
A Nonmonotonic Rule System using Ontologies

G. Antoniou

Dept. of Computer Science, University of Bremen
ga@tzi.de

Abstract. The development of the Semantic Web proceeds in layers. Currently
the most advanced layer that has reached maturity is the ontology layer, in the
form of the DAML+OIL language which corresponds to a rich description logic.
The next step will be the the realization of logical rule systems on top of the
ontology layer.
Computationally simple nonmonotonic rule systems show promise to play an im-
portant role in electronic commerce on the Semantic Web. In this paper we show
how nonmonotonic rule systems in the form of defeasible reasoning, can be built
on top of description logics. The key idea is to use concept and role predicates in
the antecedents of rules. We define a proof theory for this kind of reasoning, and
derive some basic properties.

1 Introduction

The Semantic Web initiative [28] promises to improve dramatically the World Wide
Web, and in doing so, to have significant impact on the way information is exchanged
and business is conducted. The main idea is to usemachine processabledata and knowl-
edge.

The development of the semantic web proceeds in layers, each layer being on top
of lower layers. At present, the highest layer that has reached sufficient maturity is the
ontology layerin the form of the DAML+OIL language [7]. DAML+OIL was designed
to be sufficiently rich to be useful in applications, while being simple enough to allow
for efficient reasoning support. In fact, it corresponds to an expressivedescription logic.
Stated another way, the realization of the ontology layer could draw benefits from exten-
sive previous work on description logics [6, 16, 15], both with regard to clear semantics
and efficient reasoning support.

The next step in the development of the semantic web core will be the realization
of the logic andproof layers. These layers will be built on top of ontology languages,
and will offer enhanced representation and reasoning capabilities. A key ingredient of
these layers will berules, which look likely to become an action focus of the W3C.
Monotonic rule systemsare well known and widely in use. Seen as a subset of predicate
logic (Horn logic), they are orthogonal to description logics: none is a proper subset of
the other. The realization of a monotonic rule layer on top of the ontology layer can
draw on work on hybrid reasoning, combining description logics with Horn logic, or at
least Datalog [16, 9, 10].

But there exist other kinds of rule systems that arenonmonotonic. Such systems are
important in practice because they can deal with inconsistencies in a declarative way,

and because they model naturally phenomena like exceptions and priorities. In the past
few years, such systems have attracted significant attention in the nonmonotonic rea-
soning community, e.g. courteous logic programs [12, 13] and defeasible logics [21, 1,
2]. Their use in various application domains has been advocated, including the mod-
elling of regulations and business rules [20, 13, 3], modelling of contracts [13], legal
reasoning [22] and agent negotiations [11]. In fact, defeasible reasoning (in the form of
courteous logic programs [12, 13]) provides the foundation for IBM’s Business Rules
Markup Language and for current W3C activities on rules. Therefore defeasible rea-
soning is arguably one of the most successful subarea in nonmonotonic reasoning as far
as applications and integration to mainstream IT is concerned.

One important advantage of such systems is their focus on implementability and
their low computational complexity [18, 13]. Traditional nonmonotonic reasoning sys-
tems [19] have had a high computational complexity. This was justified by the desire to
model interesting reasoning phenomena. Potential applications of such rich systems are
in the areas of planning, cognitive robotics, scheduling etc. Still they fail to implement
the original motivation of “jumping into conclusions”, and they are too inefficient for
time-critical systems.

Defeasible reasoning takes a different approach: simple and efficient. So seen, it
makes sense to study the integration of description logics with defeasible reasoning,
since both share a focus on efficiency. The integration of nonmonotonic rule systems
with description logic based ontologies can serve two purposes: (1) Enhanced reason-
ing capabilities may be used to express richer ontological knowledge. For example,
defeasible ontologies can be built, an idea that appears reasonable in the legal domain.
(2) Rule- based systems define ontology-based applications using vocabulary defined
in description logic. This idea is compatible with significant work on hybrid reasoning,
e.g. [16].

In this paper we concentrate on the second approach, and we will study defeasible
reasoning [21] running on top of description logics. Our task is more complex than the
integration of Horn rules with description logics because of the following observation:
both Horn logic and description logics are subsets of predicate logic. Thereforeseman-
tically there is no difficulty at all, and the focus of work on hybrid reasoning has been on
efficient algorithms and limits of computability. However nonmonotonic rules are not a
subset of predicate logic, and we need to define the semantics of such a combination,
too. On the other hand, because nonmonotonic rules with variables are interpreted as
schemas, their integration with description logics does not have difficulties encountered
in other works on hybrid reasoning with regard to instantiation [9].

In this paper we define a proof theory, which can form the basis for efficient al-
gorithms. Also we study some basic properties of the proof theory, as well as some
variations of the key idea, following slightly different intuitions.

We should mention that the integration of terminological/description logics with
other forms of nonmonotonic reasoning in hybrid systems has been studied before [4,
5, 23, 25]. Our work is novel in that defeasible logic is used as the default reasoning
mechanism. Its choice seems natural since it has a low computational complexity which
fits well with the potential Semantic Web applications, but is still sufficiently rich to be
useful in business rules modelling and automated agent negotiations.

In work developed independently of ours, [14] also addresses combining non-monotonic
rules with description logic ontology knowledge.

2 Nonmonotonic Reasoning and the Semantic Web: Why?

There has been some discussion in the Semantic Web community about what logic to
use. Some people have claimed that there is no place for nonmonotonic reasoning. We
believe that nonmonotonic rules will play an important role in the areas of (Semantic
Web enabled) Electronic Commerce and Knowledge Management. In these areas situa-
tions arise naturally where the available information is incomplete; exactly the kinds of
situations where nonmonotonic reasoning is useful. Let us briefly illustrate a scenario
relevant to the Semantic Web.

Suppose that I have had so positive experiences with my Semantic Web personal
agent that I trust it fully. I wake up in the morning thinking of my girlfriend who is
in Greece, while I am in Germany, and decide to send her flowers. I ask the agent
to do the job and leave home, being unavailable for further contact. The agent sets
out to locate several relevant service companies and to compare their price, reputation,
delivery policies etc.

Now suppose a company has a policy that it will grant a special 5% discount if the
recipient happens to have birthday on that day. Further suppose the company is wise
enough to represent its pricing policy in a declarative way. Now how could it repre-
sent the discounting rule? It cannot be sure to receive the information about birthday
(unaware of the discounting possibility I failed to tell my personal agent; nor can I be
contacted). This is a typical situation where reasoning must be made in the presence of
incomplete information. Obviously the pricing policy needs something like the follow-
ing:

R1: If a birthday is provided and corresponds with the current date then give a
5% discount.
R2: If the birthday is not provided then use the standard price.

The problem withR2 is that it cannot be expressed properly in monotonic rule systems
because it depends on the absence of information, not the falsity of a statement (it may
be the birthday today, bit not known). If we use

R′2: If not birthday today then standard price.

instead, thenR′2 cannot fire if we know for sure that it is not the recepient’s birthday
today. And if we use the rule

R′′2 : Use the standard price.

then we will get an inconsisteny betweenR1 andR′′2 in case it is the birthday. The
solution using nonmonotonic rules is simple:

R1: If a birthday is provided and corresponds with the current date then give a
5% discount.
R2: Usually use the standard price.
R1 > R2

Here the priorityR1 > R2 decides the conflict that arises in case both rules are appli-
cable.

Of course other solutions are thinkable, in fact this problem is somehow solved in
current systems. However, we hope to have illustrated the difficulties of monotonic rule
systems. And if one wants to use a declarative approach, with all the benefits that follow
for maintainability and formal analysis, then nonmonotonic rules are the way to go.

3 Description LogicALCNR

As an example of a description logic we consider the expressive languageALCNR
[6] which formed also the basis for hybrid reasoning involving description logic and
Datalog rules [16].

Concept and role descriptionsare built from a set of primitive concept and role
predicates (names), using a set ofconstructors. If C andD are concept descriptions,
R a role description andA a primitive concept name, then the following are concept
descriptions:

– A (primitive concept)
– > and⊥ (top, bottom)
– C tD andC uD (disjunction, conjunction)
– ¬C (complement)
– ∀R.C and∃R.C (universal and existential quantification)
– (≥ nR) and(≤ nR) (number restrictions).

Also, if P1, . . . , Pm are primitive role names, then

P1 u . . . u Pm

is a role description.
A terminologyT consist of

– concept definitionsA := D, whereA is a concept name andD a concept descrip-
tion. We assume that a concept name appears on the left hand side of at most one
concept definition.

– role definitionsP := R, whereP is a role name andR a role description.
– concept inclusionsC v D, whereC andD are concept descriptions.

The semantics of a terminology is given byinterpretations. An interpretationI contains
a non-empty domainOI . It assigns a unary relationCI ⊆ OI to every concept name in
T , and a binary relationRI ⊆ OI ×OI to every role name inT .

An interpretation can be extended to concept and role descriptions as follows:

– >I = OI ,⊥I = ∅
– (C tD)I = CI ∪DI , (C uD)I = CI ∩DI

– (¬C)I = OI − CI

– (∀R.C)I = {d ∈ OI | (d, e) ∈ RI ⇒ e ∈ CI , for all e}
– (∃R.C)I = {d ∈ OI | there ise with (d, e) ∈ RI ande ∈ CI}

– (≥ nR)I = {d ∈ OI | #{e|(d, e) ∈ RI} ≥ n}
– (≤ nR)I = {d ∈ OI | #{e|(d, e) ∈ RI} ≤ n}
– (P1 u . . . u Pm)I = P I

1 ∩ . . . ∩ P I
m

Finally, an interpretationI assigns an elementaI ∈ OI to every constanta.
An interpretationI is a model of a terminologyT if CI ⊆ DI for every inclusion

C v D in T , AI = DI for every concept definitionA := D in T , andP I = RI for
every role definitionP := R in T .

Let F be a set of facts of the formA(a) andP (a, b), whereA is a concept name,P
a role name, anda andb constants.I is amodelof A(a) andP (a, b) iff aI ∈ AI and
(aI , bI) ∈ P I , respectively.I is a model ofF iff it is a model of every fact inF . I is a
model ofF ∪ T iff it is a model ofT and a model ofF .

A fact followsfrom T ∪ F iff every model ofT ∪ F is also a model of the fact. We
write T ∪ F |= A(a) andT ∪ F |= P (a, b), respectively.

4 Basic Ideas of Defeasible Reasoning

4.1 A Language for Defeasible Reasoning

A defeasible theory (a knowledge base in defeasible logic) consists of three different
kinds of knowledge: strict rules, defeasible rules, and a superiority relation. (Fuller
versions of defeasible logic also have facts and defeaters, but [1] shows that they can be
simulated by the other ingredients).

Strict rulesare rules in the classical sense: whenever the premises are indisputable (e.g.
facts) then so is the conclusion. An example of a strict rule is “Professors are faculty
members”. Written formally:

professor(X) → faculty(X).

Defeasible rulesare rules that can be defeated by contrary evidence. An example of
such a rule is “Professors typically hold permanent positions”; written formally:

professor(X) ⇒ permanent(X).

The idea is that if we know that someone is a professor, then we may conclude that
the person is a professor,unless there is other, not inferior, evidence suggesting the
contrary.

The superiority relationamong rules is used to define priorities among rules, that is,
where one rule may override the conclusion of another rule. Rules are labelled to allow
reference to them. For example, given the defeasible rules

r : professor(X) ⇒ permanent(X)
r′ : visiting(X) ⇒ ¬permanent(X)

which contradict one another, no conclusive decision can be made about whether a
visiting professor has a permanent appointment or not. But if we introduce a superiority

relation > with r′ > r, with the intended meaning thatr′ is strictly stronger than
r, then we can indeed conclude that the visiting professor does not have permanent
appointment.

The relation> is assumed to be acyclic. It can be declared to be transitive in certain
(perhaps most) domains, but there is no need to do so for the formal system to work
properly.

It is worth noting that, in defeasible logic, priorities arelocal in the following sense:
Two rules are considered to be competing with one another only if they have comple-
mentary heads. Thus, since the superiority relation is used to resolve conflicts among
competing rules, it is only used to compare rules with complementary heads; the infor-
mationr > r′ for rulesr, r′ without complementary heads may be part of the superior-
ity relation, but has no effect on the proof theory.

Now we briefly outline the proof theory. Aconclusionof a defeasible theoryD is
a signed tagged literal. Conventionally there are two tags, and the signs+ and−. So a
conclusion has one of the following four forms:

– +∆q, which is intended to mean thatq is definitely provable inD.
– −∆q, which is intended to mean that we have proved thatq is not definitely prov-

able inD.
– +∂q, which is intended to mean thatq is defeasibly provable inD.
– −∂q which is intended to mean that we have proved thatq is not defeasibly provable

in D.

Provability is defined using inference conditions. Here we just describe the intuitive
meaning of the inference condition for+∂: To prove∂L we need a ruler with headL
which is applicable, that is all its antecedentsa have been proven (+∂a). In addition,
we must counter all “attacks” onL: For every rules with head∼L (the negation ofL),
(i) either there is an antecedenta which have been shown to be non-provable (−∂a), or
(ii) there is an applicable rulet with headL stronger thans: t > s. Thus each possible
attack on the conclusionq must be counterattacked by a stronger rule.

5 Defeasible Reasoning Using Terminological Knowledge

5.1 Knowledge Bases

A knowledge baseK = (T, F, R, >) consists of

– A terminologyT
– A set F of facts. Each fact has the formp(a1, . . . , am), wherep is a predicate,

anda1, . . . , am are constants.F is the disjoint union of a setFT of facts with a
concept or role predicate, and a remainderFO. Predicates that are not concept and
role predicates are calledordinary.

– A setR of rules, each of the form

L1, . . . , Ln ⇒ L

such that allL andLi are literalsp(a1, . . . , am) or¬p(a1, . . . , am), with constants
a1, . . . , am and a concept, role or ordinary predicatep. Additionally, the predicate
of L must be an ordinary predicate.{L1, . . . , Ln} is the set ofantecedentsof the
ruler, denotedA(r). And L is called thehead(or consequent) of r, denotedC(r).

– an acyclic relation> onR.

Now we make a number of remarks.

1. Rules with variables are interpreted as schemas: they represent the set of their
ground instances. This interpretation is standard in many nonmonotonic reasoning
approaches, among others in default logic [24] and defeasible logics [21].

2. The logical language does not have function symbols, thus the Herbrand universe
is finite.

3. Concept and role predicates are not allowed to occur in the heads of rules. This
design decision follows the idea that rules may not be used to derive ontological
knowledge. All knowledge about concepts and roles is provided by the description
logic component. The same idea was followed by other work on hybrid reasoning
involving description logic and monotonic rules, e.g. [16]. The motivation for such
an approach, and its relevance to the semantic web initiative, were outlined in the
introduction.

4. Defeasible logic usually offers strict rules, and sometimes defeaters, in addition. We
have omitted defeaters here, because they can be simulated by other means [1]. And
we have decided to omit strict rules, because typically they include taxonomical, or
other kinds of certain knowledge. We assume that such knowledge will be included
in the ontology, and treated by the description logic. Instead we have allowed a set
of facts about ordinary predicates. If need be, strict rules can be easily added to our
logical system.

Given a setR of rules,R[L] denotes the set of rules inR with headL. In the following
∼L denotes the complement ofL, that is,∼L is¬L if L is an atomic formula, and∼L
is L′ if L is¬L.

5.2 Proof Theory

Given a ruler

L1, . . . , Ln ⇒ L

suppose{L1, . . . , Ln} is partitioned into{L(1), . . . , L(k)} and {L(k+1), . . . , L(n)},
such that the predicates of{L(1), . . . , L(k)} are ordinary, and the predicates of{L(k+1), . . . , L(n)}
are concept or role predicates. Further suppose thatT ∪ F |= L(j) for all j ∈ {k +
1, . . . , n}. Then the rule

L(1) . . . , L(k) ⇒ L

is called thereductof r; otherwise the reduct is undefined. For a setR of rules,Red(R)
collects the reducts of all rules inR.

A derivation (or proof) P is a finite sequence of signed tagged literals.P (1..i)
denotes the firsti elements of this sequence. Now we proceed to give the inference
conditions for+∂ and−∂. LetL be a literal with an ordinary predicate (Here we define
∂L only for such literals. A simple extension would be to derive+∂L iff T ∪ F |= L,
where the predicate ofL is a concept or role predicate).

+∂: If P (i + 1) = +∂L then either
(1) L ∈ F or
(2) (2.1)∃r ∈ Red(R)[L] ∀L′ ∈ A(r) : +∂L′ ∈ P (1..i) and

(2.2)∼L 6∈ F and
(2.3)∀s ∈ Red(R)[∼L] either

(2.3.1)∃L′ ∈ A(s) : −∂L′ ∈ P (1..i) or
(2.3.2)∃t ∈ Red(R)[L]∀L′ ∈ A(t)

+∂L′ ∈ P (1..i) andt > s.

Let us illustrate this definition. To show thatL is provable defeasibly we have two
choices: (1) We show thatL is a fact; or (2) we need to argue using rules. In particular,
we require that there must be a rule reduct with headL which can be applied (2.1). But
now we need to consider possible “counterattacks”, that is, reasoning chains in support
of ∼ L. To be more specific: to proveL using rule reducts we must show that∼ L is
not a fact (2.2). Also (2.3) we must consider the set of all rule reducts which are not
known to be inapplicable and which have head∼L. Essentially each such rules attacks
the conclusionL. ForL to be provable, each such rules must have been established as
non-applicable (2.3.1). Altenratively there must be an applicable rule reduct with head
L stronger than the attacking rule (2.3.2).

−∂: If P (i + 1) = −∂L then
(1) L 6∈ F and
(2) (2.1)∀r ∈ Red(R)[L] ∃L′ ∈ A(r) : −∂L′ ∈ P (1..i) or

(2.2)∼L ∈ F or
(2.3)∃s ∈ Red(R)[∼L] such that

(2.3.1)∀L′ ∈ A(s) : +∂L′ ∈ P (1..i) and
(2.3.2)∀t ∈ Red(R)[L] either

∃L′ ∈ A(t) : −∂L′ ∈ P (1..i) or nott > s.

Note that the inference condition−∂ is the so-called strong negation of+ (de Mor-
gan is applied, and+ and− are interchanged).

Implementation will involve interleaving of description logic reasoners and defea-
sible reasoners. Derivability of antecedents with concept or role predicates will be
checked by a description logic reasoner, the remainder is treated as specified in the
inference conditions above.

Example 1.Imagine an online store which has organised its stock according to an on-
tology. Among others, the ontology contains the information

physicsBook v scientificBook v book

The pricing policy1 of the store is written in defeasible logic, and might include the
following information (scientific books get a special5% discount).

r1 :⇒ ¬discount(X, Y, Z)
r2 : scientificBook(X) ⇒ discount(X, Y, 5%)

(whereX denotes an article andY a customer). The item with id 93215 is stored in the
corporate data base as a physics book:

physicsBook(93215)

Putting all this information together, we can derive+∂discount(93215, Y, 5%).

5.3 Ambiguity Propagating Defeasible Reasoning

We call a literalL ambiguousif there is a chain of reasoning that supports the conclusion
thatL is true, another that supports the conclusion that¬L is true, and the superiority
relation does not resolve this conflict.

In [2] the property of ambiguity propagation was discussed, noting that the origi-
nal defeasible logic was ambiguity blocking. A preference for ambiguity blocking or
ambiguity propagating behaviour is one of the properties of non-monotonic inheritance
nets over which intuitions can clash [27]. Ambiguity propagation results in fewer con-
clusions being drawn, which might make it preferable when the cost of an incorrect
conclusion is high. For these reasons an ambiguity propagating logic is of interest.

The solution to achieve ambiguity propagation behaviour is to separate the inval-
idation of a counterargument from the derivation of−∂ tagged literals. We do so by
introducing a third level of provability (besides definite and defeasible provability),
calledsupportand denoted by

∫

. Intuitively, a literalL is supported if there is a chain
of reasoning that would lead us to concludeL in the absence of conflicts.

+∂: If P (i + 1) = +∂amL then either
(1) L ∈ F or
(2) (2.1)∃r ∈ Red(R)[L] ∀L′ ∈ A(r) : +∂amL′ ∈ P (1..i) and

(2.2)∼L 6∈ F and
(2.3)∀s ∈ Red(R)[∼L] either

(2.3.1)∃L′ ∈ A(s) : −
∫

L′ ∈ P (1..i)or
(2.3.2)∃t ∈ Red(R)[L]∀L′ ∈ A(t)

+∂amL′ ∈ P (1..i) andt > s.

Next we define the inference condition for support. (−
∫

is defined accordingly, as
the strong negation of+

∫

):

+
∫

: If P (i + 1) = +
∫

L then either
L ∈ F or
∃r ∈ Red(R)[L] such that

1 The idea of using discount policies as examples of declarative business rules is due to Grosof.

∀a ∈ A(r) : +
∫

a ∈ P (1..i), and
∀s ∈ Red(R)[∼L] either

∃a ∈ A(s) : −∂ama ∈ P (1..i) or
r > s

Example 2.We continue Example 1. Suppose the discounting rules are modified, so
that discount is only granted to “good” customers.

r1 :⇒ ¬discount(X,Y, Z)
r2 : scientificBook(X), goodCustomer(Y) ⇒

discount(X, Y, 5%)

Rules for determining whether a customer is good can make use of corporate data bases
where, among others, customer details and history data are stored. Rules governing the
decision whether a customer is good or not might include the following:

r3 : boughtOverTwice(X) ⇒ goodCustomer(X)
r4 : badPaymentHistory(X) ⇒

¬goodCustomer(X)

Supposea is a customer who has bought more than twice but has a bad payment history.
If we don’t use ambiguity propagation, then we can derive−∂goodCustomer(a). Then
rule r2 is blocked, and+∂¬discount(93215, a, 5%) can be derived.

However it is ambiguous whethera is a good customer or not. It may be the man-
agement’s desire to let such cases be decided by a human, based on more details of the
case (for example whether the recent payment history is good, or whether the customer
buys big).

Ambiguity propagation allows this to happen. We can derive−∂amgoodCustomer(a),
−∂am¬goodCustomer(a),−∂amdiscount(93215, a, 5%), and−∂am¬discount(93215, a, 5%).
The latter two conclusions might trigger human intervention, because the logic cannot
make a decision (positive or negative).

We note that the situation would have been different if a stricter policy had been
used, say, a customer with bad payment history should not be granted special discounts
regardless of their purchase history. Formally we would specifyr4 > r3. In this case
goodCustomer(a) is not ambiguous, and we can derive+∂am¬discount(93215, a, 5%).

5.4 Properties and Relationships

First we show that all logics we have described above satisfy the basic property of
coherence:

Theorem 1. There is no knowledge baseK and literalL such that+δL and−δL can
be derived fromK, whereδ denotes any of the tags we have presented (∆, ∂, ∂am,

∫

).

Next we show an inconsistency can only be derived if already either the set of facts
or the ontology is inconsistent.

Theorem 2. LetK be a knowledge base andL an ordinary literal. IfL 6∈ F or ∼L 6∈
F , then we cannot derive both+∂L and+∂ ∼L, or both+∂amL and+∂am ∼L.

Finally we show that there exists a chain of increasing expressive power among
several of the logics.

Theorem 3. +∆ ⊂ +∂am,ntd ⊂ +∂am ⊂ +∂ ⊂ +
∫

.
For each inclusion there are defeasible theories in which the inclusion is strict.

6 Conclusion

This paper shows, for the first time, how description logics and defeasible reasoning can
be combined. This kind of reasoning will find use in eCommerce applications on the
Semantic Web. We defined a hybrid proof theory in which description logic reasoning
and defeasible reasoning are interleaved. Also we gave some basic properties.

The approach taken in this paper is that ontological knowledge is only provided in
description logic, and predicates defined in the ontology may be used in antecedents, but
not in the heads of rules. If we allow concept and role predicates to occur in the heads
of rules, the situation becomes more complicated. We intend to study such integration
in the future.

References

1. G. Antoniou, D. Billington, G. Governatori and M.J. Maher. Representation Results for De-
feasible Logic.ACM Transactions on Computational Logic2,2 (2001): 255–287.

2. G. Antoniou, D. Billington, G. Governatori and M.J. Maher. A flexible framework for defeasi-
ble logics. InProc. 17th American National Conference on Artificial Intelligence (AAAI-2000),
405–410.

3. G. Antoniou, D. Billington and M.J. Maher. On the analysis of regulations using defeasible
rules. InProc. 32nd Hawaii International Conference on Systems Sciences, 1999.

4. F. Baader and B. Hollunder. Embedding Defaults into Terminological Knowledge Represen-
tation Formalisms.Journal of Automated Reasoning14,1 (1995): 149–180.

5. M. Balaban and A. Eyal. DFL – a dialog based integration of concept and rule reasoners.Data
and Knowledge Engineering38,3 (2001): 301–334.

6. M. Buchheit, F. Donini and A. Schaerf. Decidable Reasoning in terminological knowledge
representation systems.Journal of Artificial Intelligence Research1 (1993): 109138.

7. D. Connolly et al. DAML+OIL (March 2001) Reference Description.
http://www.w3.org/TR/daml+oil-reference.

8. F. Donini, M. Lenzerini, D. Nardi and A. Schaerf. Reasoning in Description Logics. In
G.Brewka (ed):Principles of Knowledge Representation and Reasoning, Studies in Logic, Lan-
guage and Information, CLSI Publications 1996, 193–238.

9. F. Donini, M. Lenzerini, D. Nardi and A. Schaerf. A hybrid system with datalog and concept
languages. In E. Ardizzone, S. Gaglio, F. Sorbello (eds):Trends in Artificial Intelligence, LNAI
549, Springer 1991, 8897.

10. A. Frisch (ed).Workshop Notes of the AAAI Fall Symposium on Principles of Hybrid Rea-
soning. AAAI Press 1991.

11. G. Governatori, A. ter Hofstede and P. Oaks. Defeasible Logic for Automated Negotiation.
Proc. Collecter’2000.

12. B. Grosof. Prioritized conflict handling for logic programs. InProc. International Logic
Programming Symposium, MIT Press 1997, 197–211.

13. B. Grosof, Y. Lambrou and H. Chan. A Declarative Approach to Business Rules in Contracts:
Courteous Logic Programs in XML. InProc. 1st ACM Conference on Electronic Commerce,
ACM 1999.

14. B. Grosof and T. Poon. Representing Agent Contracts with Exceptions using XML Rules,
Ontologies, and Process Descriptions. InProc. ISWC’02 Rule ML Workshop, Sardinia 2002.

15. I. Horrocks and U. Sattler. Ontology reasoning in the SHOQ(D) description logic. InProc.
of the 17th Int. Joint Conf. on Artificial Intelligence (IJCAI-01), Morgan Kaufmann 2001, 199–
204.

16. A. Levy and M-C. Rousset. CARIN: A Representation Language Combining Horn rules and
Description Logics.Artificial Intelligence104(1-2), 1998, 165 209.

17. M.J. Maher, A. Rock, G. Antoniou, D. Billington and T. Miller. Efficient Defeasible Reason-
ing Systems.International Journal of Tools with Artificial Intelligence(to appear).

18. M.J. Maher. Propositional Defeasible Logic has Linear Complexity.Theory and Practice of
Logic Programming, 1,6 (2001): 691–711.

19. V. Marek and M. Truszczynski.Nonmonotonic Reasoning – Context-Dependent Reasoning.
Springer 1993.

20. L. Morgenstern. Inheritance Comes of Age: Applying Nonmonotonic Techniques to Prob-
lems in Industry.Artificial Intelligence, 103(1998): 1–34.

21. D. Nute. Defeasible Logic. In D.M. Gabbay, C.J. Hogger and J.A. Robinson (eds.):Hand-
book of Logic in Artificial Intelligence and Logic Programming Vol. 3, Oxford University Press
1994, 353–395.

22. H. Prakken.Logical Tools for Modelling Legal Argument: A Study of Defeasible Reasoning
in Law.Kluwer Academic Publishers 1997.

23. J. Quantz and V. Royer. A Preference Semantics for Defaults in Terminological Logics. In
Proc. 3rd International Conference on Principles of Knowledge Representation and Reasoning,
Morgan Kaufmann 1992, 294–305.

24. R. Reiter. A Logic for Default Reasoning.Artificial Intelligence13(1980): 81–132.
25. R. Rosati. Towards expressive KR systems integrating Datalog and description logics: pre-

liminary report. InProc. 1999 International Workshop on Description Logics, Linkping, Swe-
den 1999.

26. L.A. Stein. Resolving Ambiguity in Nonmonotonic Inheritance Hierarchies.Artificial Intel-
ligence55 (1992): 259–310.

27. D.D. Touretzky, J.F. Horty and R.H. Thomason. A Clash of Intuitions: The Current State of
Nonmonotonic Multiple Inheritance Systems. InProc. IJCAI-87, 476–482, Morgan Kaufmann,
1987.

28. www.w3.org/2001/sw/

