
Domain Dependent Semantic Requirement
Engineering

Research-In-Progress

Wolf Fischer and Bernhard Bauer

Programming Distributed Systems Lab, University of Augsburg, Germany
[wolf.fischer|bauer]@informatik.uni-augsburg.de

Abstract. Requirements Engineering is one of the most important
phases in any product development life cycle since it is the basis for the
complete software or product design and realization. Therefore in a worst
case scenario any error within a requirement can result in a project loss.
Computer support for requirement engineers is still premature as most
RE applications can not cope with more sophisticated techniques like
semantics, natural language processing etc. In this paper we will present
the ongoing research work in semantic requirement engineering which
will try to close the gap between computer understandable semantics,
namely ontologies, and the natural language input of a human.

1 Introduction

Requirements engineering is known to be one of the most important phases in
the development of a product. Correctly acquired requirements can lead to a
solid and fluid creation of the to be developed artifacts whereas incorrect, con-
tradictionary or incomplete requirements can result in a complete project loss
in a worst case scenario (e.g. 63% of all errors in the medical sector result from
the requirement engineering phase [4]). In the past different solutions have been
proposed to treat these problems. They can basically be classified in two cate-
gories: Informal and strongly formal ones. Informal systems are such which rely
on natural language and somehow try to cope with the existing problems (the
majority of requirements is written in natural language [11]). Their advantages
are the overall simple usability, at least in the beginning. However, especially in
larger projects the increasing complexity makes it difficult to cope manually with
requirements documents written in natural language. Strong formal systems rely
on the specification of requirements using logical formulas having the advantage
that they can be analyzed and verified by computers. Their main drawback
is that on the business level most of the people are not familiar using logical
formulae. Moreover it is a complex and time-consuming undertaking. Some ap-
proaches have tried to combine the advantages of both worlds and created ways
of capturing requirements in models (e.g. i* [17] and UML [12]). Although these

I. Reinhartz-Berger, A. Sturm, Y. Wand, J. Bettin, T. Clark, S. Cohen, J. Ralyté, and P. Plebani (Eds.):
CAiSE 2010 Workshop DE@CAiSE’10, Hammamet, Tunisia, pp. 6-17, 2010.

techniques are easier to understand than logical formalisms there is still the
problem of many humans adapting to new technologies. Therefore the system
has to adapt to humans, i.e. the system has to be able to cope with text in natu-
ral language, extract relevant information from it and use it to support the user.
Such a system could be used not only by professional requirement engineers but
also by customers to identify their intentions and guide them to find previously
gathered solutions automatically, as we will show in this paper.
We describe a highly integrated approach to requirements engineering, combin-
ing semantic technologies and NLP for requirements engineering. The rest of the
paper is structured as follows: In section 2 the related work relevant to our ap-
proach is described. Next we present the overall approach to this topic in section
3. Section 4 exemplary shows how the presented concept works by showing it
on a small example. Next an outlook on future work as well as a discussion on
the possibilities and boundaries of this approach is outlined in section 5. Finally,
section 6 concludes the paper.

2 Related Work

For treating requirements in a formal manner there have been different ap-
proaches presented in the past. In [17], Yu used i* to model requirements and
reason on them. This approach however does not cope with the textual descrip-
tion of requirements and how one can come from this informal representation to
a more formal one. Many different approaches use the advantage of ontological
technologies but did not close the gap between a textual description of the re-
quirements and the semantic representation: Lee and Ghandi [9] developed an
ontology acting as a common language for all stakeholders of a domain. It allows
the modelling of different viewpoints, goals and the requirements itself. Dobson
et al. ([5]) presented an ontology for describing non-functional requirements.
However some approaches tried to combine semantic technologies with NLP in
the requirement engineering field. Kof ([7]) relied on ontology extraction from
text without additional domain information in the beginning. His main goal is
to give the user some hints on how to write more precisely. However, there is
no consequent combination of semantics and syntax. In [13], the NLP analysis
was done without semantic information at hand based on a clustering approach.
Thus problems like resolving synonyms remain.
Lohmann et al. [10] developed a semantic wiki for requirement engineering, espe-
cially for a large number of participants. In this case the semantics are based on
the connections between different requirements (each requirement has its own
URI). A deeper semantic representation of requirements is possible, as every
term within a text can be linked to another wiki page. However there is no au-
tomatic mechanism to annotate a requirement semantically.
The market offers many different tools for eliciting requirements. The most
prominent one is probably IBM Rational Doors1. It allows an efficient, hier-
archical management of textual requirements as well as creating dependencies

1 http://www-01.ibm.com/software/awdtools/doors/productline/

Domain Dependent Semantic Requirement Engineering 7

between them. Requirements can be annotated with attributes like priority etc.,
but there is no semantic annotation of the textual descriptions.

2.1 NLP and Construction Grammars

Construction grammars are a field which originated from cognitive linguistics. It
is based on the idea that humans process the syntax and semantics in parallel,
i.e. language can not be understood by separating both. This is also called the
Syntax-lexicon Continuum (see [3] and [8] for more information). This concept is
central to every construction grammar and differentiates it from state-of-the-art
NLP concepts, which mostly rely on pipelined approaches (i.e. first the syntax
is being analyzed and afterwards the semantics). There have been different ex-
periments which support the idea of an inseparability of syntax and semantics
in human language. Computational approaches have been created in the past,
namely Fluid Construction Grammars (short FCG, for more see [14], [15] and
[16]) and Embodied Construction Grammars (short ECG, for more see [1]). The
goal of FCG is to create a linguistic formalism which can be used to evaluate
how well a construction grammar approach can handle open-ended dialogues. To
evaluate the approach it has been implemented within autonomous, embodied
agents. Some of the key assumptions of FCG are that it is usage-based (in-
ventories are highly specialised), the constructions are bi-directional (i.e. FCG
can handle parsing as well as production of language), it uses feature structures
(which are directly incorporated within the constructions) and there is also a
continuum between grammar and lexicon. The production as well as parsing
process is handled by a unify and merge algorithm, which allows for an emer-
gent creation of either the semantics or the syntax using best-match-probabilities
in the unification of the constructions. This leads to a high robustness of the al-
gorithm and more natural creation of language.
ECG follows another goal by evaluating how embodiment affects language, i.e.
how the human body, its shape, movement, etc. affects the mind and therefore
language itself.

3 Concept

Our approach allows the combination of semantic and linguistic information as
well as the analysis of corresponding text in natural language. Figure 1 shows a
schematic overview of our approach. At the beginning the text is split into its
single terms which are then analyzed according to constructions. Constructions
combine the syntactic (language knowledge) and the semantic information of the
domain ontology. The result of the process is an interpretation of the text.

3.1 Requirements Ontology

In order to identify concepts which are relevant to requirements engineering we
are currently developing a requirements ontology which is able to capture the

8 W. Fischer and B. Bauer

Fig. 1. Big picture of the analysis process

life cycle of requirements, i.e. from early requirements (e.g. a customer request)
over the resulting business requirements to the delivered product. The main
concepts of the requirements ontology can be seen in figure 2. An AbstractRe-
quirement is anything which can contain a requirement, a wish or a problem
description. There are further specializations like a Request (intended for ini-
tial user requests) or a ’typical’ Requirement (which is further endetailed by
a NonFunctionalRequirement and a FunctionalRequirement). Each re-
quirement is created by a specific Stakeholder. Examplatory a Stakeholder can
also be a User or an ExternalStakeholder. There are multiple other types
of stakeholders possible, but are not described in detail here because of lack
of space. Information about the competence of the user can be gathered by
the UserCompetence. Finally, specific Stakeholders are responsible for a re-
quirement which is indicated by the ’isResponsibleFor’ association. To describe
a requirement it contains a RequirementDescription. This one references
different RequirementResources. A RequirementResource is a very generic
concept which can represent anything domain specific. In the figure there are
four specializations, i.e. the Product (which a requirement is about), an Event
(e.g. to specify a certain point when a problem occurs), a Document (which
is e.g. the source of the requirement) or a System (which could also act as a
requirement source).

3.2 Linguistic Knowledge

This requirements ontology serves as a reference for the application and the
ontology engineer: The application ’knows’ the type of certain domain specific
information (e.g. that the CEO of the company is a Stakeholder). The ontology
engineer has a reference for which information the system might expect from a
user and can model the domain ontology accordingly (an example is given in
section 4).
In order to use the purely semantic information it has to be enriched with syn-
tactic information. The basic concept behind it is described in [6]. The basic

Domain Dependent Semantic Requirement Engineering 9

Fig. 2. Excerpt of the requirement ontology

idea is based on Construction Grammars, a paradigm which has its origins in
Cognitive Linguistics. Therefore our concept provides a structure to enrich all
kinds of concepts with linguistic information. A short excerpt is shown in figure
3. The main concept is the Construction which basically consists of a set of
Symbols, Statements and SymbolMappings. A Symbol is more or less a
proxy referencing another Construction, Syntactic Element or a Semantic Ele-
ment. A Statement allows the definition of further restrictions (e.g. stating that
a set of syntactic symbols comes in a certain word order). A SymbolMapping
allows the mapping of a syntactic to a semantic element (e.g. stating that the
string ’car’ represents the semantic element ’Vehicle’).
Based on this structure the semantic information of the requirements ontology
can be enriched with linguistic information sufficient to parse full sentences. Of
course there are certain limitations and difficulties. One is the amount of lin-
guistic information itself, therefore we integrate as much information as possible
from existing linguistic data sources like the TIGER Corpus2.

4 Example

In this section we describe an example how the concept works. The user request
to be analyzed is:

My car starts to rattle when driving at a speed of 120 km/h.

As can be seen in figure 4, we have a small excerpt of a domain ontology, holding
information about a car manufacturer and the request of the customer. It de-
scribes relevant concepts of a car (e.g. that it is driven by a customer) and states

2 http://www.ims.uni-stuttgart.de/projekte/TIGER/TIGERCorpus/annotation/

10 W. Fischer and B. Bauer

Fig. 3. Excerpt of the construction structure

a specific problem (i.e. the car rattles if it reaches a specific speed range). Further
information is available in the ontology, i.e. that the cylinders are connected to
the rattling. Concepts which are entangled with a blue rectangle, belong to the
previously described requirements ontology.

To use these information in an NLP application the information is enriched
with linguistic information as shown in figure 5. On the upper left side of the
figure the semantic element ’Car’ is displayed. This element is mapped on a
possible string representation ’Vehicle’. In order to use this mapping it has to
be referenced by a construction (in this case the Car Construction). To use a
semantic element in a construction a symbol is introduced which is referenced
by the construction. The symbol itself then references the corresponding seman-
tic element. The cause for this structure is that the same syntactic or semantic
information has to be used twice or more within a construction. A symbol can
therefore be seen as a variable name and the element it references is the variable
type. Mapping a semantic element to a syntactic representation is a simple task
in contrast to describing more complex phrasal structures. The right side of the
figure contains a construction which specifies a simple subject, predicate, object
construction. It references the syntactic category noun twice (’Noun Symbol 1’
and ’2’) as well as the verb category. To specify more concrete structures e.g.
the order in which specific terms must have been written in the text can be done
by using so called ’Statement’s. A statement is a function which gets different
symbols as its arguments. In this example the ’InOrder’ statement checks if the
given symbols appear in the correct order. Statements can also be used to check
for certain semantic conditions (e.g. if a certain word has a specific semantic
meaning which is useful in case of homonyms) or to create specific semantic
constructions (which will result in the interpretation of a text): In figure 5 an
additional statement in the Subj→Pred→Obj construction could define that the

Domain Dependent Semantic Requirement Engineering 11

Fig. 4. Domain ontology example. Elements from the requirement ontology are
encircled with a blue rectangle

meaning of the sentence’s subject must be directly connected to the meaning of
the object by the meaning of the predicate.
The annotation of semantic information with syntactic knowledge (as seen in
figure 5) can be done automatically to some extent. However there is still a large
part of information which has to entered manually. We are currently developing
a concept which uses existing linguistic information from treebanks to create
constructions and their corresponding statements (we use the TIGER Treebank
[2]). The general mechanism can be adapted to other treebanks. This automatic
transformation process helps with the creation of omplex phrasal structures and
therefore facilitate the process of enriching the semantics with linguistic infor-
mation. However the syntactic description of semantic elements will still have
to be done manually as it is unknown in which domain the system will be used
and therefore how the semantic elements will be represented in this domain.
Next, the system analyzes the sentence according to the available information

at hand and tries to form a consistent semantic interpretation. Therefore it first
identifies the possible concepts of the text. Next, step by step, constructions
are chosen from the ontology and evaluated according to their statements and
symbols. If all of the condition statements of a construction apply to a certain
situation, the construction is used and its effect statements are being executed.
This mechanism results in an interpretation which can be seen in figure 6. The
text is analyzed according to the structure of the requirements described in sec-
tion 3. The system detected that ’My car’ probably refers to the customer being
related to the concept of a car (more specific to ’Car Type B’, as this is the only
one having the rattle problem, according to the domain ontology). This is done

12 W. Fischer and B. Bauer

Fig. 5. Enrichment of the domain with linguistic information

Fig. 6. Interpretation of the text resulting in a possible requirement

Domain Dependent Semantic Requirement Engineering 13

by a single construction which identifies ’My’ as a word which is related to the
semantic element ’Customer’ and ’car’ as a word which is (initially) mapped to
the semantic element ’Car’. As this construction has all its condition statements
fulfilled (e.g. the words are in the correct order), its effect statements are being
executed. One of the effect statements clarifies how the semantics have to be put
together. In this case the statement just says that the ’Customer’ is related to
the ’Car’, therefore an edge between the Semantic Element ’Customer’ and the
Semantic Element ’Car’ has been inserted. Further, as the user has stated that
he is ’driving at a speed of 120 km/h’ this information is also being extracted
and added to the interpretation. The semantic element ’Driving’ is added as the
type of the edge between ’Customer’ and ’Car’. The remaining information is
added the same way.
After identification of the corresponding concepts their roles within the require-
ment (i.e. their relation to the requirement within the ontology as described
in figure 2) are gathered and added to the request accordingly. Therefore, the
’Customer’ seems to be the ’Stakeholder’ of this requirement (as it can be seen
in figure 2), the ’Driving’ in this case is marked as an ’Event’ and the remaining
concepts are part of the ’Description’. This role-elicitation process is part of a
probability method based on which concept seems to take in which role the most
likely.
The so gathered information within the request can now be enriched with further
information in order to make the request more suitable for engineers. Therefore
the request can be transformed into a requirement, where additional information
like the ’Cylinders’ could be added.

5 Outlook, Possibilities and Limitations

Currently we are in the process of developing a prototype which shows the ad-
vantages of our concept. Besides the creation of the semantic interpretation there
are two specific applications we will use the interpretation for:

1. Identifying previous requirements: The semantic interpretation presents a
result which resolves different problems like homonyms and synonyms and
therefore can provide better results than purely syntactic based search mech-
anisms. Therefore a semantic search helps to reduce redundancy. In case of
customer requests it could help to identify prior and probably already an-
swered requests and thus speed up the answering process within a company’s
support department.

2. Semantic traceability: The semantic interpretation can improve the overall
results and usability of the traceability aspect. Due to the semantic represen-
tation, not explicitly stated information can be gathered through inference
(e.g. by using transitive and symmetric properties as well as the taxonomy)
which makes it easy to identify the origin of specific products or follow a
request to the artifact it resulted in.

The possibilities that this approach can support are tremendous. It could help
simplify every days requirement engineering as well as management by automat-

14 W. Fischer and B. Bauer

ically detecting overlaps and duplicates. Further erroneous as well as incomplete
requirements could be identified automatically and therefore help the require-
ments engineer doing his / her work. However there are several limitations to
this approach. As for every knowledge intensive system there must be an in-
tensive amount of knowledge, especially linguistic information. At the moment
there are many different treebanks available which represent a good foundation
for this linguistic source of knowledge. We are currently developing an import
mechanism for that task. It will be interesting to see how good the information
from these sources can be adapted to our systen and how much time this process
will consume (i.e. how many changes a human has to make to this imported in-
formation for them to be usable). Further, this knowledge needs to be updated
regularly (i.e. either existing information has to be changed or new one has to be
added as domains are dynamic systems). This is a tedious and time consuming
task and one of the biggest problems with these system types. A way to circum-
vent this problem are learning components, i.e. concepts and algorithms which
help the system to adapt to new and unknown situations. This will be a part
of our future work especially as the core of our concept proves a very promis-
ing approach to this task (i.e. its combination of syntax and semantics). Another
limitation is metaphorical reasoning, i.e. the possibility to resolve metaphors and
what they mean in the corresponding context. In a linguistically limited domain
this might not be a big problem (as a clear linguistic description is required and
therefore metaphors should not be used) but e.g. business / early requirements
might contain an imprecise linguistic description (i.e. metaphors).
Next detecting references within text is very difficult for any NLP system. Our
approach also faces this problem however due to the usage of semantics from the
very beginning we hope to be better suited to this problem, as we can resolve
dependencies not only on a syntactic but on a fact driven level as well.
A fifth boundary (one we cannot tackle in the near future) is pragmatics. Prag-
matics can be described as semantics in context. An example would be a scenario,
consisting of a room with an opened window, a person A standing at the win-
dow and another person B standing at the door. B utters ’It’s cold in here’,
which from a purely semantic point of view is the statement that the air in the
room is cold. From a pragmatic point of view it also is a request to person A
to close the window. To identify and manage pragmatics a system would have
to ’imagine’ the situation which is even more difficult than just interpreting se-
mantics (and computer science has problems to do even this). The last sections
contained many theortical aspects and examples that we are working on. Some
of our ideas have not yet been implemented and therefore it will take some more
time until we can deliver a prototype which is capable of delivering the results
that we have described in this paper. What our prototype is currently capable of
is analyzing simple sentences and creating an interpretations for it. In figure 7 a
full and automatically created interpretation of the sentence ’The car is driven
by the CEO’ can be seen. The lower part mostly contains complex (preceded by
a ’Con’ prefix) or mapping constructions (’Mapping’ prefix), whereas the upper
part contains the different syntactic (prefix ’SynSym’) as well as semantic infor-

Domain Dependent Semantic Requirement Engineering 15

mation (this is the data within the blue rectangle). The system can evaluate the
sentence both with an active or passive verb phrase, the semantics will always
remain the same. The system yet consists of the basic algorithm for eliciting
constructions and evaluating them based on a given sentence. Yet the elicita-
tion of the elements role as well as a more precise disambiguation mechanism is
missing.

Fig. 7. Actual interpretation of a simple sentence by the prototype

6 Conclusion

In this paper we presented a novel approach for requirements engineering by
directly combining semantics and natural language processing. The overall ar-
chitecture has been described as well as been evaluated exemplarily. The first
results are very promising and we will refine the approach and apply to several
case studies in the near future.

References

1. B. Bergen and N. Chang. Embodied construction grammar in simulation-based
language understanding. Construction grammars: Cognitive grounding and theo-
retical extensions, pages 147–190, 2005.

2. S. Brants, S. Dipper, S. Hansen, W. Lezius, and G. Smith. The TIGER treebank.
In Proceedings of the Workshop on Treebanks and Linguistic Theories, Sozopol,
2002.

3. W. Croft. Radical construction grammar: Syntactic theory in typological perspec-
tive. Oxford University Press, USA, 2001.

4. C. Denger. Studie zum stand der software-entwicklung in der medizintechnik man-
agement zusammenfassung. IESE-Report, Nr. 07/D, 2007.

5. G. Dobson, S. Hall, and G. Kotonya. A domain-independent ontology for non-
functional requirements. In IEEE International Conference on e-Business Engi-
neering, 2007. ICEBE 2007, pages 563–566, 2007.

16 W. Fischer and B. Bauer

6. W. Fischer and B. Bauer. Cognitive-linguistics-based request answer system.
Springer, 2009.

7. L. Kof. Natural Language Processing for Requirements Engineering: Applicability
to Large Requirements Documents. In Proc. of the Workshops, 19th International
Conference on Automated Software Engineering. Citeseer, 2004.

8. R. Langacker. An introduction to cognitive grammar. Cognitive Science: A Mul-
tidisciplinary Journal, 10(1):1–40, 1986.

9. S. Lee and R. Gandhi. Ontology-based active requirements engineering framework.
In Proc. 12th Asia-Pacific Soft. Engg. Conf.(APSEC 05), IEEE CS Press, pages
481–490, 2005.

10. S. Lohmann, P. Heim, S. Auer, S. Dietzold, and T. Riechert. Semantifying Require-
ments Engineering–The SoftWiki Approach. In Proceedings of the 4th International
Conference on Semantic Technologies (I-SEMANTICS), pages 182–185, 2008.

11. M. Luisa, F. Mariangela, and N. Pierluigi. Market research for requirements anal-
ysis using linguistic tools. Requirements Engineering, 9(1):40–56, 2004.

12. L. Nielsen. Requirements Engineering: Anforderungsdefinition mit Hilfe von UML
bei der Entwicklung einer ERP Software. GRIN Verlag, 2008.

13. J. och Dag, V. Gervasi, S. Brinkkemper, and B. Regnell. A linguistic engineering
approach to large-scale requirements management. Managing Natural Language
Requirements in Large-Scale Software Development, 22(1):145, 2005.

14. L. Steels. Fluid Construction Grammar Tutorial. Tutorial. 2004.
15. L. Steels and J. De Beule. A (very) brief introduction to fluid construction gram-

mar. In Proceedings of the Third Workshop on Scalable Natural Language Under-
standing, pages 73–80. Association for Computational Linguistics.

16. L. Steels and J. De Beule. Unify and merge in fluid construction grammar. Lecture
Notes in Computer Science, 4211:197, 2006.

17. E. Yu. Towards modelling and reasoning support for early-phase requirements engi-
neering. In Proceedings of the 3rd IEEE International Symposium on Requirements
Engineering (RE’97), page 226. Citeseer, 1997.

Domain Dependent Semantic Requirement Engineering 17

	Domain Dependent Semantic Requirement Engineering
	 Wolf Fischer (University of Augsburg), Bernhard Bauer (University of Augsburg)

