
The Situation Manager Rule Language

Asaf Adi, Opher Etzion

IBM Haifa Research Lab
Haifa University Campus, Haifa 31905, Israel

{adi, etzion}@il.ibm.com

Abstract. This paper presents the “situation manager” rule language. The
situation manager is a tool that includes both a language and an efficient run-
time execution mechanism, aimed at reducing the complexity of active
applications. It follows the observation that in many cases, there is a gap
between current tools that enable to react to a single event (following the ECA:
Event-Condition-Action paradigm), and the reality, in which a single event may
not require any reaction, but the reaction should be given to patterns over the
event history. The concept of situation presented in this paper, extends the
concept of composite event, in its expressive power, flexibility, and usability.
This paper motivates the work, surveys other efforts in this area, and discusses
the situation manager’s rule language.

1. Introduction

In recent years, a substantial amount of work has been invested in systems that either
react automatically to actual changes (reactive systems), or to predicted changes in
their environment (proactive systems). These systems perform actions or signal alerts
in response to the occurrence of events that are signaled when changes in the
environment occur (or inferred). Such systems are used in a wide spectrum of areas
and include command and control systems, active databases, system management
tools, customer relationship management systems and e-commerce applications.

A central issue in reactive and proactive systems is the ability to bridge the gap
between the events that are identified by the system and the situations to which the
system is required to react. Some examples, from various areas, of situations that need
to be handled are:

• A client wishes to activate an automatic “buy or sell” program, if a security
that is traded in two stock markets, has a difference of more than five
percent between its values in the markets, such that the time difference
between the reported values is less than five minutes (“arbitrage”).

• A customer relationship manager wishes to receive an alert, if a customer’s
request was reassigned at least three times.

• A groupware user wishes to start a session when there are ten members of
the group logged in to the groupware server.

Fig. 1. Situation.

2 Asaf Adi, Opher Etzion

There are a variety of tools that have been constructed to provide work environment
for event driven applications. The work described in this paper has been motivated by
the observation that most of the contemporary tools can react to the occurrence of a
single event. In many applications (including all the examples shown above) the
customer wishes to react to the occurrence of a situation, which is a semantic concept
in the customer’s domain of discourse. The syntactic equivalent of a situation is a
(possibly complex) pattern over the event history. Thus, there is a gap between
applications’ requirements and the capabilities of the supporting tools, resulting in
excessive work. This paper aims at bridging this gap and saving the excessive work. It
should be noted that the “pattern over the event history” may in some cases be only an
approximation of the actual situation, or express the situation with some level of
uncertainty. In this paper we have made the simplified assumption of equivalence
between these two terms. Some tools and some research prototypes approach this
difficulty by providing a mechanism for the definition of composite events that are
detected when a predicate over the event history is satisfied. However, previous
research was focused on specific fields such as active database [3][9][17] and network
management [14][16]. It resulted in partial solutions that have limited expressive
power and can only be used in these specific domains by systems to which they were
specially designed. Moreover, these prototypes are not able to fully express some of
the fundamentals of a situation definition:
1. The events that can participate in situation detection.
2. The context during which situation detection is relevant.
3. The impact of the semantic information that is reported with events on situation

detection (i.e. the semantic conditions that must be satisfied in order to detect a
situation).

4. The decision possibilities about the reuse of event instances that participated in
situation detection. The decision is whether, and on which conditions, the event
instance is “consumed” and cannot be used for the detection of other situations.

In this paper we present the Situation Manager rule language. The situation manager
is a part of Amit (Active Middleware Technology) framework. Amit is both an
application development and run-time control tool that is intended to enable fast and
reliable development of reactive and proactive applications. The situation manager is
a run-time monitor that receives information about the occurrence of events, detects
the situations to which applications are required to react, and repots the detected
situations to subscribers, typically other applications. It moves the responsibility of
situation detection from the application to a high level tool and bridge the gap
between the application and the situations to which it requires to react. It provides a
general solution (i.e. a solution that is practical in many domains) that can express the
fundamentals of a situation definition that were describes above.

This paper reports on the situation concept and the rule language that is used to
express it. Section 2 reviews some previous work that was done in order to define the
semantics of composite events. Section 3 describes the concept of event that is the
basic building block of the situation language. Section 4 describes the concept of
event group, a semantic equivalence among events. Section 5 describes the concept of
lifespan, a temporal context during which situation detection is relevant. Section 6
describes the concept of event collection, a collection of events that are relevant for
situation detection. Section 7 describes to concept of situation and how events, event

The Situation Manager Rule Language 3

groups, event collections, and lifespans are used during situation composition. Section
8 concludes the paper.

Examples from the domain of e-commerce application (stock market) follow
through the paper the different elements of situation definition. The language is
expressed using XML (Extensible Markup Language).

2. Related Work

Contemporary commercial systems do not support composite events. However, they
support triggers as specified in the SQL3 standard [11]. A trigger in SQL3 is an ECA
rule that is activated by a database state transition and has an SQL3 predicate as a
condition and a list of SQL3 statements as an action. Commercial databases that
support triggers include DBMS products such as DB2, Oracle, Sybase and Informix.

Research on complex events for active databases is quite comprehensive and
several research prototypes have been proposed, most of them base their event
composition capabilities upon some kind of event algebra.
1. ODE [9] is limited to database events only. It detects composite events over an

event history that contains all event occurrences (i.e. ODE can not express time
interval during which situation detection is relevant) and forbids the reuse of
event instances (i.e. events are always consumed). Although semantic
information is reported with events in ODE, this information can only be used to
impose some filtering conditions (masks) and equality conditions (parameters)
on events that participate in an event expression (composite event).

2. Snoop [3] supports both database event and external events (the semantics of
external events are not described). It has limited expressive capabilities for the
definition of time internals using the operators A, A*, P, and P* in association
with a parameter context. Parameter contexts describe some decision
possibilities for event reuse (consumption). However, Snoop cannot express all
possibilities of event reuse (consumption) policies. Although semantic
information is reported with events in Snoop, this information cannot be used
during event composition (it can be used in the condition part of the ECA rule).

3. Zimmer’s and Unland’s model [17] supports both database event and external
events. It does not define the time interval during which situation detection is
relevant and supports only few, predetermined, event reuse (consumption)
policies. Semantic information is reported only with database event. This
information can only be used to impose equality conditions on composing
events.

Additional research prototypes of complex events for active databases including
EXACT [6], REACH [18], ACOOD [2], ROCK & ROLL [7], Chimera [12], and
REFLEX [13] do not offer new functionality. Other prototypes offer new
functionality by introducing new operators. These include HiPAC [5], NAOS [4], and
SAMOS [8] that deals with the detection of complex events using colored petri-nets
in addition to the introduction of a new operator. Additional prototypes that are not
based on event algebra, but on functional programming and real time logic include

4 Asaf Adi, Opher Etzion

PFL [15] that is based on functional programming; JEM [10], that is based on the
logic RTL (Real Time Logic); and ADL [1].

Event correlation (network management) systems (HP openView Event
Correlation Services [14], SMARTS InCharge [16], VERITAS NerveCenter [19]) are
designed to handle only network events. Their expressive power is limited to the
network management domain and they do not aim at providing a general (domain
independent) solution that supports the fundamentals of a situation definition we
described earlier.

We have shown that none of these prototypes and systems is a comprehensive
solution that satisfies the requirements we have defined. We have shown that these
solutions suffer from a deficiency in their expressional power, inaccuracies in their
semantics and a centric approach that prevent the possibility to use these solutions in
most of the real world applications. We have shown that a comprehensive solution to
these problems is needed.

3. Event

An event is a significant (in some domains) instantaneous (happens in a specific point
in time) atomic (happens completely or not at all) occurrence. We distinguish between
concrete events and inferred events. Concrete events are those that happen in reality,
usually as a result of a change in an object's state. Examples are: a person entering the
meeting room; a light in the third floor of the building is turned on. Inferred events do
not happen in the physical reality, but can be logically concluded by viewing the
world's state (context) and the history of concrete event occurrences. An inferred
event represents the occurrence of a significant situation in the physical reality.
Examples are: all the invitees have already arrived to the meeting room (the meeting
can start); the electricity load in the third floor is too high (electric outage may occur).
We define two classes of events accordingly:
• External events are those, usually concrete events, which are pushed into the

situation manager by external sources in runtime. These include sensors, other
applications and human sources.

• Internal events are inferred events that are signaled by the situation manager
when it detects the occurrence of a situation.

An event, either external or internal, is represented by an event instance that contains
the necessary information about the event. This information includes: the occurrence
time of the event, data that is relevant to applications that react to the event, and
additional data that is needed in order to decide if a situation (inferred event) has
occurred.

An event class describes the common properties of a similar set of event instances
on an abstract level. It defines the type of information that can be associated with the
event (attributes) and its behavior (methods).
An event class has the properties that are described bellow.
1. A class name identifies the class. It must be unique with respect to the set off all

event class names.

The Situation Manager Rule Language 5

2. A set of superclasses describes the class’s direct ancestors. A class inherits the
attributes and methods of its superclasses.

3. A set of attributes describes the information that is associated with the event.

3.1. Attributes

Most contemporary systems view event information as a string, without semantic
meaning. In our model an event is represented as a structured set of attributes. An
event attribute maps an event class to either an object class or to a collection of
classes that are not necessarily events; the latter class describes the schema of the
event class. Each attribute has a unique name, a type, and a default value. These
properties are further detailed bellow.
1. An attribute name identifies the attribute. It must be unique with respect to the

set of all attribute names defined in the class.
2. An attribute type determines the attribute's possible values. It can be either a

primitive attribute or a reference to an object. Primitive attributes include
number, string, boolean, and chronon1. The value of a reference attribute, in
contrast to that of a primitive type, is a reference to an object that is the actual
value of the attribute. This object can be an event instance or any other data
structure.

3. A default value determines the attribute’s value if it is not reported with the
event. It is a complex expression that may involve other event attributes and
external information (a database is an example). A default value can be used to
define derived attributes.

3.2. The Class event

The class event is the root of the class hierarchy (i.e. it is an ancestor of every event).
It defines attributes that are common to all event classes.
• eventTime is a chronon that describes the timestamp in which the event occurs

in reality as reported by the event source.
• detectionTime is a chronon that describes the timestamp in which the event is

detected by an application. Delays in event reporting and events that are
reported not according to their real order result in a distinction between the
eventTime and detectionTime

• certainty is a number that quantifies the certainty level of the event.
• source is string that uniquely describes the event source
• expiration is number that describes the maximal period in which the event is

relevant. An event expires when the information associated with it is not
relevant anymore (e.g. an event that reports that a disk utilization is 95 percent

1 A chronon is a non-decomposable time interval of some fixed, minimal duration.
Data models may represent a time line by a sequence of non-decomposable, consecutive time
intervals of identical duration. These intervals are termed chronons. A data model will typically
leave the particular chronon duration unspecified, to be fixed later by the individual
applications, within the restrictions posed by the implementation of the data model [20].

6 Asaf Adi, Opher Etzion

that expires after 30 seconds). When an event instance expires all uncompleted
computations in which it participates should ignore it. The default value for this
attribute is null; it designates that the event is never expired. Descendant classes
can override this attribute default value.

After instantiation, the information that is associated with the event is either
reported by an event source, or determined by a default value, is immutable.
This is because an event, and the information associated with it, describes
something that happens instantaneously, or an instantaneous step (start of an
activity); such information does not change after the event occurrence.
The event class quote describes event instances that are signaled when a stock
is quoted regardless to the source of the event (stock market).
 <event name = "quote" >
 <attribute name = "symbol"
 type = "string" />
 <attribute name = "lastTrade"
 type = "number" />
 <attribute name = "change"
 type = "number" />
 </event>
The event class quote has three attributes: symbol, lastTrade, and change. The
attribute symbol describes the stock symbol, the attribute lastTrade describes
the stock value, and the attribute change describes the change in the stock value
since the previous quote.
Two examples of event instances associated with the quote event class are:
• An event instance that quotes IBM’s stock with the values: symbol = ibm,

lastTrade = 114.25, change = 0.75.
• An event instance that quotes a trade in Intel’s stock with the values: symbol

= intc, lastTrade = 26.85, change = -1.11.

The event class fullQuote, that extends the class quote, describes a stock quote
in more details than the class quote. It has three attributes that describe the
stock’s volume and the stock’s bid and ask values in addition to the attributes
defined in the class Quote.
 <event name = "fullQuote"
 extends = “quote” >
 <attribute name = "volume"
 type = " number " />
 <attribute name = "bid"
 type = "number" />
 <attribute name = "ask"
 type = "number" />
 </event>

Fig. 2. Event.

The Situation Manager Rule Language 7

4. Event Group

Event group is a collection of semantically associated event instances (e.g. quote
events that reports about the same stock belong to the same event group). Event
groups are used to match different event instances that refer to the same entity or
concept. An event group divides the situation detection process to numerous separate
independent detection process (denote partitions); one partition for every event group.

An event group class defines a set of grouping expressions that semantically
associate event instances with an event group or several event groups according to
specific semantics (examples are: all quotes with the same symbol, all quotes with
high trade volume). An event group class has the properties that are described bellow.
1. A class name identifies the class. It must be a legal identifier that is unique with

respect to the set of all event group class names.
2. Extension policy describes how to handle event instances that are not explicitly

associated with an event group. Relaxed extension policy (default) designates
that these event instance are implicitly associate with every event group. Strict
extension policy designates that these event instances are not associated with an
event group.

3. A set of grouping expressions describes the association rules of an event
instance with event groups.

4.1. Grouping Expression

A grouping expression associates event instances with event groups. It is a ternary
relation of an event, a condition, and a group value (or an expression). An event
instance, that is classified to the event and satisfies the condition, is associated with
(belong to) the event group that is described by the group value (the group value is a
result of a grouping expression over the information that is associated with the event
instance).

Event group class defines a set of grouping expressions that semantically associate
event instances with an event group or several event groups according to specific
semantics (examples are: all quotes with the same symbol, all quotes with high trade
volume). An event group class has the properties that are described bellow.
1. The event name is the name of an event class.
2. The condition specifies the conditions that an event instance must satisfy in

order to belong to an event group. The event group is (later) determined by
evaluating the group value. It is a predicate over the event attributes and
external data. The default condition is true.

3. The group value is a constant or an expression over event attributes. This value,
or the expression’s result, describes the event group to which event instances
that are classified to the event and satisfy the condition belong.

Several grouping expression (tuples of event, condition, and value) can be defined for
a single event group class. An event instance that satisfies the conditions of several
grouping expression (and has several group values) belongs to several event groups.
An event instance that does not satisfy the conditions of any grouping expression is
treated according the event group’s extension policy.

8 Asaf Adi, Opher Etzion

The event group class symbol, partitions the event instances into event groups
according to the stock’s symbol. It defines that all quotes (event instances) that
refer to the same stock belong to the same event group. The group value for
such group is the stock's symbol.

 <group name = "symbol">
 <event name = "quote" >
 < groupingExpression value = "symbol" />
 </event>
 </group>

The event group class tradeVolume, partitions the event instances into event
groups according to the quote’s volume. It defines that quotes (event instances)
are partitioned into three groups. Quotes with high tradability that have a
volume that is higher than 100, quote with average tradability that have a
volume between 30 and 120, and quotes with low tradability that have a volume
that is less than 50. The group values are high, average, and low
correspondingly.

 <eventGroup name = "tradeVolume"
 extension = "strict">
 <event name = "fullQuote" >
 <groupingExpression value = "'high'"
 condition = "volume > 100" />
 <groupingExpression value = "'average'"
 condition = "volume > 30 and volume < 120" />
 < groupingExpression value = "'low'"
 condition = "volume < 50" />
 </event>
 </eventGroup>

A quote (an event instance) can belong to both “high” and “average” event
groups, if it has a volume between 100 and 120, or to both “moderate” and
“low” event groups, if it has a volume between 30 and 70.
A quote (an event instance) that is not classified to FullQuote does not belong
to an event group (for example an instance of the event tradeStrat) because the
extension policy is strict and a grouping expression is not associated with such
events.

Fig. 3. Event Group.

5. Lifespan

A lifespan is the temporal context during which situation detection is relevant. The
lifespan is an interval bounded by two events called initiator and terminator. An
occurrence of an initiator event initiates the lifespan and an occurrence of a terminator
event terminates it. The initiator and terminator can be external events, internal
events, or system events such as system startup and system shutdown.

The Situation Manager Rule Language 9

A lifespan class describes the common properties of a similar set of lifespans on an
abstract level. It defines the set of events that can initiate a lifespan, the set of events
that can terminate it, the conditions for the lifespan initiation and termination, and its
maximal length. A lifespan class has the properties that are described bellow.
1. A class name identifies the class. It must be unique with respect to the set of all

lifespan class names.
2. A list of initiators describes the conditions for lifespan initiation.
3. A list of terminators describes the conditions for lifespan termination.
Note that more than one lifespan of the same class may be open simultaneously, if
two initiator events have occurred before a terminator event, depending on the
conditions for initiation.

A lifespan has its own semantics, which may be independent from the semantics of
a specific situation. In fact, a single lifespan can be a relevant context for the detection
of multiple situations. Example is the lifespan tradingDay, which starts when the
event tradeStart occurs and ends when the event tradeEnd occurs. This lifespan is a
relevant time window for numerous situations. Moreover, the conditions for lifespan
initiation and termination are not influenced by the specific situations that are relevant
during the lifespan.

5.1. Initiator

A lifespan is initiated by an occurrence of an initiator when an event, either external
or internal, occurs or (if defined this way) when the situation manager starts to run
(i.e. system startup). An initiator is a ternary relation: an event name, a condition, and
a correlation code. The event name identifies the event whose occurrence, if the
condition and the correlation code are satisfied, initiates a lifespan.
1. The event name is a name of an event class.
2. The condition specifies threshold condition that the event must satisfy in order

to initiate the lifespan. It is a predicate over the initiating event attributes and
external data (a database query is an example). The default condition is true.

3. The correlation code determines the lifespan duplication policy. There are two
possible correlation codes: add and ignore. If the correlation code is ignore, a
new lifespan is initiated, only if a lifespan of the same class is not already open.
If the correlation code is add, a new lifespan is opened while any existing
lifespans remain open.

Multiple tuples that consists of an event class, a condition, and a correlation code can
be defined for a single lifespan class. This allows different instances of the same
lifespan to be initiated by different events and under different conditions. Note that an
event occurrence can initiate lifespans by satisfying only a single initiation tuple (the
first in the order of definition), although it may satisfy the conditions of numerous
initiation tuples.

10 Asaf Adi, Opher Etzion

5.2 Terminator

A lifespan remains open since its initiation time until it is either terminated by an
occurrence of a terminator or it expires. The terminator defines whether lifespan
instances are terminated after a period of time, by event occurrences, or both; under
which conditions; and in case of multiple lifespan instances, which lifespans are
terminated. A terminator is either an expiration interval (that determines that maximal
length of the lifespan) or a ternary relation: an event name, a condition, and a
quantifier. The event name identifies the event whose occurrence, if the condition is
satisfied, terminates a lifespan. The quantifier determines which open lifespans are
terminated.
1. The event name is the name of an event class.
2. The condition specifies threshold condition that the event must satisfy in order

to terminate the lifespan. It is a predicate over the terminating event attributes
and external data. The default condition is true.

3. The quantifier determines which open lifespans are terminated. There are three
possible quantifier values: first, last and each. If the quantifier is first, the oldest
lifespan is terminated; if the quantifier is last, the newest lifespan is terminated;
and if the quantifier is each, all the open lifespans are terminated.

Multiple instances of the tuple that consists of event class, threshold conditions, and
quantifier, can be defined for the same lifespan. This allows a lifespan to be
terminated by different events and under different conditions and makes it possible to
define lifespans that represent time intervals in which situations are relevant in reality.

A broker wishes to identify situations regarding IBM's stocks. The context in
which such situations may occur is associated with lifespans (time intervals)
that start when an IBM's stock is quoted, if no such lifespan is already open and
end after 20 time units.

 <lifespan name = "IBM">
 <initiator name = "quote"
 condition = "symbol = 'IBM' "
 correlate = “ignore” />
 <terminator interval = “20” />
 </lifespan>

Below is a scenario of event occurrences and their influence on the lifespan
initiation:
1. An IBM's stock quote event initiates a new lifespan.
2. A HP's stock quote event is ignored.
3. An IBM's stock quote event that occurs less than twenty time unites since

the first event is ignored.
4. An IBM's stock quote event that occurs more than twenty time units since

the first event, initiates a new lifespan.

Fig. 4. Lifespan.

The Situation Manager Rule Language 11

6. Event Collection

An event collection designates the event instances that are considered for situation
detection. They are evaluated if they occur during the time that the context (lifespan)
that is associated with the situation is active. These event instances, denoted
candidates, are partitioned into candidate lists. A candidate list is a collection of event
instances (candidates) that are classified to the same class, have the same role in
situation detection (e.g. in a situation that identifies arbitrage deals events that report
about quotes from one stock market have one role, and events that report about quotes
from other stock market have other role), satisfy the same filtering conditions, and
share the same decision possibilities about the reuse of event instances that participate
in situation detection.

An event collection class describes the common properties of a similar set of event
collections on an abstract level. It defines the classification of the collected events
into candidate lists. An event collection class has the properties that are described
below.
1. A class name identifies the class. It must be a legal identifier that is unique with

respect to the set of all event collection class names.
2. A set of candidate lists.

Note that an event collection is relevant only if it is associated with a context
(lifespan and event group). It is because the collected event instances share the same
semantics (event group) and occur while the associated lifespan is active.

6.1. Candidate List

A candidate is an event instance that has an impact upon situation detection. In order
to decide if a situation occurred in reality, all candidates must be monitored.
Moreover, it is sufficient to base the decision upon this event instance only. A
candidate list is a collection of candidates that share the same properties (event class,
role, filter conditions, decision possibilities about reuse of event instance that
participated in situation detection) that effect situation detection. A candidate list is a
tuple: an alias (the candidate list name), an event name, a threshold condition, an
override condition, and a retain condition. An event name identifies event instances,
that if satisfy the threshold condition are included in the candidate list; the override
condition determines if a new instance override existing candidates in the list; and the
retain condition determines if an instance that triggered a situation can be reused.
1. The alias identifies the candidate list. It must be unique with respect to the set of

all aliases defined in the event collection class.
2. The event name is the name of an event class
3. A threshold condition specifies the condition that an event instance must satisfy

to be considered a candidate. It is a predicate over the event attributes and an
external data. The default threshold condition is true.

4. An override condition specifies the condition that if satisfied, a new event
instance overrides existing candidates in the list. It is a predicate over the event
attributes and an external data. The default threshold condition is false.

12 Asaf Adi, Opher Etzion

5. A retain condition specifies the condition that if satisfied, a candidate that
triggered a situation, can be used again in situation detection.

Note that an event instance can be collected in several candidate lists within an event
collection. However, the properties of each candidate list can be different, thus an
event instance can be considered a candidate only in some of these candidate lists.

In order to decide if a situation occurs event instance in all or some of the
candidate list of an event collections are evaluated.

A broker wishes to identify situations regarding stocks that have high trade
volume and stocks that have low trade volume. The required event collection is
consisting of two candidate lists. One contains quotes with high volume and the
other contains quotes with low volume.

 <eventCollection name = "quoteVolume" >
 <candidiate name = "fullQuote"
 alias = "highVolume"
 threshold = "volume > 100" />
 <candidiate name = "fullQuote"
 alias = "lowVolume"
 threshold = "volume < 100" />
 </eventCollection >

Fig. 5. Event Collection.

7. Situation

An event is a significant instantaneous atomic occurrence. We distinguish between
concrete events and inferred events. Concrete events are those that happen in reality,
usually as a result of a change in an object's state. Inferred events do not happen in the
physical reality, but can be logically concluded by viewing the world's state (context)
and the history of concrete event occurrences. An inferred event represents the
occurrence of a significant situation in the physical reality.

A situation defines the inference logic. It defines the methodology for the detection
of an (inferred) event instance that represents a significant situation (i.e. the
information that is associated with it and its detection time). A situation has the
properties that are described below.
1. A situation name identifies the situation. It must be is unique with respect to the

set off all situations.
2. A lifespan name identifies the lifespan that defines the situation’s temporal

context.
3. An event group identifies the event group that defines the situation’s semantic

connotation.
4. An event collection name identifies the event collection that defines the event

instances that are considered for situation detection.
5. A situation expression defines the conditions for situation detection, and the

event instances that caused it.

The Situation Manager Rule Language 13

6. A triggering expression identifies the inferred event (or events) and defines its
associated information.

The lifespan and event group determines the situation context. The lifespan is the time
interval during which situation detection is relevant, thus only event instances that
occur while the lifespan is open are considered for the situation. The event group
determines the situation semantic connotation, thus only event instance that belong to
the same event group are considered for the situation (including those event that
determine if the lifespan is open). Note that if multiple lifespans are open
simultaneously, or if several event groups are defined, a distinct situation is detected
for each combination of a lifespan and an event group (context). The detection of a
situation in one context does not influence the detection of a situation in other context.
Accordingly, the decision if an event instance is a candidate of the situation (i.e. the
evaluation of the event collection) is performed in each context separately.

Nested situation can also be defined. Situation nesting can be preformed by
specifying an inferred event as a candidate in an event collection. We denote the
situation that triggered the inferred event a sub situation and the situation that uses the
inferred event as a candidate a nested situation. Note that both situations (the sub
situation and the nested situation) can be detected in the same context using the same
event collection, in different contexts using the same event collection, in the same
context using different event collections, or in different contexts using different event
collections.

7.1. Situation Expression

A situation expression is an expression over event classes that determine situation
occurrences as a function of an event collection instance and a context. A situation
expression consists of a combination of an operator and qualifiers, a predicate
(applicable for certain operators), and detection mode. The combination of an operator
and qualifiers designates an event pattern; the predicate designates a condition over
the events in the pattern results in tuples of event instances that could have cause the
situation; and the detection mode determines if a situation can be detected during the
context (immediate) or at the end of it (deferred)

7.1.1. Qualifiers
Situation expression qualifiers designate a selection strategy when several candidates
exist in a candidate list of an event that is in the domain of a situation expression
operator. We denote these events, operands of the situation expression. A qualifier is
applied to every operand and has seven possible values: first, last, each, min, max, not
and, never.
1. first(E) – selects the first (oldest) candidate (or candidates) in E’s candidate list

(instances effectively classified to E that occurred while the context was active,
satisfied the threshold condition, and are not obsolete).

2. last(E) – selects the last (most recent) candidate (or candidates) in E’s candidate
list.

3. each(E) – selects all candidates in E’s candidate list.

14 Asaf Adi, Opher Etzion

4. min(E, exp) – selects the candidate (or candidates) with the minimal result for
the associated expression, exp, in E’s candidate list.

5. max(E, exp) – selects the candidate (or candidates) with the maximal result for
the associated expression, exp, in E’s candidate list.

The qualifiers not and never are different from the other qualifiers in the sense that
they do not selects candidates but designates if a candidate does not exists.
6. never(E) – designates if a candidate of E did not exist since the beginning of the

context
7. not(E) – designates if a candidate of E does not exist since the occurrence of the

previous operand (if the operator imposes operands’ order, and E is not the first
operand), or a candidate of E does not exist (otherwise).

Note that a qualifier is applied on an operand before the situation’s operator is
considered.

7.1.2. Operators
A situation expression operator designates an event pattern. The operators are
classified into five groups: joining operators, selection operators, assertion
operators, aggregation operators, and temporal operators.
1. Joining operators

1.1. The operator conjunction(E1, E2, …, Ek), k ≥ 2 designates a conjunction of
events E1…Ek with no order importance.

1.2. The operator disjunction(E1, E2, …, Ek), k ≥ 2 designates a disjunction of
events E1…Ek.

1.3. The operator sequence(E1, E2, …, Ek), k ≥ 2 designates an ordered
conjunction of events E1…Ek where Ei precedes Ei+1 for each i<k.

1.4. The operator strictSequence(E1, E2, …, Ek), k ≥ 2 designates an ordered
conjunction of events E1…Ek where Ei precedes Ei+1 and no other
(candidate) events occurs between Ei and Ei+1 for each i<k.

1.5. The operator simultaneous(E1, E2, …, Ek), k ≥ 2 designates a conjunction of
events E1…Ek when events E1…Ek occurs simultaneously.

1.6. The operator aggregation((E1, exp1), (E2, exp2)…, (Ek, expk),
havingPredicate), k ≥ 1 designates an aggregation (sum; count; average,
minimum, maximum of associated expression) over events E1…Ek. It
triggers an inferred event each time an event (of E1…Ek) becomes a
candidate, or a candidate becomes obsolete if the aggregation over the
existing candidates satisfy the having predicate.

2. Selection operators
2.1. The operator first(E1, E2, …, Ek), k ≥ 1 designates the first event (or events)

of E1…Ek.
2.2. The operator until(E1, E2), designates the occurrences of E1 that occurred

before an occurrence of E2.
2.3. The operator since(E1, E2), designates the occurrences of E1 that occurred

after an occurrence of E2.
2.4. The operator range(E) designates an occurrence of E that satisfies the

predicate, if the previous occurrence of E (if there was a previous
occurrence) did not satisfy it.

The Situation Manager Rule Language 15

Selection operators are always evaluated immediately, thus the detection mode
modifier does not influence the inferred events, triggered by situations based on
these operators.

A broker wishes to identify situations regarding each stock traded in a stock
market during a single trading day (tradingDay lifespan, symbol event group).
He is interested in stocks that have high trade volume and stocks that have low
trade volume (quoteVolume event collection).
He wishes to identify a situation in which a quote is trades in high volumes
consecutively (i.e. three consecutive high volume quotes without low volume
quotes between them). This situation requires the strictSequence operator with
three highVolume operands. The operands have the qualifier last in order to
identify only the last three consecutive high volume quotes.

 <situation name = "threeConsecutiveHighVolumeQuotes"
 lifespan = "tradingDay"
 eventGroup = "symbol"
 eventCollection = "quoteVolume" >
 <situationExpression>
 <strictSequence>
 <event name = "highVolume" qualifier = "last"/>
 <event name = "highVolume" qualifier = "last"/>
 <event name = "highVolume" qualifier = "last"/>
 </strictSequence>
 </situationExpression>
 ...
 </situation>

The broker from the previous examples wishes to identify additional situation
in the same context, using the same event collection.
He wishes to be notified whenever the average value of high volume stocks
(since the beginning of the trading day) is higher than 500. Such situation is
identified using the totalAggregation operator.

 <situation name = "averageValue"
 lifespan = "tradingDay"
 eventGroup = "symbol"
 eventCollection = "quoteVolume" >
 <situationExpression>
 <aggregation having = "average > 500">
 <event name = "highVolume" qualifier = "each"
 expression = “highVolume.lastTrade”/>
 </aggregation >
 </situationExpression>
 ...
 </situation>

Fig. 6. Joining operator.

16 Asaf Adi, Opher Etzion

The broker from the previous example wishes to identify additional situation in
the same context, using the same event collection.
He wishes to identify situations in which a stock is starting to be traded with
extremely high volumes. Such situation occurs when a stock is traded with
extremely high volumes, after it was traded with lower volumes for a certain
period of time.

 <situation name = "extremelyHighVolumePeriod"
 lifespan = "tradingDay"
 eventGroup = "symbol"
 eventCollection = "quoteVolume" >
 <situationExpression>
 <range predicate = “highVolume.volume > 1000”>
 <event name = "highVolume" qualifier = "last"/>
 </range >
 </situationExpression>
 ...
 </situation>

Fig. 7. Selection operator.

3. Assertion operators
3.1. The operator never(E) designates an event that never occurred during a

context.
3.2. The operator sometimes(E) designates an occurrence of an event during a

context.
3.3. The operator last(E1, E2, …, Ek), k ≥ 1 designates the most recent event (or

events) of E1…Ek.
3.4. The operator min((E1, exp1), (E2, exp2)…, (Ek, expk)), k ≥ 1 designates the

event (or events) with the minimal result for their associated expression,
expi.

3.5. The operator max((E1, exp1), (E2, exp2)…, (Ek, expk)), k ≥ 1 designates the
event (or events) with the maximal result for their associated expression,
expi.

3.6. The operator unless(E1, E2), designates the occurrence of E1, and the non
occurrence of E2 during a context. An event (situation) inferred using the
unless operator is equivalent to an event (situation) inferred using the
operator conjunction over E1, E2’, where E2’ is itself an inferred event
triggered by the situation never(E2).

Assertion operators are evaluated at the end of a context, thus the detection mode
modifier does not influence the inferred events, triggered by situations based on
these operators.

The Situation Manager Rule Language 17

The broker from the previous examples wishes to identify additional situation
in the same context, using the same event collection.
He wishes to identify the high volume quote with the minimal value for each
stock in each trading day. Such situation is identified using the min operator at
the end of each trading.

 <situation name = "minValueHighVolume"
 lifespan = "tradingDay"
 eventGroup = "symbol"
 eventCollection = "quoteVolume" >
 <situationExpression>
 <min>
 <event name = "highVolume" qualifier = "each"
 expression = “highVolume.lastTrade”/>
 </min >
 </situationExpression>
 ...
</situation>

Fig. 8. Assertion Operator

4. Temporal operators
4.1. The operator at(timePattern) designates the points in time that correspond

to the specified time pattern. A time pattern is a sting, formatted
dd/mm/yyyy hh:mm:ss.mmm, that can contain wildcards. For example, a
situation with the operator at with a time pattern **/11/2001 00:00:00.000
is triggered at the beginning of every day during November 2001.

4.2. The operator after(E, t) designates an interval of t time units since the
occurrence of E.

4.3. The operator every(t) designates a repeating interval of t time units.
Temporal operators are always evaluated immediately, thus the detection mode
modifier does not influence the inferred events, triggered by situations based on
these operators.

7.2. Triggering Expression

A triggering expression triggers an inferred event whenever a situation is detected. It
consists of event name, a set of selectors, and a set of resolvers. The event name
identifiers the triggered inferred event; the selectors determined the amount of
inferred event instance, and a resolver determines the value of an inferred event
instance attribute.

7.2.1. Selectors
A situation expression determines when a situation occurs, by selecting tuples of
event instances that could have cause the situation. Several such tuples may be
selected by a situation expression (example is a conjunction of E1 and E2, both with
each qualifier, that identifies two tuples (e11, e21) and (e12, e21) after the occurrence of
event instances e11, e12, e21 in the specified order). Selectors determine the amount of

18 Asaf Adi, Opher Etzion

inferred events (up to one inferred event for each tuple) by selecting event tuples on
which an inferred event instance is based. There are six possible selectors:
1. first(E) – selects the tuple (or tuples) where the first (oldest) event (or events) of

E exists.
2. last(E) – selects the tuple (or tuples) where the last (most recent) event (or

events) of E exists.
3. min(E, nExp) – selects the tuple (or tuples) where the event that has the minimal

result for the associated numeric expression, nExp, exists.
4. max(E, nExp) – selects the tuple (or tuples) where the event that has the

maximal result for the associated numeric expression, nExp, exists.
5. each(E) – selects a tuple for each (different) event of E.
6. set(E) – selects a single tuple that consists a set of E’s events.
The order of selectors definition is important. Each selector designates a new set of
tuples, imposed by its selection strategy, that is the base tuple set for the consecutive
selector.

7.3.1. Resolvers
A resolver determines the value of one’s of the inferred event attributes. It designates
a function from an event tuple (one of the event tuples designated by the selectors) to
an attribute type. The function may involve attributes of events in the tuple (entries
that holds a single event) or aggregation (min, max, count, sum, average) over event
sets (entries that hold several events, designated by the set selector) and the event
group value.

The Situation Manager Rule Language 19

The broker from the previous examples wishes to identify additional situation
in the same context, using the same event collection.
He wishes to know the maximal volume distance of each stock during a trading
day (a maximal volume distance of a stock is the difference between its highest
quote volume and its lowest quote volume).
This situation is detected at the end of the context (deferred detection mode) by
a conjunction of high volume and low volume quotes.

 <situation name = "maxVolumeDifference"
 lifespan = "tradingDay"
 eventGroup = "symbol"
 eventCollection = "quoteVolume"
 detectionMode = "deferred" >
 <situationExpression>
 <conjunction>
 <event name = "highVolume" qualifier = "each"/>
 <event name = "lowVolume" qualifier = "each"/>
 </conjunction >
 </situationExpression>
 <triggeringExpression>
 <selector event = "highVolume" selector = "max"
 expression = "highVolume.volume"/>
 <selector event = "lowVolume" selector = "min"
 expression = "lowVolume.volume"/>
 ...
 </triggeringExpression>
 </situation>

An event is trigger by the triggering expression only once. Its information is
based on a pair of quotes, the quote with the highest volume and the quote with
the lowest volume. For example, if IBM quotes during a trading day, in order of
occurrence were:
1. symbol = ibm, lastTrade = 114.25, volume = 103 (high volume).
2. symbol = ibm, lastTrade = 115.74, volume = 107 (high volume).
3. symbol = ibm, lastTrade = 112.53, volume = 99 (low volume).
4. symbol = ibm, lastTrade = 112.94, volume = 102 (high volume).
5. symbol = ibm, lastTrade = 114.75, volume = 98 (low volume).
The set of high volume – low volume pairs that are detected at the end of the
trading day are: {(1,3), (1,5), (2,3), (2,5), (4,3), (4,5)}. Without selectors an
event will be triggered by the detection of the situation six times (one triggered
instance for every such pair).
The selectors select only a single pair and as result only the event is triggered
only once.
The first selector selects pairs that have the maximal volume value for the high
volume event. It select pairs (2,3) and (2,5). The second selector then selects
pairs that have the minimal volume value for the low volume event, from the
pairs selected by the first selector. It selects the pair (2,5). The event that is
triggered by this situation is based on the information in the second and fifth
event in the example.

Fig. 9. Selector.

20 Asaf Adi, Opher Etzion

The situation from the previous example triggers the event
maxVolumeDifference. This event has two attributes symbol and difference. The
attribute symbol designates a stock symbol, and the attribute difference
designates the maximal volume difference in the stock.

 <event name = "maxvolumeDifference"
 <attribute name = "symbol" type = "maxVolumeDifference"/>
 <attribute name = "difference" type = "number"/>
 </event>

The resolver element defines the value of the trigger event attributes. The first
attribute, symbol, is equal to the event group value, and the second attribute,
difference, is equal to the difference of the volume of the two instances selected
by the selector.

 <situation name = " maxVolumeDifference"
 lifespan = "tradingDay"
 eventGroup = "symbol"
 eventCollection = "quoteVolume"
 detectionMode = "deferred" >
 <situationExpression>
 <conjunction>
 <event name = "highVolume" qualifier = "each"/>
 <event name = "lowVolume" qualifier = "each"/>
 </conjunction >
 </situationExpression>
 <triggeringExpression event = "maxVolumeDifference">
 <selector event = "highVolume" selector = "max"
 expression = "highVolume.volume"/>
 <selector event = "lowVolume" selector = "min"
 expression = "lowVolume.volume"/>
 <resolver attribute = "symbol"
 expression = "eventGroupValue"/>
 <resolver attribute = "difference"
 expression = "highVolume.volume – lowVolume.volume"/>
 </triggeringExpression>
 </situation>

Fig. 10. Resolver.

8. Conclusions

This paper has presented the “situation manager” rule language. It is a general
markup language for active rules that introduce a combination of powerful event
algebra with semantic notations such as context (lifespan), and semantic association
(event group). The “situation manager” has been implemented in Java, and is being
integrated with various products and services of IBM.

The Situation Manager Rule Language 21

There is a substantial amount of further research that is being carried out now. It
deals with areas such as: extending the situation manager’s operators from temporal
to spatio-temporal, adding uncertainty consideration, adding inference mechanism to
derive rules out of a model, and dealing with “deep” temporal issues.

9. References

[1] Behrends-H. "Simulation-based Debugging of Active Databases." Proceedings of IEEE
International Workshop on Research Issues in Data Engineering: Active Databases
Systems. Feb. 1994; Houston, TX, USA. IEEE Comput. Soc. Press, 1994. 172-180.

[2] Berndtsson-M. "ACOOD: an Approach to an Active Object Oriented DBMS" Master's
thesis, Department of Computer Science, University of Skovde, Sweden. 1991.

[3] Chakravarthy-S, and Mishra-D. "Snoop: an expressive event specification language for
active databases." Data and Knowledge Engineering 14.1 (1994): 1-26.

[4] Collet-C, and Coupaye-T. "Composite events in NAOS." Proceedings of the 7th
International Conference on Database and Expert Systems Applications, DEXA. Sept.
1996; Zurich, Switzerland. Springer Verlag, 1996. 244-253.

[5] Dayal-U, Buchmann-A, and Chakravarthy-U. "The HiPAC Project." Active Database
Systems: Triggers and Rules For Advanced Database Processing Morgan Kaufmann,
1996. 177-206.

[6] Diaz-O, and Jaime-A. "EXACT: an extensible approach to active object-oriented
databases." VLDB Journal. 6.4 (1997): 282-295.

[7] Dinn-A, Paton-NW, Williams-MH, and Fernandes-AAA. "An Active Rule Language for
ROCK & ROLL." Proceedings of the 14th British National Conferenc on Databases. July
1996; Edinburgh, UK. Springer Verlag, 1996. 36-55.

[8] Gatziu-S, and Dittrich-KR. "Events in an active object-oriented database system."
proceedings of the 1st International Workshop on Rules in Database Systems. Sept.
1993; Edinburgh, UK Springer Verlag, 1994. 23-29.

[9] Gehani-NH, Jagadish-HV, and Shmueli-O. "Composite event specification in active
databases: model and implementation." Proceedings of 18th International Conference on
Very Large Data Bases. Aug. 1992; Vancouver, BC, Canada. Morgan Kaufmann, 1992.
23-27.

[10] Guangtian-Liu, Mok-AK, and Konana-P. "A unified approach for specifying timing
constraints and composite events in active real-time database systems." Proceedings of
4th IEEE Real-Time Technology and Applications Symposium. 1998; Denver, CO,
USA. IEEE Comput. Soc. Press, 1998. 199-208.

[11] Kulkarni-K, Mattos-NM, and Cochrane-R. "Active Database Features in SQL3."
Active Rules in Database Systems. Springer Verlag, 1999. 197-219.

[12] Meo-R, Psaila-G, and Ceri-S. "Composite Events in Chimera." Proceedings of 5th
Conference on Extended Database Technology (EDBT`96). March 1996; Avignon,
France. Springer Verlag, 1996. 56-78.

[13] Naqvi-W, and Ibrahim-MT. "EECA: An Active Knowledge Model." Proceedings of
5th International Conference on Database and Expert Systems Applications. Sept. 1994;
Athens, Greece. Springer Verlag, 1994. 380-389.

[14] Sheers-KR. "HP OpenView event correlation services." Hewlett Packard Journal. 47.5
(1996): 31-42.

[15] Swaup-R, Alexandra-P, and Carol-S. "PFL: An Active Functional DBPL." Active
Rules in Database Systems. Springer Verlag, 1999. 297-308.

[16] Yemini-SA, Kliger-S, Mozes-E, Yemini-Y, and Ohsie-D. "High speed and robust
event correlation." IEEE Communications Magazine. 34.5 (1996): 82-90.

22 Asaf Adi, Opher Etzion

[17] Zimmer-D, and Unland-R. "A General Model for Specification of the Semantics of
Complex Events in Active Database Management Systems." C-LAB Report. 1998.

[18] Zimmermann-J, and Buchmann-A. "REACH." Active Rules in Database Systems.
Springer Verlag, 1999. 263-277.

[19] “VERITAS NerveCentertm” VERITAS Software
http://eval.veritas.com/webfiles/docs/ NCOverview.pdf

[20] The Consensus Glossary of Temporal Database Concepts.
http://www.cs.auc.dk/~csj/Glossary.

