, and
given anyS C A, we define:

S ={x:xeS | fyecSstrx<yandr#y}
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Intuitively, given a concept’, the selC! " represents the maximally preferred (or typi-
cal) elements of’. A preferential subsumptioff C D is then satisfied in a modeéi

if CI" C D

Furthermore, we remember that a relatiorover a setA is Noetherian(or bounded)
iff there is no infinite strictly ascending chain of objecfssh As the same authors have
pointed out in [3], if< is transitive, then the Noetherian property is equivalerthe
following condition:

(N) for everyS C A andx € S, either:z € S~ or there isy € S such that
r<yandy € S~.

We also remember that a relatighis modular iff, for each, y, z such thate # y, y #
z,x # z,if © < y, then eitherz < y orz < z. In order to provide a semantics for
ALCE, we extend the definition of model of£C as follows:

Definition 8 (Semantics ofALC-). A modelM (ordered interpretation) is any struc-
ture (A, <,I), whereA and I are defined as in Definition 1, and is a Noetherian,
modular, reflexive, transitive, anti-symmetric relatioreoA. For any concep€, C' is
defined in the usual way.

Definition 9 (Model satisfying a Knowledge Base)Consider a modeM, as defined
in Definition 8. We extend so that it assigns to each individualof © an element’
of the domaimA. Given a KB (TBox,ABoXx), we say that:
— M satisfies TBox if:
o for all subsumption§’ = D in TBox, and all elements € A, if z € C? then
x e D!
o for all preferential subsumption§ C D in TBox, and all elements € A, if
z e Cl thenz € D'.
— M satisfies ABox if: (i) for allC'(a) in ABox, we have that’ ¢ C7, (ii) for all
aRb in ABox, we have that!,b’) € RI.
M satisfies a knowledge base if it satisfies both its TBox anksBtsx.

4.2 Equivalence betweendLC 4+ Ty and Preferential Subsumption

In this section we show that the semantics4£C + Tgr proposed in Section 3 cor-
responds to the semantics of preferential subsumption]asuBined in Section 4.1.
We first give a formal translation of ad£C + Tr TBox into anALCE TBox, and
vice-versa. Intuitively, a preferential subsumptior_ D corresponds to an inclusion
relationT(C') C D. We then show that, on the one hand, given&fC + Tr TBox,
sayT, if it is satisfiable, so is thedLC- TBox T’ obtained by this translation; on the
other hand, if arJALCCE TBox 1" is satisfiable, so is thd LC + Tr TBox T obtained
by the translation.

Definition 10 (Translation of an ALC + Tgr TBox). Given anALC + Tr TBoXT,
we define anzwc; TBoxT" as follows:

— for all inclusionsC C D € T, whereC'is a concept, thed C D € T”;
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— forallinclusionsT(C) C D € T,thenCC D € T".

Definition 11 (Translation of an ALC- TBox). Given anALC TBoxT", we define
an ALC + Tr TBoxT as follows:

— for all subsumption§’ C D € T’, thenC C D € T;
— for all preferential subsumption§ C D € T/, thenT(C)C D € T.

Let us first prove that:

Theorem 3. Given anALC + Tr TBoxT, if it satisfiable in anALC + Tr model
M, then theALC TBoxT", obtained by the translation df as in Definition 10, is

also satisfiable in amcc; modelM’.

Proof. Let M = (A, <, I) be the ALC + Tr model satisfyingl'. We first define a
modelM* = (A", <, I') as follows:

- A=A

—weletz < yiff y < x;

— weletC!" = ¢! for any ALC* concepiC.

We then define a modelt’ = (A’, <’  I'), where<’ is defined as followsz <’ y if
z <y;foralz e A, weletx <’ z.
We first show that\1” is an.ALC- model. To this aim, we just need to prove that the

relation<’is Noetherian (i.e. it satisfies the prope(i)), modular, reflexive, transitive,
and anti-symmetric.

Reflexivity follows from the definition ok’.

To show that<’ is transitive, suppos@) = <’ y and(2) y <’ z. We have to show
thatalsar <’ z. If z = y, then(2) « <’ z and we are done. The case in whighk- z is
symmetric. In case # y andy # z, by definition of<’ we have that < y andy < z.
By definition of <, we have thayy < x andz < y. Since< is transitive, we have that
z < x and, by definition oK, z < z. We conclude by definition of’ thatz <’ z.

The relation<’ is modular. Considex <’ y and a givenz € A such thatr #
y,z # y, andx # z. We have to show that eithéx) « <’ z or (xx) z <’ y. Since
x # y, it can be observed that < y, theny < x. Since< is modular, we have that
eitherz < z ory < z. By definitions of< and<', if z < = then(x) <’ z, whereas if
y < z, then(xx) z <’ y. In both cases, we are done.

The relation<’ is anti-symmetric. Suppose, by absurd, that’ y andy <’ z, but
x # y. By definition of <’, this means that < y andy < z and, by definition of<,
thatz < y andy < z in M. By transitivity of <, we have that < z, against the fact
that M is anALC + Tr model and, thenk is irreflexive. The relatior<’ is then also
anti-symmetric, since it is obtained fromby adding only relations <’ x.

In order to prove that the relation’ satisfiegN) we need the following fact:

Fact 1 Given the modeldt and M’ above, we have tha#t~ = Min(S).

“In other words, the interpretatioH corresponds td with the exception of the extension of
extended concepfE(C), not belonging to the language of the logdC- .
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Proof of Fact 1 First, we prove thab~ C Min(S). Letx € S—, thusz € S. This
means that, for alj € S,y # z, we have that £’ y. By definition of </, alsoz £ y
and, by definition of<, y £ x. Thereforex € S and, for ally € S, we havey £ z,
thatis to sayr € Min.(S).

In order to prove thallin.(S) C S—, considerr € Min.(S), thusz € S. This
means that, for all € S,y # x, we have thay £ x. Again, by definitions oK and
<’, we conclude that £’ y, that is to sayr € S™. (00 proof of Fact 1

Let us now prove that’ satisfies the properifN). Suppose, on the contrary, that there
existS C A andz € S such thatr ¢ S~ and(x) fly € S~ such thatr <’ y.
SinceS # () (x € S), alsoMin.(S) # 0 since< satisfies the smoothness condition.
Therefore(x) meansthat, foralj € S—,z # y, we haver £’ y. From Fact 1, we have
thatx € Min.(S). Moreover, for ally € Min., we have thay £ = by definition of
<’ and<. This contradicts the fact that the relatiarsatisfies the smoothness condition.
Finally, we show thai\’ is a model forT”. For subsumptions of the fordd C D €
T’ the proof is straightforward, sind€ C D € T andC? C D!’ by the following
facts: (i) M is a model ofT’, thenC! C D!, (i) ¢! = ¢! and (iii) D! = D! (C
andD are ALC concepts). For preferential subsumptions of the fétm D € 77, we
observe thal'(C') C D € T and, sinceM is a model ofl’, we have tha{T(C))! =
Min(CT) C D!. Moreover, sinceD is an. ALC concept (not mentionind’), we can
also observe thad’ = D', By Fact 1, we have that’ — = Min.(C"). We conclude
thatC’'~ = Min.(C') C D! = D", and the proof is over. n

Let us now prove that:

Theorem 4. Given anA[LCE TBoxT1”, if it satisfiable in anAECE modelM’, then

the ALC + Tr TBoxT, obtained by the translation & as in Definition 11, is also
satisfiable in andLC + Tr modelM.

Proof. Let M" = (A, <", I') be theALC- model satisfyingl”. We define a model
M = (A, <, 1) as follows:

- A=A

— weletzx < yiff y <’ x andy # z;

— we definel as follows:
e ¢! = forall ALC concepts;
o (T(C)! = Min(CT).

We prove thatM is an ALC + Tr model satisfyindgl". First, we prove thak is ir-
reflexive, transitive and satisfies the smoothness comditio

By definition of <, x < y if and only if z # y, therefore< is irreflexive.

For transitivity, consider < y andy < z. By definition, we have that # y,
y # z,y <’ x,andz <’ y. SinceM’ is an ALC- model, the relatio<’ is transitive,
thereforez <’ z and, by definition ok, we conclude that < z.

As we have done for Fact 1, we can prove the following fact:

Fact 2 Given the modeldA’ and M above, we have that™ = Min.(.5).
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Let us now prove that the relation satisfies the smoothness condition. By absurd,
suppose that that this does not hold, that is to say there se¢AC A and an ele-
mentx € S such that (i)z ¢ Min-(S) and (ii) ly € Min(S) such thaty < z.
First, observe that, sinckt’ is anALC model, the relationr’ satisfies conditioiN),

thereforeS— # (). Therefore, (i) and (ii) imply that, for aly € Min(S),y £ =. We
can also observe that£’ y, since otherwise we would have< x. By (i) and Fact 2,
we have that: ¢ S—. This is in contrast with the fact that’ satisfies conditiorfN),
since there ar& C A andx € S such thate ¢ S~ and, for ally € S~ (again, by Fact
2,y e S~ ifandonlyify € Min.(S)), x # y, we have that £’ y.

Finally, we prove that the modeél! satisfies the Tho{'. First of all, by definition
of M, we have tha€’ = C'! for all ALC concepts”, that is to say for all concepts not
mentioningT'. Therefore, we have tha¥! satisifies inclusions of the ford C D € T
whereC is anALC concept, sinc€ T D € T" and M’ satisfiesI”, thenC!’ C D',
thusC! C DI,

For inclusions of the fornT(C) C D € T, we have thaC' C D € 7" and, since
M’ is a model ofl”, we have that'!’~ C D!'. By Fact 2 and the fact that and D
are ALC concepts, we can conclude thatin_(C7) = ¢~ € D' = D', and we
are done. n

By Theorems 3 and 4 above, we can conclude that the semahficeferential sub-
sumption is equivalent to the one of preferential (ratipdakcription logics, therefore
it inherits the criticisms for extensions of DLs that (Reliscussed in Section 3.

From a knowledge representation point of view, it can be nlegkthat the language
of ALC + T, as well as ofALC + TRg, is more general than the oneAI’CC;. In the
logics ALC + T and ALC + TR, itis also possible to use tfiE operator in the ABox,
in order to express that individuals are typical members adrecept. For instance, an
ABox can contain the following facts:

T( Writer)(sophie)

T (Writer 1 Depressed)(mick),
representing thatophie is a typical writer and thatnick is a typical depressed writer,
respectively. Moreover, it is possible to reason aboutqtypical properties of those

individuals; in the above example, from the KB of the Introdon, one can infer that
sophie is brillant, whereasnick is not, i.e.:

Brillant(sophie)
= Brillant(mick)

It is not obvious how such typical properties of individuatcurring in the ABox can

be encoded in the logid LC- with preferential subsumptions. Moreover, although we
have considered only TBoxes containing inclusions of tlimfo

T(C)C D

whereC andD are concepts not mentioniriy, nothing prevents us a more general use
of the T operator in the definition of the TBox, for instance to forimalinclusions of
the form
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T(C) C T(D).
This cannot be done IALC- of [3].

5 Conclusions

In this work we have investigated the role of rational momdtity in the context of
nonmonotonic extensions of DLs.

We have first compared two approaches based on the semainiitd/o rational
preferential entailment, namely:

1. the logicALC + T, extending standard £LC by means of a typicality operatdr,
which allows to express inclusion relations of the folC') C D, representing the
fact that “typical” elements of concept have the property/are also members of
D; the semantics of the operaf®iis based on a set of postulates that are essentially
a reformulation of the axioms and rules of KLM lodi

2. thelogicALC + Tr, whichis equivalentto the approach by [3]. The lodi€C + Tr
is based on the same ideaAEC + T, but the semantics & refers to the strongest
KLM logic R.

We have provided some examples to show that the former is aypeopriate than
the latter when reasoning about typicality. Of course, bétiC + T and ALC + Tgr
are monotonic, so they must be completed by some kind of nantoaic mechanism.
For ALC + T, some work has been done in [13]. More in detail, th@notonidogic
ALC + T is not sufficient to perform some kind of defeasible reaspn@oncerning
the example of the Introduction, if the KB contains:

T(Writer) C Brillant
T(Writer 1 Depressed) = —Brillant

we get for instance that:

KB U { Writer(mick), Depressed(mick)} = —Brillant (mick)
KB (= T(Writer M Fat) T Brillant

In order to derive the conclusion abouick we should know (or assume) thaiick is

a typical depressed writer, but we do not dispose of thigimédion. Similarly, in order
to derive that also a typical fat writer is brillant, we mut &ble to infer or assume
that a “typical fat writer” is also a “typical writer”, sincthere is no reason why it
should not be the case; this cannot be derived by the logit given the nonmonotonic
nature ofT. The basic monotonic logiglLC + T is then too weak to enforce these
extra assumptions, so that an additional mechanism tonpedefeasible inferences is
needed.

In [13] a minimal model semanticd£C + T,,;, IS proposed. The idea is (i) to
define a preference relation among models and then (ii) toelafsemantic entailment,
denoted with=="  determined by minimal models. Intuitively, a modef is preferred
to a modelV is M admits more typical instances of concepts with respekf tdaking
the KB of the example above, one can obtain, for instance:
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KB U { Writer(mick), Depressed(mick)} == = Brillant (mick)

KB U {3HasChild.( Writer M Depressed)(roy)} =57 3HasChild.—~ Brillant (roy)
KB =57 T (Writer N Fat) C Brillant

Decision procedures for checking satisfiabilityAC + T and ALC + T.nin, as well
as complexity results, have been provided. In detail, itdesesn shown that satisfiability
in ALC + T is EXPTIME-complete [1, 2]; since checking satisfiabilityy an ALC
KB is known to be EXPTIME-complete, this means that adding dperatorT is
essentially inexpensive. Moreover, it has been provedthetking query entailmentin

ALC 4 Ty is in co-NExpNP [13],
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