
A UML-Profile for domain specific patterns: 
Application to real-time  

 
Saoussen Rekhis1, Nadia Bouassida2, Rafik Bouaziz1, Bruno Sadeg3 

 
1,2 MIRACL-ISIMS, Sfax University, BP 1088, 3018, Sfax, Tunisia. 

3LITIS, UFR des Sciences et Techniques, BP 540, 76 058, Le Havre Cedex, France. 
 

1{saoussen.rekhis, raf.bouaziz}@fsegs.rnu.tn  
2nadia.bouassida@isimsf.rnu.tn 
3bruno.sadeg@univ-lehavre.fr 

Abstract. The design of Real-Time (RT) applications is a difficult task since it 
must take into account the specification of time-constrained data and time-
constrained transactions. The design of these applications can be facilitated 
through the reuse of RT design patterns that improve software quality and 
capture RT domain knowledge and design expertise. However, the difficulty of 
RT design patterns comprehension reinforces the need for a suitable design 
language. This language has to express concepts modeling RT features and 
distinguishing the commonalities and differences between RT applications. 

This paper presents new UML notations that take into account the design of both 
RT specific concepts and the variability of domain specific patterns. The UML 
extensions are, then, illustrated in the RT context using an example of a 
controller pattern.  

Keywords: UML notation, domain specific patterns, instantiation, real-
time applications. 

1   Introduction 

A design pattern [1] is a description of a solution to a common problem in software 
design.  It captures the design expertise necessary for developing applications and 
allows the reuse at both the design and code levels.  Design patterns can be general and 
cover different domains of application (e.g. patterns of GoF [1]) and they can, also, be 
intended for a particular domain, in this case they are called domain-specific patterns 
[24].  
Despite their advantages, to benefit from design patterns, a designer must spend a lot of 
time in understanding and then reusing the design pattern in a certain application.  To 
facilitate the reuse and instantiation phase, many design pattern notations have been 
proposed ([8], [4], [3]).  The proposed approaches offer essentially UML extension 
mechanisms such as stereotypes, tags and constraints to cope with the pattern 
variability and to show the pattern specificities. 

I. Reinhartz-Berger, A. Sturm, Y. Wand, J. Bettin, T. Clark, S. Cohen, J. Ralyté, and P. Plebani (Eds.):
CAiSE 2010 Workshop DE@CAiSE’10, Hammamet, Tunisia, pp. 32-46, 2010.



These design languages with their UML extensions remain insufficient when they deal 
with a specific domain. In fact, in the design of a specific domain, the design language 
has to take into account not only the variability and the aspects relative to the pattern, 
but also the extensions and specificities of the domain itself. For example, when 
considering the Real Time (RT) domain, we found that this domain has many details 
that must be taken into account by the design pattern notation.  

In fact, RT applications, which manipulate voluminous quantities of data, have two 
main features: i) they manipulate RT data that must closely reflect the current state of 
the controlled environment, and ii) they must be able to meet RT constraints of 
transactions. These two features must be considered by RT design patterns. 

This paper proposes a new UML-profile that extends UML with concepts related to 
RT design patterns. The motivations behind these extensions are three-folds. The first 
motivation is to have flexible patterns that distinguish the fixed parts from the optional 
and variable elements in the pattern. The second motivation is to facilitate the 
comprehension of design patterns instantiation and to guide a designer to derive a 
specific application. The third motivation is to present design patterns for the RT 
domain using the proposed profile which is extended with RT specific concepts. 

The remainder of this paper is organized as follows. Section 2 overviews and 
evaluates currently proposed design languages and their extensions. Section 3 presents 
our proposition to represent an UML profile for RT design patterns. Section 4 
illustrates the design language with a RT controller pattern and presents an example of 
a freeway traffic management system reusing it. Section 5 concludes the paper and 
outlines future work. 

2   Overview of current works  

In order, to propose a RT pattern profile, we have been inspired in our work from 
RT profiles and existing pattern notations. Thus, in this section we, first, overview 
current design languages for pattern's representation. For this reason, we define a set of 
criteria necessary for pattern notations and then we present their advantages and limits. 
Second, we briefly present in Subsection 2.2 the RT profiles and the UML extensions 
taking into account the real-time system requirements.  

2.1   Overview of UML extensions for design patterns representation 

Several criteria have to be taken into account to evaluate the currently proposed 
languages for pattern representations. These criteria are used to compare current UML-
based pattern notations, for the specification of general and domain-specific design 
patterns and for their instantiation.  

- Criteria for design pattern representation at the specification level 

C1. Expressivity: Design patterns have mostly been described using natural 
language, complex mathematical or logic based formalisms [5] [6] which are not easily 

A UML Profile for domain specific patterns: Application to real-time    33



understood by an inexperienced designer. This leads to complications in incorporating 
design patterns effectively into the modelling of a new system. To remediate to this 
difficulty, the solution is using an expressive visual notation based on UML to specify 
patterns. This improves the pattern specification quality because UML allows to easily 
visualise, define and document the artefacts of the system under development. 

C2. Variability: The design patterns have to incorporate flexibility and variability in 
order to guide the designer in determining the variable elements that may differ from 
one application to another.  In fact, variability is classified into optional and alternative 
characteristics. So, it is important to show the optional elements which can be omitted 
in a pattern instance. It is also necessary to clarify the variability points (called hot-
spots) which describe the elements that can vary according to a specific context.  

C3. Constraints definition: The correct instantiation of patterns is a major problem 
when we want to design a new system by composing design patterns. The validity of an 
instantiation depends on respecting the properties inherent to the solution. These 
properties are specified by constraints that are generally expressed in OCL (Object 
Constraint Language) [7]. They are presented on the class diagram using notes. 

- Criteria for design pattern representation at the instantiation level 

C1. Traceability: The traceability consists of easily identifying design patterns 
when they are applied and composed with other patterns. In fact, we not only need to 
identify each pattern in a design, but also we want to show the methods and attributes 
that play important roles in the pattern. Explicit representation of the key methods and 
attributes can assist on the traceability of a pattern since it allows us to trace back to the 
design pattern from a complex design diagram [8]. 

C2. Composition: The development of applications using design patterns as design 
components requires a careful look at composition techniques, which are categorized 
as: behavioural composition techniques and structural composition techniques. Indeed, 
the behavioural techniques show how dynamic specifications of patterns can be 
composed using sequence diagram, whereas structural techniques show how the static 
architectural specifications of instantiated patterns can be composed using class 
diagram [16]. 

 

- UML notations for design patterns 

There are several UML notations which proposed extensions to present general design 
patterns and domain models. Many of them can be used to express concepts relative to 
domain-specific design patterns such as their flexibility. A comparison of the most 
recent notations, using the specification and instantiation criteria is proposed in Tables 
1 and 2.  

 

34    S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg



Table 1.  Comparison of current notations using the specification criteria.  

 Design pattern specification criteria 
 Expressivity Variability Definition 

of constraint 

Dong & 
Yang 
UML 
profile 
[3] 

This profile proposes 
notations that focus 
more on the pattern 
applicability context 
than on the pattern 
specification. 

Unlike several others notations 
[8] [4], the proposed profile does 
not focus on specifying the 
variability of a pattern solution.  

These notations 
don’t specify 
constraints which 
delimit the pattern 
applicability. 

P_UML 
profile 
[8] 

P_UML proposes 
extensions showing the 
pattern hot-spots in a 
class diagram and 
guiding the designer in 
instantiating a pattern. 
However, it does not 
distinguish between the 
extensions used in 
pattern instantiation 
from those used in 
pattern specification, 
which reduces the 
expressivity of 
notations.   

This profile is characterized by: 

-The definition of tagged values 
to extend the static view: 
 {variable} indicates that the  
method implementation varies 
according to the pattern 
instantiation; 
 {extensible} indicates that the 
class interface may be extended 
by adding new attributes and/or 
methods; 
-The applicability of the 
{ incomplete}  constraint on 
generalization relation to indicate 
that new classes may be added 
during the pattern instantiation 

These notations 
propose to define 
the pattern 
constraints 
through notes 
containing OCL 
constraints. 

Arnaud 
profile 
[4] 

This profile is not very 
expressive since the 
static view of a pattern 
is presented by very 
elementary separated 
packages which contain 
one or two classes. This 
reduces the 
understanding and 
makes the composition 
more difficult.  

Unlike all previous notations, this 
profile focuses on the variability 
in the functional, dynamic and 
static views. The use case 
diagram is the entrance point for 
the instantiation process, where 
the application designer selects a 
functionality variant. However, 
the use case diagram is too 
abstract and can not be used as an 
input model for the patterns 
instantiation. In fact, the use case 
diagram is at a high level of 
abstraction and thus the designer 
cannot identify, for example, the 
optional attributes or methods 
according to its needs. 

Similar to 
P_UML, this 
profile uses notes 
that contain OCL 
constraints. These 
latter must be 
fulfilled by a 
pattern to be 
applied correctly. 

ADOM-
UML  
[18] 

ADOM-UML is an 
Application based 
DOmain Modeling 
approach, in which 
UML 2.0 is used as the 
modeling language of 
both: the domain and 

ADOM-UML defines new 
stereotypes in order to denote the 
multiplicity variability of the 
different domain model elements. 
The multiplicity stereotypes aim 
to represent how many times a 
model element can appear in a 

The constraints 
are well defined 
in ADOM-UML 
among the 
different layers: 
the domain layer 
enforces 

A UML Profile for domain specific patterns: Application to real-time    35



application models. 
Unlike the previous 
works [3] [4] [8], the 
ADOM-UML enhances 
the expressivity of the 
proposed notations 
since it well 
differentiates between 
the extensions used in 
the language, domain 
and application layers. 
This means that each 
layer includes modeling 
constructs that will be 
used in the more 
specific layer.       

specific context. Particularly, the 
authors define four stereotypes: 
<<optional single>>, <<optional 
many>>, <<mandatory single>> 
and <<mandatory many>>. Each 
stereotype has two associated 
tagged values, min and max, 
which define the lowest and the 
upper most multiplicity 
boundaries. However, the word 
‘many’ used in these stereotypes 
doesn’t enhance the semantic of 
UML model since each element 
in a model can be instantiated 
implicitly many times.  

constraints on the 
application layer, 
while the 
language layer 
enforces 
constraints on 
both domain and 
application layers. 
Besides, ADOM-
UML specifies 
additional 
constraints and 
dependencies in 
the domain layer 
expressed in 
OCL. 

Table 2.  Comparison of current notations using the instantiation criteria.  

 Design pattern instantiation criteria 
 Traceability Composition 

Dong & 
Yang 
UML 
profile 
[3] 

This profile proposes new stereotypes and tagged 
values for the explicit representation of design 
patterns in software designs. These extensions 
show the pattern name, the role names of the 
classes, the attributes and the operations in the 
pattern and how many instances of a design pattern 
are applied.  

This profile deals with the 
composition of patterns 
statically. That is, when two 
or more classes represent 
the overlapping part of the 
composition, the proposed 
notation shows the roles 
that these classes play in 
each pattern. 

P_UML 
profile 
[8] 

This notation proposes to show the pattern 
participant roles by using an ellipse in the bottom 
of a class that indicates the pattern name and the 
role through which this class participates in the 
pattern. Thereby, it provides support for traceability 
of pattern instantiation. However, the class diagram 
may seem to be overloaded since the notation 
presents an association between ellipses to join the 
elements of the same pattern. 

Like the previous work [3], 
this profile proposes 
extensions showing the 
composition of patterns 
presented by class 
diagrams. It does not 
present notations to deal 
with the composition of 
patterns dynamic 
specifications.  

Arnaud 
& al. 
UML 
profile 
[4] 

This profile defines a process to show the steps of 
patterns instantiation. However, it does not permit 
the visualization and preservation of pattern-related 
information in patterns instances in a design model. 
Consequently, it does not deal with the traceability 
criterion.   

This profile does not 
present mechanisms to 
compose neither static, nor 
dynamic specifications of 
patterns. 

ADOM-
UML  
[18] 

The connection between the domain and 
application layers is done through the stereotypes 
extension mechanism. This means that a domain 
element can serve as a stereotype of an application 

The composition criterion is 
not taken into account in 
domain models. In fact, an 
application model is created 

36    S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg



element if their meta-classes in the language layer 
are the same (e.g., a class that appears in a domain 
model may serve as a classifier of classes in an 
application model). Thereby, ADOM-UML 
provides support for traceability criterion and 
enhances the readability of an application model. 

according to the adaptation 
of one domain model and 
doesn’t deal with the 
composition of many 
reusable domain artefacts, 
such as patterns. 

In summary, none of the proposed notations satisfies all the different specification and 
instantiation criteria, when representing patterns. Moreover, none of them proposes 
extensions showing the behavioral composition.  

2.2   Overview of UML extensions for RT applications 

Several works have proposed UML extensions to take into account the real-time 
system requirements such as, RT-UML [20] and ACCORD/UML [21]. The basic 
concepts of RT-UML were integrated in the UML standard through the UML profile for 
Schedulability, Performance, and Time (denoted SPT profile) [22]. Recently, MARTE 
profile [10] for Modeling and Analysis of Real-Time Embedded systems has been 
standardized by the OMG. It is intended to replace the existing UML Profile for SPT 
profile [22]. MARTE consists in defining extensions that provide high-level modelling 
concepts to deal with RT and embedded features modeling as well as specific modeling 
artifacts to be able to describe both software and hardware execution supports. 

Another work proposed the UML-RTDB profile [23] to express real-time database 
features in a structural model. Unlike the previous profiles, it supplies concepts for 
real-time database modeling such as RT attributes, RT methods and RT classes. In 
addition, UML-RTDB specifies two kinds of real-time attributes, sensor attributes and 
derived attributes, in order to satisfy the requirements of current real-time applications. 
However, some proposed stereotypes overlap with the UML extensions presented by 
MARTE profile especially those relative to the RT methods. In fact, the UML-RTDB 
stereotypes <<Periodic>>, <<Sporadic>> and <<Aperiodic>> that express 
respectively periodic, sporadic and aperiodic methods in the class diagrams, has the 
same meaning as the tagged value Occurrence Kind of the <<rtFeature>> stereotype 
defined in MARTE. Thereby, we adapt some MARTE stereotypes modeling RT 
aspects instead of the other UML extensions proposed for the modeling of RT 
applications since MARTE is a standardized profile.  

Nevertheless, the only use of UML notations modeling RT application 
characteristics is insufficient to specify RT design patterns. That is, RT patterns must 
be generic designs intended to be specialized and reused by any application in RT 
domain. For this reason, in addition to the UML extensions representing RT aspects, 
we need new notations distinguishing the commonalities and differences between 
applications in the pattern domain. Moreover, we need new concepts for the explicit 
representation of the pattern elements roles for the traceability purpose.  

In the next section, we describe the extensions that we propose to take into account 
these new concepts. 

A UML Profile for domain specific patterns: Application to real-time    37



3   The UML profile for RT design patterns 

In the present work, we extend the unified modeling language “UML 2.1.2” [9] to 
represent design patterns for RT applications. These extensions allow (i) to express the 
variability in a pattern, (ii) to identify the roles played by each pattern element in the 
application instantiating it and (iii) to specify RT applications constraints and their non 
functional properties. The proposed extensions are described in the next section. 

3.1   UML extensions for specifying domain-specific patterns  

In this section, we propose new stereotypes showing the optional and fundamental 
elements participating in a pattern and assisting the designer in pattern reuse. Thus, the 
class diagram Metamodel is extended with the following stereotypes: 

• Stereotype <<optional>> (applied to the Feature UML Metaclass): This stereotype 
is inspired from <<optional single>> and <<optional many>> stereotypes defined in 
[18]. In fact, the variety of applications within the RT domain is quite large. For this 
reason, we can not specify exactly how many times a pattern element can appear in a 
specific RT application. Thus, we use <<optional>> stereotype to represent the 
optional features (i.e. attribute or method) that can be omitted in a pattern instance.  
Each method or attribute which is not stereotyped <<optional>> in a fundamental 
classifier (i.e. class, interface …) means that it is an essential element that plays an 
important role in the pattern. 

• Stereotype <<mandatory>> (applied to the UML Metaclasses: Class, Association, 
Interface, Lifeline and ClassAssociation): This stereotype is inspired from 
<<mandatory single>> and <<mandatory many>> defined in [18]. We propose the 
<<mandatory>> stereotype to specify a fundamental element (association, 
aggregation,…) that must be instantiated at least once by the designer when he models 
a specific application. For the clarity purpose, a fundamental element in the pattern is 
drawn with a highlight line like this class        . 

Besides, each pattern element which is not highlighted means that it is an optional one, 
except the generalization relation that permits to represent alternative elements. All the 
attributes and methods of an optional class are implicitly optional.    

• Stereotype <<extensible>> (applied to the UML Metaclasses: Class, Interface and 
ClassAssociation): This stereotype is inspired from {extensible} tagged value proposed 
in [8]. It indicates that the class interface may be extended by adding new attributes 
and/or methods. Moreover, two properties related to the extensible stereotype are 
proposed, in order to specify the type of features (attribute or method) that may be 
added by the designer. 
  - extensibleAttribute tag: It takes the value false, to indicate that the designer cannot 

add new attributes when he instantiates the pattern. Otherwise, this tag takes the 
value true. 

  - extensibleMethod tag: It indicates if the designer may add new methods when he 
instantiates the pattern. The default value is true. 

38    S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg



• Stereotype <<variable>> (applied to the Operation UML Metaclass): This 
stereotype has the same meaning with the {variable} tagged value proposed in [8]. It 
indicates that the method implementation varies according to the pattern instantiation. 

3.2   UML Extensions for instantiating domain-specific patterns 

Some of the existing notations (Dong & Yang UML profile [3]  and P-UML profile [8]) 
provide support on how to keep trace of the pattern when instantiated. These notations 
focus only on generic design patterns for which it is difficult to recognize the pattern 
instance when it is composed with others in a particular design. Thus, it is essential to 
hold the pattern name and the role played by each element (class, attribute and method) 
in the instantiation. 

However, a domain specific pattern is instantiated in the scope of a domain. 
Therefore, it is easy to retrieve the pattern-related information even after the pattern is 
applied or composed with other patterns. We assume that omitting both the name and 
the role of pattern attributes and operations will not create any ambiguity. For this 
reason, we propose to present only the pattern name and the role names of the classes 
in order to avoid overloaded models. In fact, pattern-related information should be 
minimized in the class and sequence diagrams for readability [3]. 

We propose to define two new stereotypes for the explicit visualization of patterns 
in an application design:  

• <<patternClass>> stereotype: It is applied to the Class UML metaclass in order to 
indicate that it is an instantiated pattern class and not originally defined by the designer. 
We propose to define two properties related to this stereotype: 

- patternName tag : indicates the pattern name, 
- participantRole tag : indicates the role played by the class in a pattern instance. 

• <<patternLifeline>> stereotype: It is applied to the Lifeline metaclass in order to 
distinguish between the objects instantiated from the pattern sequence diagram and 
those defined by the designer. This stereotype has the same properties than 
<<patternClass>> stereotype.  

These stereotypes allow to eliminate any confusion when patterns are composed. That 
is, when two or more classes represent the overlapping part of the composition, the 
proposed stereotype shows the roles that these classes play in each pattern. 

3.3   UML extensions for modeling RT aspects  

In addition to the above described stereotypes distinguishing the fixed parts from the 
optional and variable parts in the pattern, the specification of RT design patterns needs 
UML extensions supporting the modeling of RT aspects. Thus, we import stereotypes 
from HLAM (High Level Application Modeling) and NFP (Non Functional Properties) 
sub-profiles of MARTE [10] (cf. figure 1). Note that MARTE provides support 
required from specification to detailed design of RT embedded systems characteristics. 
However, only the extensions describing RT applications features at a high level of 

A UML Profile for domain specific patterns: Application to real-time    39



abstraction are taken into account since RT patterns can be instantiated to model many 
RT applications and not only the embedded systems.  

From HLAM sub-profile, we import the <<rtFeature>> stereotype in order to model 
temporal features. This stereotype extends the metaclasses: message, action, signal and 
behavioral features. It possesses nine tagged values among which: relD1 (i.e. 
specification of a relative deadline), absD1 (i.e. specification of an absolute deadline), 
Miss (i.e. percentage of acceptance for missing the deadline), occKin (i.e. specification 
of the type of event: periodic, aperiodic or sporadic)… . We propose to annotate each 
model element that has real-time features with the previously described stereotype.  

 
 
   
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
From NFP Modeling sub-profile of MARTE, we import two stereotypes: <<Nfp>> 

and <<NfpType>>. The first one extends the Property metaclass. It shows the attributes 
that are used to satisfy non functional requirements. The second stereotype extends the 
DataType metaclass. There is a set of pre-declared NFP_Types which are useful for 
specifying NFP values, such as NFP_Duration, NFP_DataSize and NFP_DataTxRate. 

In the following section, we illustrate the RT design pattern profile through the 
specification of RT controller pattern. 

Instantiation pattern Extensions  

Specification pattern Extensions  

Fig 1. RT pattern profile Metamodel 
 

RT patterns profile 

MARTE :: HLAM sub-profile MARTE :: NFP sub-profile 

<<import>> <<import>> 

40    S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg



4  A RT design pattern example  

In this section, we propose to illustrate the proposed extensions through an example of 
a reusable RT design pattern that explicitly shows the generic data which are 
fundamental and which represent the core of RT applications, on the one hand, and the 
allowed variants, on the other hand. 

4.1   RT controller pattern 

RT applications perform several RT processes among which: the RT data acquisition 
and the data control processes. We focus in this paper on modeling the static as well as 
the dynamic view of RT data control process through the definition of RT controller 
pattern.    

 
- Interface: 

Name: controller pattern    
Context: This pattern is applicable in all RT applications which need to be managed by 
Real Time Database (RTDB) systems. In fact, a RTDB has all the requirements of 
traditional databases, but it also requires management of time-constrained data and 
time-constrained transactions [11]. 
Intention: The pattern aims to model the control of the data acquired from environment 
and the initialization of corrective action(s) if a violation is found.  

- Solution: 
Static specification: Figure 2 presents the controller pattern static view. 
 
Participants: 

- Observed_element: This class represents the description of a physical element that 
is supervised by the controller. It can be an aircraft, a car, a road segment, and so on. 
One or more measure types (i.e. Temperature, Pressure, etc) of each observed element 
could determinate its evolution. These measures are classified into either base measures 
or derived measures. Base measures stand for RT data that are issued from sensors, 
whereas derived measures stand for RT data that are calculated by the controller using 
base measures. The refreshment of each derived RT data is required every time one of 
the base data is updated.  

The ObservedElement class has the ElmentID and ElementStatus fundamental 
attributes. In addition, it has an UpdateStatus () method allowing to update the status of 
observed element according to the variation of the captured values. 

- Controller: A controller has to monitor physical elements for responding to 
conditions that might violate safety. It takes periodically the value captured for each 
observed element as well as the minimum value and the maximum value that define the 
interval for which the controller does not detect an anomaly. If a captured value does 
not verify the boundary constraint, then the controller initiates some corrective actions, 
such as a reset and a shut-down, or sends an alarm to notify an operator.   

On the other hand, the controller receives periodically an update message from an 
observed element to notify it about the modification of its measures.  In this case, the 

A UML Profile for domain specific patterns: Application to real-time    41



controller is waiting for a message. If this message does not arrive on time, then the 
controller performs appropriate recovery actions [14]. 
As illustrated in Figure 2, the controller class has four methods. The only fundamental 
method is VerifyValue()since it is essential to check that the boundary constraints are 
fulfilled for all RT applications. This method is performed periodically. In addition, it 
must be achieved before a deadline. Thus, the VerifyValue()method is stereotyped 
<<rtFeature>> in order to define the periodicity, the relative and absolute deadlines that 
are tagged respectively period, relDl and absDl. The method CalculateDerivedValue() 
is optional since it can be omitted in a pattern instantiation, when the designed 
application does not have derived measures. It is stereotyped <<rtFeature>> since it is 
sporadic and has to meet the deadline defined by the designer. The methods notify(), 
initiateCorrection() are optional since the choice of the appropriate recovery action 
depends on the application instantiating the pattern.  

- Operator: The alarm signals sent by the controller are supervised by the operators. 
These latter provide decisions to validate reported incidents in case the controller only 
reports errors and does not have the responsibility to take further actions; or in case the 
confirmation of an operator is needed to achieve the correction.  

The Operator class is optional since the controller can take the correction initiative 
without the intervention of an operator. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Dynamic specification: Figure 3 presents the controller pattern dynamic view. 
In order to verify the validity of each observed element measure, the controller takes 
the current captured value and the value thresholds in parallel. Then, it verifies that 
each measured value is in the closed range [Minimum-Value, Maximum-value]. If this 
constraint is violated or the update message received from an observed element occurs 
too late, then the controller notifies the operator or initiates the appropriate recovery 
actions.  
 
 
 

Fig 2. Specification of RT controller pattern static view  

42    S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.2   RT sensor pattern instantiation: an example 

This section proposes to illustrate the reuse of RT controller pattern through the design 
of freeway traffic management system. 

The increasing road transport traffic and the incessant rise of the number of vehicles 
have caused a great growth of the magnitude of traffic flows on public roads. In 
consequence, freeway traffic management systems have become an important task 
intended to improve safety and provide a better level of service to motorists. We 
describe, in the following an example of a freeway traffic management system: 
COMPASS [19]. We focus precisely on modeling the compass control data subsystem 
and we explain how this design issue can be facilitated by the reuse of the RT 
controller pattern.  

The current traffic state is obtained from the essential sources: inductance loop 
detectors and supervision cameras. In fact, vehicle detector stations use inductance 
loops to measure speeds and lengths of vehicles, traffic density (i.e. number of vehicles 
in a road segment) and occupancy information. Whereas, the supervision cameras are 

Fig 3. Specification of RT controller pattern dynamic view  
 

[For each measure of an observedElement ] 

         <<rtFeature>> VerifyValue (val, MinVal, MaxVal) 

        <<rtFeature>> initiateCorrection () 

[ If ( val>MaxVal || val<MinVal ) || time out of update message ] 

[ If ( val>MaxVal || val<MinVal ) || time out of update message ] 

update 

getMaximumValue () 

getValue () 

val val 

getUpdatedValue () 

getMinimumValue () 

MinVal 

MaxVal MaxVal 

MinVal 

<<rtFeature>>  notify () 

Fig 3. Specification of RT controller pattern dynamic view  

A UML Profile for domain specific patterns: Application to real-time    43



used to supplement and confirm the data received through the vehicle detector stations 
and to provide information on local conditions which affect the traffic flow. The 
processed data are then transmitted at regular time intervals to the Central Computer 
System to monitor traffic and identify traffic incidents, when they occur.  
Figure 4 illustrates the class diagram of the freeway traffic management system reusing 
RT controller pattern. It indicates that the controller monitors two types of elements 
(Road_Segment and vehicle). In addition, the Operator optional class is instantiated 
since it is essential to notify the operators of any detected events in the COMPASS 
system. 
 

 
 
 
 
 
 
 
 
 
 
 
 

 

 
 
 

 

 
 
 
 
 

5   Conclusion 

The design of RT applications differs from the design of classical applications. RT 
applications have to guarantee that each action (transaction) meets its deadline, and that 
data are used during their validity interval. Thus, it is necessary (i) to give a great 
importance to RT applications design and (ii) to benefit from previous experiences of 
developers by reusing the knowledge previously acquired in the design practices. For 
this reason, dealing with RT domain engineering becomes a necessity since it allows to 
identify reusable patterns which reduce the complexity of RT applications design.  
 

Fig 4. Example of controller pattern instance 
 

44    S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg



In order to represent RT design patterns in a more readable manner, this paper 
proposed UML-based extensions distinguishing clearly between the different parts 
constituting the pattern. These extensions help the designer in determining the variable 
elements that may differ from one application to another and allows to identify, easily, 
design patterns when they are applied to model a particular RT application. Besides, 
this paper proposed to guide the designer in modeling features specific to RT domain 
through the use of stereotypes imported from MARTE profile. These stereotypes 
provide facilities to model RT applications characteristics at a high abstraction level, 
being independent from the nature of tools used for the implementation of RT systems. 
The paper illustrated the proposed notations through the specification of RT controller 
pattern and its instantiation to design a freeway traffic management system.  

Our future works include two axes. Firstly, we are looking into the formalization of 
RT design patterns. Secondly, we must examine how to integrate the design patterns in 
the context of the model driven architecture in order to add more assistance when 
generating models by reusing patterns. This could bring new benefits and impulse for 
both the knowledge capturing techniques and the software development process 
quality.  

References 

1.  Gamma E., Helm R., Johnson R.E, Vlissides J., Design patterns: Elements of Reusable 
Object-Oriented Software, Addison-Wesley Edition, 1994. 

2. Fowler M., Analysis Patterns – Reusable Object Models, Addison-Wesley, 1997. 
3.  Dong J. and Yang S., Visualizing design patterns with a UML profile, proceedings of IEEE 

Symposium on Human Centric Computing Languages and Environments, pp: 123-125, 2003.  
4. Arnaud N., Front A.and Rieu D., Expression et usage de la variabilité dans les patrons de 

conception, Revue des sciences et technologies de l'information, série : Ingénierie des 
Systèmes d'Information, vol. 12/4, pp. 21-24, 2007. 

5.  Eden A.H., Gil J., Hirshfeld Y., Yehudai A., Towards a mathematical foundation for design 
patterns, Technical report, dept.of information technology, U.Uppsala, 1999. 

6. Mikkonen T., Formalizing Design Patterns, Proc. 20th International Conference on Software 
Engineering— ICSE, pp. 115–124, 1998. 

7.   OMG, UML 2.0 OCL specification, 2003. 
8.  Bouassida N., Ben-Abdallah H., Extending UML to guide design pattern reuse, Sixth Arab 

International Conference On Computer Science Applications, Dubai, 2006. 
9.  OMG, Unified Modeling Language (UML) Infrastructure: v2.1.2, formal/2007-11-04, 2007. 
10. OMG, A UML Profile for MARTE: Modeling and Analysis of Real-Time Embedded 

systems, OMG document number: ptc/2008-06-09, 2008.  
11. Ramamritham K., Real-Time Databases. Journal of Distributed and Parallel Databases, 

1(2):199–226, 1993. 
12. Ramamritham K., Son S., and DiPippo L., Real-Time Databases and Data Services. Real-

Time Systems, 28:179–215, 2004. 
13. Kim D.K., France R., and Ghosh S., A UML-based language for specifying domain-specific 

patterns, Journal of Visual Languages and Computing, pp. 265–289, 2004. 
14. Douglass B. P., Real-Time Design Patterns: Robust Scalable Architecture for Real Time 

Systems, Addison-Wesley Edition, September 27, 2002 
15. M. Amirijoo, J. Hansson, and S. H. Son. Specification and management of QoS in real-time 

databases supporting imprecise computations. IEEE Transactions on Computers, 55(3), 2006. 

A UML Profile for domain specific patterns: Application to real-time    45



16. Yacoub S. M., Ammar H., Pattern-Oriented Analysis and Design: Composing Patterns to 
Design Software Systems, Published by Addison-Wesley Professional, August 2003. 

17. Czarnecki K., Eisenecker U.W., Generative Programming – Methods, Tools, and 
Applications, Addison-Wesley, 2000. 

18. Reinhartz-Berger I., Sturm A., Utilizing domain models for application design and validation, 
Information and Software Technology, vol 51, pages 1275-1289, 2009. 

19. COMPASS Website, Available from: 
      http://www.mto.gov.on.ca/english/traveller/compass/main.htm 
20.  Douglass B. Real Time UML, Third Edition : Advances in The UML for Real-Time 

Systems. Pearson Education, Inc, 0-321-16076-2, 2004. 
21. Lanusse A., G´erard S., and Terrier F.. Real-time modeling with UML: The ACCORD 

approach. In J. B´ezivin and P.-A. Muller, editors, The Unified Modeling Language, 
UML’98- Beyond the Notation. First International Workshop, Mulhouse, France, June 1998, 
Selected Papers, volume 1618 of LNCS, pages 319–335. Springer, 1999. 

22. OMG. ”UML Profile for Schedulability, Performance and Time, v1.1”, formal/2005-01-02, 
January 2005. 

23. Idoudi N., Louati N., Duvallet C., Bouaziz R., Sadeg B. and Gargouri F., How to model a 
real-time database. Proceedings of 12th IEEE International Symposium on Object-oriented 
Real-time distributed Computing (IEEE ISORC'2009), Tokyo, Japan, pages 321-325, March 
17-20, 2009. 

24.  Port D., Derivation of Domain Specific Design Patterns. USC Center for software 
engineering, 1998. 

 
 
 
 
 

46    S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg


