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Abstract. Extensions of Description Logics (DLs) to reason about typicality and
defeasible inheritance have been largely investigated. Inthis paper, we consider
two such extensions, namely (i) the extension of DLs with a typicality operator
T, having the properties of Preferential nonmonotonic entailment P, and (ii) its
variant with a typicality operator having the properties ofthe stronger Rational
entailmentR. The first one has been proposed in [1, 2]. Here, we investigate the
second one and we show, by a representation theorem, that it is equivalent to
the approach to preferential subsumption proposed in [3]. We compare the two
extensions, preferential and rational, and argue that the first one is more suitable
than the second one to reason about typicality, as the latterleads to unintuitive
inferences.

1 Introduction

Description logics (DLs) represents one of the most important formalisms of knowledge
representation. Their success can be explained by two key advantages characterizing
them. On the one hand, DLs have a well-defined semantics basedon first-order logic;
on the other hand, they offer a good trade-off between expressivity and complexity. DLs
have been successfully implemented by a range of systems andthey are at the base of
languages for the semantic web such as OWL.

In a DL framework, a knowledge base (KB) comprises two components: an inten-
sional part, called the TBox, containing the definition of concepts (and possibly roles)
as well as a specification of inclusion relations among them,and an extensional part,
called the ABox, containing instances of concepts and roles. Since the very objective
of the TBox is to build a taxonomy of concepts, the need of representing prototypical
properties and of reasoning about defeasible inheritance of such properties naturally
arises.

The traditional approach is to handle defeasible inheritance by integrating some
kind of nonmonotonic reasoning mechanism. This has led to study nonmonotonic exten-
sions of DLs [4–9]. However, as the same authors have pointedout, all these proposals
present some difficulties, and finding a suitable nonmonotonic extension for inheritance
with exceptions is far from obvious. To give a brief account,[4] proposes the extension
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of DL with Reiter’s default logic. However, the same authorshave pointed out that this
integration may lead to both semantical and computational difficulties. Furthermore,
Reiter’s default logic does not provide a direct way of modeling inheritance with ex-
ceptions. This has motivated the study of extensions of DLs with prioritized defaults [9,
5]. A more general approach is undertaken in [7], where an extension of DL is proposed
with two epistemic operators. This extension, calledALCKNF , allows one to encode
Reiter’s default logic as well as to express epistemic concepts and procedural rules.
However, this extension has a rather complicated modal semantics, so that the integra-
tion with the existing systems requires significant changesto the standard semantics of
DLs. [10] extends the work in [7] by providing a translation of anALCKNF KB to an
equivalentflat KB and by defining a simplified tableau algorithm for flat KBs, which
includes an optimized minimality check. In [6] an extensionof DL with circumscription
is proposed to express prototypical properties with exceptions, by introducing “abnor-
mality” predicates whose extension is minimized. The authors provide algorithms for
checking satisfiability, subsumption and instance checking which are proved to have an
optimal complexity, but are based on massive nondeterministic guessing. A calculus for
circumscription in DL has not been developed yet. Moreover,the use of circumscription
to model inheritance with exceptions is not that straightforward. We refer to Section 5.1
in [1, 2] for a broader discussion on the above mentioned nonmonotonic extensions of
DLs.

Here, we consider an alternative approach, based on nonmonotonic entailment as
defined by Kraus, Lehmann and Magidor (KLM) in [11, 12]. This approach is adopted
by [2, 1] and [3]. The main advantage of this approach over previous ones is that the
semantics of the resulting description logics is very simple and close to standard se-
mantics for DLs. Furthermore, at least for what concerns [1,2] there is a calculus for
the proposed logic, and the logic can be extended in order to deal with inheritance with
exceptions.

We start by considering the logicALC + T proposed in [2, 1], that extends the
well-known description logicALC by a typicality operatorT. The intended meaning
of the operatorT, for any conceptC, is thatT(C) singles out the instances ofC that
are considered as “typical”. Thus, an assertion like

“typical writers are brillant”

is represented by

T(Writer ) ⊑ Brillant .

An ALC + T TBox can consistently contain the above inclusion togetherwith

T(Writer ⊓ Depressed) ⊑ ¬Brillant

(typical depressed writers are not brillant). It is worth noticing that, if the same prop-
erties were expressed by ordinary inclusions, such asWriter ⊑ Brillant , we would
simply get that there are not depressed writers, thus the KB would collapse. This col-
lapse is avoided inALC + T, as it is not assumed thatT is monotonic, that is to say
C ⊑ D does not implyT(C) ⊑ T(D).
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The semantics of theT operator is defined by a set of postulates that are essentially
a restatement of axioms and rules of nonmonotonic entailment in preferential logicP,
as defined by KLM. The logicP introduces a nonmonotonic entailment|∼ in order
to formalize conditional assertions of the formA |∼ B, whose intuitive meaning is
that “normally the As are Bs”. The semantics ofT is given by means of a preference
relation< on individuals, so that typical instances of a conceptC can be defined as
the instances ofC that are minimal with respect to<. In this modal logic,< works
as an accessibility relationR with R(x, y) ≡ y < x, so thatT(C) can be defined
asC ⊓ 2¬C. The preference relation< does not have infinite descending chains as
the so-called Smoothness condition is assumed. As a consequence, the corresponding
modal operator2 has the same properties as in Gödel-Löb modal logic G of arithmetic
provability.

The family of KLM logics contains other interesting members, notably the stronger
logic R, known as Rational Preferential Logic [12]. The axiomatization of the logicR is
obtained from the axiomatization ofP by adding the following rule, known asrational
monotonicity:

RM. ((A |∼ B) ∧ ¬(A |∼ ¬C)) → ((A ∧ C) |∼ B)

The intuitive meaning of rational monotonicity is as follows: if A |∼ B and¬(A |∼ ¬C)
hold, then one can inferA ∧ C |∼ B. This rule allows a conditional to be inferred from
a set of conditionals in absence of other information. More precisely, “it says that an
agent should not have to retract any previous defeasible conclusion when learning about
a new fact the negation of which was not previously derivable” [12].

In this paper, we consider whether the properties ofT in ALC + T are the correct
ones, by comparing them with the properties that would result for T if we adopted
the stronger logic of nonmonotonic entailmentR. We callALC + TR the resulting
Description Logic. We provide some examples to show thatP is better suited thanR
sinceR would force some inferences that we consider counterintuitive. UsingR, for
instance, we would be forced to conclude that typical writers are not brillant from the
simple fact that there is a certain Mr. John who is a typical brillant person (he has,
for instance, a lot of social success), who is a writer but whois not a typical writer
(since he has never succeeded in publishing anything). We consider this as an unwanted
inference, and therefore argue that the properties ofR are too strong forT, and thatP
must be preferred.

In section 4.2 we also show that the logicALC + TR is equivalent to the logic
for defeasible subsumptions in DLs proposed by [3], when considered withALC as
the underlying DL. The idea underlying the approach by [3] isvery similar to that
underlyingALC + T andALC + TR: some objects in the domain are more typical
than others. In the approach by [3],x is at least as typical asy if x ≥ y. The properties
of ≥ in [3] correspond to those of< in ALC + TR. At a syntactic level the two logics
differ, so that in [3] one finds the defeasible inclusionsC ⊏

˜
D instead ofT(C) ⊑ D of

ALC + TR. But the idea is the same: in the two cases the inclusion holdsif the most
preferred (typical)Cs are alsoDs. Indeed, it can be shown that the logic of preferential
subsumption can be translated intoALC + TR by replacingC ⊏

˜
D with T(C) ⊑ D.

The approach in [3] therefore inherits the above criticismsfor extensions of DLs that
useR.
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2 The LogicALC + T

In this section we briefly recall the description logicALC + T introduced in [1]. We
consider an alphabet of concept namesC, of role namesR, and of individualsO.

The languageL of the logicALC + T is defined by distinguishingconceptsand
extended conceptsas follows:

– Concepts:A ∈ C and⊤ areconceptsof L; if C, D ∈ L andR ∈ R, thenC ⊓
D, C ⊔ D,¬C, ∀R.C, ∃R.C areconceptsof L;

– Extended concepts: ifC is a concept, thenC andT(C) areextended concepts, and
all the boolean combinations of extended concepts are extended concepts ofL.

A knowledge base is a pair (TBox,ABox). TBox contains subsumptionsC ⊑ D,
whereC ∈ L is an extended concept of the form eitherC′ or T(C′), andD ∈ L is
a concept. ABox contains expressions of the formC(a) andaRb whereC ∈ L is an
extended concept,R ∈ R, anda, b ∈ O.

In order to provide a semantics to the operatorT, we extend the definition of a
model used in “standard” terminological logicALC:

Definition 1 (Semantics ofT with selection function).A model is any structure〈∆, I, fT〉
where:

– ∆ is the domain;
– I is the extension function that maps each extended conceptC to CI ⊆ ∆, and

each roleR to a RI ⊆ ∆ × ∆. I assigns to each atomic conceptA ∈ C a set
AI ⊆ ∆ and it is extended as follows:
• ⊤I = ∆

• ⊥I = ∅
• (¬C)I = ∆\CI

• (C ⊓ D)I = CI ∩ DI

• (C ⊔ D)I = CI ∪ DI

• (∀R.C)I = {a ∈ ∆ | ∀b.(a, b) ∈ RI → b ∈ CI}
• (∃R.C)I = {a ∈ ∆ | ∃b.(a, b) ∈ RI}
• (T(C))I = fT(CI)

– GivenS ⊆ ∆, fT is a functionfT : Pow(∆) → Pow(∆) satisfying the following
properties:
• (fT − 1) fT(S) ⊆ S;
• (fT − 2) if S 6= ∅, then alsofT(S) 6= ∅;
• (fT − 3) if fT(S) ⊆ R, thenfT(S) = fT(S ∩ R);
• (fT − 4) fT(

⋃
Si) ⊆

⋃
fT(Si);

• (fT − 5)
⋂

fT(Si) ⊆ fT(
⋃

Si).

Intuitively, given the extension of some conceptC, fT selects thetypical instances of
C. (fT − 1) requests that typical elements ofS belong toS. (fT − 2) requests that
if there are elements inS, then there are alsotypical such elements. The next proper-
ties constraint the behavior offT wrt ∩ and∪ in such a way that they do not entail
monotonicity. According to (fT − 3), if the typical elements ofS are inR, then they
coincide with the typical elements ofS ∩ R, thus expressing a weak form of mono-
tonicity (namelycautious monotonicity). (fT − 4) corresponds to one direction of the
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equivalencefT(
⋃

Si) =
⋃

fT(Si), so that it does not entail monotonicity. Similar con-
siderations apply to the equationfT(

⋂
Si) =

⋂
fT(Si), of which only the inclusion⋂

fT(Si) ⊆ fT(
⋂

Si) is derivable. (fT − 5) is a further constraint on the behavior of
fT wrt arbitrary unions and intersections; it would be derivable if fT were monotonic.

In [1, 2] an alternative semantics forT based on a preference relation is provided.
The idea is that there is a global preference relation among individuals and that the
typical members of a conceptC, i.e. selected byfT(CI), are the minimal elements of
C wrt this preference relation. Observe that this notion is global, that is to say, it does
not compare individuals with respect to a specific concept (something likey is more
typical thanx wrt conceptC). In this framework, an objectx ∈ ∆ is a typical instance
of some conceptC, if x ∈ CI and there is noC-element in∆ more typicalthanx. The
typicality preference relation is partial since it is not always possible to establish which
object is more typical than which other.

Let us first define the concept of minimal elements of a given set S ⊆ ∆ wrt a
relation<:

Definition 2 (Minimal elements ofS). Given a relation< over a domain∆, and given
anyS ⊆ ∆, we define:

Min<(S) = {x : x ∈ S and∄y ∈ S s.t.y < x}

Moreover, we say that a relation< over a set∆ satisfies theSmoothness Condition
iff for all S ⊆ ∆, for all x ∈ S, eitherx ∈ Min<(S) or ∃y ∈ Min<(S) such that
y < x.

In [1, 2] the following Representation Theorem has been proved:

Theorem 1 ([1]). Given any model〈∆, I, fT〉, fT satisfies postulates(fT − 1) to
(fT − 5) iff there exists an irreflexive and transitive relation< over∆ satisfying the
Smoothness Condition, such that for allS ⊆ ∆, fT(S) = Min<(S).

The above representation theorem allows to use the following semantics forALC + T,
which is similar to the one of Preferential logicP as defined by KLM.

Definition 3 (Semantics ofALC + T). A modelM of ALC + T is any structure
〈∆, I, <〉 where:

– ∆ is the domain;
– < is an irreflexive and transitive relation over∆ satisfying the Smoothness Condi-

tion (Definition 2)
– I is the extension function that maps each extended conceptC to CI ⊆ ∆, and

each roleR to a RI ⊆ ∆ × ∆. I assigns to each atomic conceptA ∈ C a set
AI ⊆ ∆ and it is extended as follows:
• ⊤I = ∆

• ⊥I = ∅
• (¬C)I = ∆\CI

• (C ⊓ D)I = CI ∩ DI

• (C ⊔ D)I = CI ∪ DI

• (∀R.C)I = {a ∈ ∆ | ∀b.(a, b) ∈ RI → b ∈ CI}
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• (∃R.C)I = {a ∈ ∆ | ∃b.(a, b) ∈ RI}
• (T(C))I = Min<(CI)

As mentioned before, the intuitive idea is as follows: typical elements of a concept
C, i.e. instances of the extended conceptT(C) (thus, belonging to(T(C))I ) corre-
spond to minimal elements ofC, i.e. to elements inMin<(CI). An inclusion relation
T(C) ⊑ D is satisfied in a modelM if Min<(CI) ⊆ DI . This is stated in a rigorous
manner by the following definition:

Definition 4 (Model satisfying a Knowledge Base).Consider a modelM, as defined
in Definition 3. We extendI so that it assigns to each individuala of O an elementaI

of the domain∆. Given a KB (TBox,ABox), we say that:

– M satisfies TBox if for all inclusionsC ⊑ D in TBox, and all elementsx ∈ ∆, if
x ∈ CI thenx ∈ DI .

– M satisfies ABox if: (i) for allC(a) in ABox, we have thataI ∈ CI , (ii) for all
aRb in ABox, we have that(aI , bI) ∈ RI .

M satisfies a knowledge base if it satisfies both its TBox and itsABox.

If a model does not satisfy an inclusionC ⊑ D, we will say thatC 6⊑ D holds in
the model.

The following equation between the typicality operatorT and the nonmonotonic
entailment operator|∼ in KLM logic P (describing what can betypically derived from
a given premise) holds:

C |∼ D iff T(C) ⊑ D

3 Extension ofALC + T with a modular preference relation: the
logic ALC + TR

In the Introduction we have recalled that the family of KLM logics contains other in-
teresting members, notably the stronger logicR, known as Rational Preferential Logic
[12]. The axiomatization of the logicR is obtained from the axiomatization ofP by
adding the rule of rational monotonicity:

RM. ((A |∼ B) ∧ ¬(A |∼ ¬C)) → ((A ∧ C) |∼ B)

Let us now consider the properties that would result forT if we adopted the stronger
logic of nonmonotonic entailmentR. If we added to the conditions above forfT the
following condition of Rational Monotonicity:

(fT − R) if fT(S) ∩ R 6= ∅, thenfT(S ∩ R) ⊆ fT(S)

we would obtain a stronger DL based on Rational Entailment, as described in [12].
(fT−R) forces again a form of monotonicity: if there is a typicalS having the property
R, then all typicalS andRs inherit the properties of typicalSs. We callALC + TR

the logic resulting from the addition of(fT−R) to the properties(fT−1)− (fT−5).
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Definition 5 (Semantics ofALC + TR with selection functionfT ). AnALC + TR

model with selection function is any structure〈∆, I, fT〉, defined as in Definition 1, in
whichfT satisfies(fT − R).

As for the logicALC + T, the semantics ofALC + TR can be formulated in terms
of possible world structures〈∆, I, <〉 in which < is modular, i.e. for eachx, y, z, if
x < y, then eitherz < y or x < z.

Definition 6 (Semantics ofALC + TR). An ALC + TR modelM is any structure
〈∆, I, <〉, defined as in Definition 3, in which< is further assumed to be modular.

The equivalence between this semantics and the one formulated withfT is proven by
the representation theorem below (Theorem 6). First of all,we need to recall Lemma
2.1 in [2]:

Lemma 1 (Lemma 2.1 in [2], page 5).If fT satisfies(fT − 1) − (fT − 5), then
fT(S ∪ R) ∩ S ⊆ fT(S).

Now we are able to prove the representation theorem:

Theorem 2 (Representation Theorem).A KB is satisfiable in anALC + TR model
described in Definition 6 iff it is satisfiable in a model〈∆, I, fT〉 wherefT satisfies
(fT − 1) − (fT − 5) plus(fT − R), and(T(C))I = fT(CI).

Proof. Here we only consider the property(fT −R). For the other properties, we refer
to the proof of the Representation Theorem forALC +T, as presented in [2], Theorem
2.1, page 5. Theonly if direction is trivial and left to the reader. For theif direction, as
in [2], we define the< relation as follows:

– for all x, y ∈ ∆, we letx < y if ∀S ⊆ ∆, if y ∈ fT(S), then (a)x 6∈ S and (b)
∃R ⊆ ∆ such thatS ⊂ R andx ∈ fT(R).

Notice that given(fT −R), this condition is equivalent to the simplified condition that
only contains (a). Indeed, if (a) holds, it follows that also(b) holds. To be convinced,
take anyS such thaty ∈ fT(S), andx 6∈ S. We show thatx ∈ fT(S ∪ {x}), hence (b)
holds. For a contradiction, supposex 6∈ fT(S ∪ {x}), then by(fT − 1) and(fT − 2),
fT(S ∪{x})∩S 6= ∅, and by(fT −R), fT(S) = fT((S ∪{x})∩S) ⊆ fT(S ∪{x}).
Hence,y ∈ fT(S ∪ {x}), which contradicts (a), given thatx ∈ S ∪ {x}. Therefore, we
will consider the simplified definition of<:

– for all x, y ∈ ∆, we letx < y if ∀S ⊆ ∆, if y ∈ fT(S), thenx 6∈ S.

We then show that iffT satisfies(fT − R), then< is modular. Letx < y. Considerz
and supposez 6< y. This means that there isR such thaty ∈ fT(R), andz ∈ R We
reason as follows. First, notice that by Lemma 1,y ∈ fT({y, z}) (given thaty, z ∈ R,
y ∈ fT(R∪{y, z})∩{y, z}, hencey ∈ fT({y, z})). In order to show that< is modular,
we want to show thatx < z. For a contradiction, suppose thatx 6< z. Then there isZ
such thatz ∈ fT(Z) andx ∈ Z. ConsiderZ ∪ {y, z}, by (fT − 1), fT(Z ∪ {y, z}) ⊆
Z∪{y, z}, and by(fT−2), fT(Z∪{y, z}) 6= ∅. Hence, eitherfT(Z∪{y, z})∩Z 6= ∅
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orfT(Z∪{y, z})∩Z = ∅, andfT(Z∪{y, z})∩{y, z} 6= ∅. In the last case,y ∈ fT(Z∪
{y, z}). In the first case, by(fT−R), fT(Z) = fT((Z∪{y, z})∩Z) ⊆ fT(Z∪{y, z}),
hencez ∈ fT(Z ∪ {y, z}). From this, we derive thatfT(Z ∪ {y, z}) ∩ {y, z} 6= ∅,
hence, by(fT − R), fT({y, z}) = fT((Z ∪ {y, z}) ∩ {y, z}) ⊆ fT(Z ∪ {y, z}), and
y ∈ fT(Z ∪ {y, z}). In both cases, we have thaty ∈ fT(Z ∪ {y, z}), however this is
impossible, given thatx ∈ Z ∪ {y, z} andx < y. We therefore conclude that ifz 6< y,
thenx < z, hence modularity holds.

�

The following facts hold inALC + TR:

(R) (T(A) ⊓ B 6⊑ ⊥) impliesT(A ⊓ B) ⊑ T(A)
(*) (T(A) ⊓ B 6⊑ ⊥) impliesT(B) ⊓ A ⊑ T(A)

Proof. For simplicity, we consider here the semantics ofALC + TR with selection
function (Definition 5). By the Representation Theorem above, this is equivalent to
considering the semantics ofALC + TR with < (Definition 6). It is immediate to see
that (R) holds in anALC + TR model with selection function satisfying(fT − R).
For (*): If (T(A) ⊓ B 6⊑ ⊥) holds in a model, thenfT(AI) ∩ BI 6= ∅, hence by
(fT − R), fT((A ∩ B)I) ⊆ fT(AI). On the other hand, from Lemma 1, we have that
fT(BI)∩AI ⊆ fT((A∩BI). Hence,fT(BI)∩AI ⊆ fT((A∩B)I) ⊆ fT(AI), and
T(B) ⊓ A ⊑ T(A) holds.

�

Both properties allow us to draw conclusions from the simplefact that there isone
individual that (i) is a typical instance of the conceptA and that (ii) has the property
B. From (R), we derive thatall typical A andBs are typicalAs. From(∗) we derive
something about typicalBs, even ifA andB are unrelated properties. In particular, we
derive that typicalBs that also have the propertyA are typicalAs.

From (*) we derive the counterintuitive example of the Introduction, where from an
empty TBox and an ABox containing the following facts:

(a) T(Brillant )(john)
(b) Writer(john)
(c) ¬T(Writer )(john)

we can then conclude that

(d) T(Writer ) ⊑ ¬Brillant

Indeed, from the ABox we can first obtain thatT(Brillant ) ⊓ Writer 6⊑ T(Writer ),
then, by making the contrapositive of(∗), we getT(Writer ) ⊓ Brillant ⊑ ⊥, from
which we can immediately conclude(d) T(Writer ) ⊑ ¬Brillant .

As a further example, given the following ABox:

T(Graduated)(andras)
SoccerPlayer (andras)
T(SoccerPlayer )(lilian)
Graduated(lilian)
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and an empty TBox, we can get that:

T(SoccerPlayer )(andras)

which does not make sense given thatlilian is a different person not related toandras ,
hence we do not want to uselilian ’s properties to make inferences aboutandras .

In our opinion, the inferences that hold inALC + TR are rather arbitrary and coun-
terintuitive. In conclusion, we believe that the logicR is too strong and unsuitable to
reason about typicality.

4 ALC + TR vs Preferential Subsumption
In [3] a general preferential semantic framework for defeasible subsumption in DLs is
presented. Here we recall this approach applied to the standard logicALC, in order
to compare it with the logicALC + TR. We call the resulting logicALC⊏

˜
. The idea

underlyingALC⊏

˜
is very similar to that underlyingALC + T andALC + TR: some

objects in the domain are more typical than others. InALC⊏

˜
, x is more typical thany

if x ≥ y. The properties of≥ in ALC⊏

˜
correspond to those of< in ALC + TR. At a

syntactic level the two logics differ, so that inALC⊏

˜
one finds the defeasible inclusions

C ⊏
˜

D instead ofT(C) ⊑ D of ALC + TR. But the idea is the same: in the two cases
the inclusion holds if the most preferred (typical)Cs are alsoDs.

We show that the logicALC⊏

˜
is equivalent to the logicALC + TR, namely we

show that the logicALC⊏

˜
of preferential subsumption can be translated intoALC + TR

by replacingC ⊏
˜

D with T(C) ⊑ D. Therefore we conclude that the approach in [3]
inherits the above criticisms for extensions of DLs that useR.

4.1 Preferential Subsumption
In [3] it is considered an alphabet of concept namesC, of role namesR, and of indi-
vidualsO. Concepts of the languageL of the logicALC⊏

˜
are defined as for standard

ALC, that is to say:A ∈ C and⊤ areconceptsof L; if C, D ∈ L andR ∈ R, then
C ⊓ D, C ⊔ D,¬C, ∀R.C, ∃R.C areconceptsof L.

A knowledge base is a pair (TBox,ABox). TBox contains subsumptionsC ⊑ D

as well as preferential (or defeasible) subsumptionsC ⊏
˜

D, whereC, D ∈ L. ABox
contains expressions of the formC(a) andaRb whereC ∈ L is a concept,R ∈ R, and
a, b ∈ O.

The basic idea of the semantics for preferential subsumption is that it is assumed that
some objects of the domain∆ are viewed as more typical than others. Before giving
a formal description of a model forALC⊏

˜
, we introduce the following definition of

maximalelements of a givenS ⊆ ∆. As usual, given a partial order≤, we have that
x = y if and only if x ≤ y andy ≤ x, so thatx 6= y if and only if eitherx 6≤ y or
y 6≤ x.

Definition 7 (Maximal elements ofS). Given a relation≤ over a domain∆, and
given anyS ⊆ ∆, we define:

S− = {x : x ∈ S | ∄y ∈ S s.t.x ≤ y andx 6= y}
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Intuitively, given a conceptC, the setCI
−

represents the maximally preferred (or typi-
cal) elements ofC. A preferential subsumptionC ⊏

˜
D is then satisfied in a modelM

if CI
−

⊆ DI .
Furthermore, we remember that a relation≤ over a set∆ is Noetherian(or bounded)
iff there is no infinite strictly ascending chain of objects of ∆. As the same authors have
pointed out in [3], if≤ is transitive, then the Noetherian property is equivalent to the
following condition:

(N) for everyS ⊆ ∆ andx ∈ S, either:x ∈ S− or there isy ∈ S such that
x ≤ y andy ∈ S−.

We also remember that a relation≤ is modular iff, for eachx, y, z such thatx 6= y, y 6=
z, x 6= z, if x ≤ y, then eitherz ≤ y or x ≤ z. In order to provide a semantics for
ALC⊏

˜
, we extend the definition of model ofALC as follows:

Definition 8 (Semantics ofALC⊏

˜
). A modelM (ordered interpretation) is any struc-

ture 〈∆,≤, I〉, where∆ and I are defined as in Definition 1, and≤ is a Noetherian,
modular, reflexive, transitive, anti-symmetric relation over∆. For any conceptC, CI is
defined in the usual way.

Definition 9 (Model satisfying a Knowledge Base).Consider a modelM, as defined
in Definition 8. We extendI so that it assigns to each individuala of O an elementaI

of the domain∆. Given a KB (TBox,ABox), we say that:

– M satisfies TBox if:
• for all subsumptionsC ⊑ D in TBox, and all elementsx ∈ ∆, if x ∈ CI then

x ∈ DI

• for all preferential subsumptionsC ⊏
˜

D in TBox, and all elementsx ∈ ∆, if

x ∈ CI
−

thenx ∈ DI .
– M satisfies ABox if: (i) for allC(a) in ABox, we have thataI ∈ CI , (ii) for all

aRb in ABox, we have that(aI , bI) ∈ RI .

M satisfies a knowledge base if it satisfies both its TBox and itsABox.

4.2 Equivalence betweenALC + TR and Preferential Subsumption
In this section we show that the semantics ofALC + TR proposed in Section 3 cor-
responds to the semantics of preferential subsumption of [3] outlined in Section 4.1.
We first give a formal translation of anALC + TR TBox into anALC⊏

˜
TBox, and

vice-versa. Intuitively, a preferential subsumptionC ⊏
˜

D corresponds to an inclusion
relationT(C) ⊑ D. We then show that, on the one hand, given anALC + TR TBox,
sayT , if it is satisfiable, so is theALC⊏

˜
TBox T ′ obtained by this translation; on the

other hand, if anALC⊏

˜
TBox T ′ is satisfiable, so is theALC + TR TBox T obtained

by the translation.

Definition 10 (Translation of an ALC + TR TBox). Given anALC + TR TBoxT ,
we define anALC⊏

˜
TBoxT ′ as follows:

– for all inclusionsC ⊑ D ∈ T , whereC is a concept, thenC ⊑ D ∈ T ′;
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– for all inclusionsT(C) ⊑ D ∈ T , thenC ⊏
˜

D ∈ T ′.

Definition 11 (Translation of an ALC⊏

˜
TBox). Given anALC⊏

˜
TBoxT ′, we define

anALC + TR TBoxT as follows:

– for all subsumptionsC ⊑ D ∈ T ′, thenC ⊑ D ∈ T ;
– for all preferential subsumptionsC ⊏

˜
D ∈ T ′, thenT(C) ⊑ D ∈ T .

Let us first prove that:

Theorem 3. Given anALC + TR TBoxT , if it satisfiable in anALC + TR model
M, then theALC⊏

˜
TBoxT ′, obtained by the translation ofT as in Definition 10, is

also satisfiable in anALC⊏

˜
modelM′.

Proof. Let M = 〈∆, <, I〉 be theALC + TR model satisfyingT . We first define a
modelM∗ = 〈∆′,≤, I ′〉 as follows:

– ∆′ = ∆;
– we letx ≤ y iff y < x;
– we letCI

′

= CI for anyALC4 conceptC.

We then define a modelM′ = 〈∆′,≤′, I ′〉, where≤′ is defined as follows:x ≤′ y if
x ≤ y; for all x ∈ ∆, we letx ≤′ x.

We first show thatM′ is anALC⊏

˜
model. To this aim, we just need to prove that the

relation≤′ is Noetherian (i.e. it satisfies the property(N)), modular, reflexive, transitive,
and anti-symmetric.

Reflexivity follows from the definition of≤′.
To show that≤′ is transitive, suppose(1) x ≤′ y and(2) y ≤′ z. We have to show

that alsox ≤′ z. If x = y, then(2) x ≤′ z and we are done. The case in whichy = z is
symmetric. In casex 6= y andy 6= z, by definition of≤′ we have thatx ≤ y andy ≤ z.
By definition of≤, we have thaty < x andz < y. Since< is transitive, we have that
z < x and, by definition of≤, x ≤ z. We conclude by definition of≤′ thatx ≤′ z.

The relation≤′ is modular. Considerx ≤′ y and a givenz ∈ ∆ such thatx 6=
y, z 6= y, andx 6= z. We have to show that either(∗) x ≤′ z or (∗∗) z ≤′ y. Since
x 6= y, it can be observed thatx ≤ y, theny < x. Since< is modular, we have that
eitherz < x or y < z. By definitions of≤ and≤′, if z < x then(∗) x ≤′ z, whereas if
y < z, then(∗∗) z ≤′ y. In both cases, we are done.

The relation≤′ is anti-symmetric. Suppose, by absurd, thatx ≤′ y andy ≤′ x, but
x 6= y. By definition of≤′, this means thatx ≤ y andy ≤ x and, by definition of≤,
thatx < y andy < x in M. By transitivity of<, we have thatx < x, against the fact
thatM is anALC + TR model and, then,< is irreflexive. The relation≤′ is then also
anti-symmetric, since it is obtained from≤ by adding only relationsx ≤′ x.

In order to prove that the relation≤′ satisfies(N) we need the following fact:

Fact 1 Given the modelsM andM′ above, we have thatS− = Min<(S).

4 In other words, the interpretationI ′ corresponds toI with the exception of the extension of
extended conceptsT(C), not belonging to the language of the logicALC⊏

e

.
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Proof of Fact 1. First, we prove thatS− ⊆ Min<(S). Let x ∈ S−, thusx ∈ S. This
means that, for ally ∈ S, y 6= x, we have thatx 6≤′ y. By definition of≤′, alsox 6≤ y

and, by definition of≤, y 6< x. Therefore,x ∈ S and, for ally ∈ S, we havey 6< x,
that is to sayx ∈ Min<(S).

In order to prove thatMin<(S) ⊆ S−, considerx ∈ Min<(S), thusx ∈ S. This
means that, for ally ∈ S, y 6= x, we have thaty 6< x. Again, by definitions of≤ and
≤′, we conclude thatx 6≤′ y, that is to sayx ∈ S−.

(� proof of Fact 1)

Let us now prove that≤′ satisfies the property(N). Suppose, on the contrary, that there
exist S ⊆ ∆ andx ∈ S such thatx 6∈ S− and (⋆) ∄y ∈ S− such thatx ≤′ y.
SinceS 6= ∅ (x ∈ S), alsoMin<(S) 6= ∅ since< satisfies the smoothness condition.
Therefore,(⋆) means that, for ally ∈ S−, x 6= y, we havex 6≤′ y. From Fact 1, we have
thatx 6∈ Min<(S). Moreover, for ally ∈ Min<, we have thaty 6< x by definition of
≤′ and≤. This contradicts the fact that the relation< satisfies the smoothness condition.

Finally, we show thatM′ is a model forT ′. For subsumptions of the formC ⊑ D ∈
T ′ the proof is straightforward, sinceC ⊑ D ∈ T andCI

′

⊆ DI
′

by the following
facts: (i)M is a model ofT , thenCI ⊆ DI , (ii) CI = CI

′

and (iii) DI = DI
′

(C
andD areALC concepts). For preferential subsumptions of the formC ⊏

˜
D ∈ T ′, we

observe thatT(C) ⊑ D ∈ T and, sinceM is a model ofT , we have that(T(C))I =
Min<(CI) ⊆ DI . Moreover, sinceD is anALC concept (not mentioningT), we can
also observe thatDI = DI

′

. By Fact 1, we have thatCI
′− = Min<(CI). We conclude

thatCI
′− = Min<(CI) ⊆ DI = DI

′

, and the proof is over. �

Let us now prove that:

Theorem 4. Given anALC⊏

˜
TBoxT ′, if it satisfiable in anALC⊏

˜
modelM′, then

theALC + TR TBoxT , obtained by the translation ofT ′ as in Definition 11, is also
satisfiable in anALC + TR modelM.

Proof. Let M′ = 〈∆′,≤′, I ′〉 be theALC⊏

˜
model satisfyingT ′. We define a model

M = 〈∆, <, I〉 as follows:

– ∆ = ∆′;
– we letx < y iff y ≤′ x andy 6= x;
– we defineI as follows:

• CI = CI
′

for all ALC conceptsC;
• (T(C))I = Min<(CI).

We prove thatM is anALC + TR model satisfyingT . First, we prove that< is ir-
reflexive, transitive and satisfies the smoothness condition.

By definition of<, x < y if and only if x 6= y, therefore< is irreflexive.
For transitivity, considerx < y andy < z. By definition, we have thatx 6= y,

y 6= z, y ≤′ x, andz ≤′ y. SinceM′ is anALC⊏

˜
model, the relation≤′ is transitive,

thereforez ≤′ x and, by definition of<, we conclude thatx < z.
As we have done for Fact 1, we can prove the following fact:

Fact 2 Given the modelsM′ andM above, we have thatS− = Min<(S).
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Let us now prove that the relation< satisfies the smoothness condition. By absurd,
suppose that that this does not hold, that is to say there are asetS ⊆ ∆ and an ele-
mentx ∈ S such that (i)x 6∈ Min<(S) and (ii) ∄y ∈ Min<(S) such thaty < x.
First, observe that, sinceM′ is anALC⊏

˜
model, the relation≤′ satisfies condition(N),

thereforeS− 6= ∅. Therefore, (i) and (ii) imply that, for ally ∈ Min<(S), y 6< x. We
can also observe thatx 6≤′ y, since otherwise we would havey < x. By (i) and Fact 2,
we have thatx 6∈ S−. This is in contrast with the fact that≤′ satisfies condition(N),
since there areS ⊆ ∆ andx ∈ S such thatx 6∈ S− and, for ally ∈ S− (again, by Fact
2, y ∈ S− if and only if y ∈ Min<(S)), x 6= y, we have thatx 6≤′ y.

Finally, we prove that the modelM satisfies the TboxT . First of all, by definition
of M, we have thatCI = CI

′

for all ALC conceptsC, that is to say for all concepts not
mentioningT. Therefore, we have thatM satisifies inclusions of the formC ⊑ D ∈ T

whereC is anALC concept, sinceC ⊑ D ∈ T ′ andM′ satisfiesT ′, thenCI
′

⊆ DI
′

,
thusCI ⊆ DI .

For inclusions of the formT(C) ⊑ D ∈ T , we have thatC ⊏
˜

D ∈ T ′ and, since

M′ is a model ofT ′, we have thatCI
′− ⊆ DI

′

. By Fact 2 and the fact thatC andD

areALC concepts, we can conclude thatMin<(CI) = CI
′− ⊆ DI

′

= DI , and we
are done.

�

By Theorems 3 and 4 above, we can conclude that the semantics of preferential sub-
sumption is equivalent to the one of preferential (rational) description logics, therefore
it inherits the criticisms for extensions of DLs that useR discussed in Section 3.

From a knowledge representation point of view, it can be observed that the language
of ALC + T, as well as ofALC + TR, is more general than the one ofALC⊏

˜
. In the

logicsALC + T andALC + TR, it is also possible to use theT operator in the ABox,
in order to express that individuals are typical members of aconcept. For instance, an
ABox can contain the following facts:

T(Writer )(sophie)
T(Writer ⊓ Depressed)(mick ),

representing thatsophie is a typical writer and thatmick is a typical depressed writer,
respectively. Moreover, it is possible to reason about prototypical properties of those
individuals; in the above example, from the KB of the Introduction, one can infer that
sophie is brillant, whereasmick is not, i.e.:

Brillant(sophie)
¬Brillant(mick)

It is not obvious how such typical properties of individualsoccurring in the ABox can
be encoded in the logicALC⊏

˜
with preferential subsumptions. Moreover, although we

have considered only TBoxes containing inclusions of the form

T(C) ⊑ D

whereC andD are concepts not mentioningT, nothing prevents us a more general use
of theT operator in the definition of the TBox, for instance to formalize inclusions of
the form
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T(C) ⊑ T(D).

This cannot be done inALC⊏

˜
of [3].

5 Conclusions
In this work we have investigated the role of rational monotonicity in the context of
nonmonotonic extensions of DLs.

We have first compared two approaches based on the semantics of KLM rational
preferential entailment, namely:

1. the logicALC + T, extending standardALC by means of a typicality operatorT,
which allows to express inclusion relations of the formT(C) ⊑ D, representing the
fact that “typical” elements of conceptC have the propertyD/are also members of
D; the semantics of the operatorT is based on a set of postulates that are essentially
a reformulation of the axioms and rules of KLM logicP;

2. the logicALC + TR, which is equivalent to the approach by [3]. The logicALC + TR

is based on the same idea ofALC+T, but the semantics ofT refers to the strongest
KLM logic R.

We have provided some examples to show that the former is moreappropriate than
the latter when reasoning about typicality. Of course, bothALC + T andALC + TR

are monotonic, so they must be completed by some kind of nonmonotonic mechanism.
ForALC + T, some work has been done in [13]. More in detail, themonotoniclogic
ALC + T is not sufficient to perform some kind of defeasible reasoning. Concerning
the example of the Introduction, if the KB contains:

T(Writer ) ⊑ Brillant

T(Writer ⊓ Depressed) ⊑ ¬Brillant

we get for instance that:

KB ∪ {Writer(mick),Depressed(mick)} 6|= ¬Brillant (mick)
KB 6|= T(Writer ⊓ Fat) ⊑ Brillant

In order to derive the conclusion aboutmick we should know (or assume) thatmick is
a typical depressed writer, but we do not dispose of this information. Similarly, in order
to derive that also a typical fat writer is brillant, we must be able to infer or assume
that a “typical fat writer” is also a “typical writer”, sincethere is no reason why it
should not be the case; this cannot be derived by the logic itself given the nonmonotonic
nature ofT. The basic monotonic logicALC + T is then too weak to enforce these
extra assumptions, so that an additional mechanism to perform defeasible inferences is
needed.

In [13] a minimal model semanticsALC + Tmin is proposed. The idea is (i) to
define a preference relation among models and then (ii) to define a semantic entailment,
denoted with|=LT

min
, determined by minimal models. Intuitively, a modelM is preferred

to a modelN isM admits more typical instances of concepts with respect toN . Taking
the KB of the example above, one can obtain, for instance:



Reasoning About Typicality in Preferential DLs: Preferential vs Rational Entailment 15

KB ∪ {Writer(mick),Depressed(mick)} |=LT

min
¬Brillant(mick)

KB ∪ {∃HasChild .(Writer ⊓Depressed)(roy)} |=LT

min
∃HasChild .¬Brillant(roy)

KB |=LT

min
T(Writer ⊓ Fat) ⊑ Brillant

Decision procedures for checking satisfiability inALC + T andALC + Tmin, as well
as complexity results, have been provided. In detail, it hasbeen shown that satisfiability
in ALC + T is EXPTIME-complete [1, 2]; since checking satisfiability of an ALC
KB is known to be EXPTIME-complete, this means that adding the operatorT is
essentially inexpensive. Moreover, it has been proved thatchecking query entailment in
ALC + Tmin is in CO-NEXPNP [13].
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