A UML-Profilefor domain specific patterns:
Application to real-time

Saoussen RekHisNadia BouassidaRafik Bouaziz, Bruno Sadet

LZMIRACL-ISIMS, Sfax University, BP 1088, 3018, Sfax,fisia.
3LITIS, UFR des Sciences et Techniques, BP 540, 86105Havre Cedex, France.

Ysaoussen.rekhis, raf.bouaziz}@fsegs.rmu.tn
nadia.bouassida@isimsf.rnu.tn
3pbruno.sadeg@univ-lehavre.fr

Abstract. The design of Real-Time (RT) applications is aidifft task since it

must take into account the specification of timestcained data and time-
constrained transactions. The design of these agijghns can be facilitated
through the reuse of RT design patterns that impresiware quality and
capture RT domain knowledge and design expertisaveder, the difficulty of

RT design patterns comprehension reinforces the fi@ed suitable design
language. This language has to express conceptelimpdRT features and
distinguishing the commonalities and differencetsvieen RT applications.

This paper presents new UML notations that take atcount the design of both
RT specific concepts and the variability of domgiedfic patterns. The UML
extensions are, then, illustrated in the RT contasing an example of a
controller pattern.

Keywords: UML notation, domain specific patterns, instantati real-
time applications

1 Introduction

A design pattern [1] is a description of a soluttona common problem in software
design. It captures the design expertise necedsargeveloping applications and
allows the reuse at both the design and code le@dsign patterns can be general and
cover different domains of application (e.g. patteof GoF [1]) and they can, also, be
intended for a particular domain, in this case they called domain-specific patterns
[24].

Despite their advantages, to benefit from desidgtepss, a designer must spend a lot of
time in understanding and then reusing the desidteim in a certain application. To
facilitate the reuse and instantiation phase, madgsign pattern notations have been
proposed ([8], [4], [3]). The proposed approachéfer essentially UML extension
mechanisms such as stereotypes, tags and corsttmintope with the pattern
variability and to show the pattern specificities.

L. Reinhartz-Berger, A. Sturm, Y. Wand, J. Bettin, T. Clark, S. Cohen, J. Ralyté, and P. Plebani (Eds.):
CAIiSE 2010 Workshop DE@CAISE’10, Hammamet, Tunisia, pp. 32-46, 2010.

A UML Profile for domain specific patterns: Application to real-time 33

These design languages with their UML extensionsair insufficient when they deal
with a specific domain. In fact, in the design afecific domain, the design language
has to take into account not only the variabilindahe aspects relative to the pattern,
but also the extensions and specificities of thenaia itself. For example, when
considering the Real Time (RT) domain, we found thés domain has many details
that must be taken into account by the design ipattetation.

In fact, RT applications, which manipulate volumisoquantities of data, have two
main features: i) they manipulate RT data that nolestely reflect the current state of
the controlled environment, and ii) they must bdeato meet RT constraints of
transactions. These two features must be considgr&T design patterns.

This paper proposes a new UML-profile that exteldti#l with concepts related to
RT design patterns. The maotivations behind thesensions are three-folds. The first
motivation is to have flexible patterns that digtiish the fixed parts from the optional
and variable elements in the pattern. The secondvation is to facilitate the
comprehension of design patterns instantiation @nduide a designer to derive a
specific application. The third motivation is toepent design patterns for the RT
domain using the proposed profile which is extendd RT specific concepts.

The remainder of this paper is organized as follofsction 2 overviews and
evaluates currently proposed design languageshaidextensions. Section 3 presents
our proposition to represent an UML profile for Riesign patterns. Section 4
illustrates the design language with a RT contrgiigttern and presents an example of
a freeway traffic management system reusing itti@ec concludes the paper and
outlines future work.

2 Overview of current works

In order, to propose a RT pattern profile, we hbgen inspired in our work from
RT profiles and existing pattern notations. Thus this section we, first, overview
current design languages for pattern's representédfior this reason, we define a set of
criteria necessary for pattern notations and therpresent their advantages and limits.
Second, we briefly present in Subsection 2.2 thepRifiles and the UML extensions
taking into account the real-time system requiresien

2.1 Overview of UML extensionsfor design patternsrepresentation

Several criteria have to be taken into account taluate the currently proposed
languages for pattern representations. Theseiardee used to compare current UML-
based pattern notations, for the specification @fiegal and domain-specific design
patterns and for their instantiation.

- Criteria for design pattern representation at the specification level

C1l. Expressivity: Design patterns have mostly been described usatgral
language, complex mathematical or logic based fiisma [5] [6] which are not easily

34 S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg

understood by an inexperienced designer. This lemdsmplications in incorporating

design patterns effectively into the modelling ohew system. To remediate to this
difficulty, the solution is using an expressiveuas notation based on UML to specify
patterns. This improves the pattern specificatioality because UML allows to easily
visualise, define and document the artefacts ofjlséeem under development.

C2. Variability: The design patterns have to incorporate flexibdind variability in
order to guide the designer in determining thealde elements that may differ from
one application to another. In fact, variabilitsydlassified into optional and alternative
characteristics. So, it is important to show théamal elements which can be omitted
in a pattern instance. It is also necessary tdfgléne variability points (calledhot-
spots) which describe the elements that can vary acogrtli a specific context.

C3. Congtraints definition: The correct instantiation of patterns is a majablem
when we want to design a new system by composisgd@atterns. The validity of an
instantiation depends on respecting the propeitieerent to the solution. These
properties are specified by constraints that ameggly expressed in OCL (Object
Constraint Language) [7]. They are presented owrldes diagram usingptes.

- Criteria for design pattern representation at the instantiation level

C1. Traceability: The traceability consists of easily identifying wgs patterns
when they are applied and composed with other pettén fact, we not only need to
identify each pattern in a design, but also we wtarghow the methods and attributes
that play important roles in the pattern. Expligipresentation of the key methods and
attributes can assist on the traceability of agpatsince it allows us to trace back to the
design pattern from a complex design diagram [8].

C2. Composition: The development of applications using design padteis design
components requires a careful look at compositemiiques, which are categorized
as: behavioural composition techniques and stratttomposition techniques. Indeed,
the behavioural techniques show how dynamic spatifins of patterns can be
composed using sequence diagram, whereas strutdahaliques show how the static
architectural specifications of instantiated pasercan be composed using class
diagram [16].

- UML notations for design patterns

There are several UML notations which proposedresitms to present general design
patterns and domain models. Many of them can beé tisexpress concepts relative to
domain-specific design patterns such as their biét§i. A comparison of the most
recent notations, using the specification and ifis&tion criteria is proposed in Tables
1and 2.

A UML Profile for domain specific patterns: Application to real-time 35
Table1l. Comparison of current notations using the speciticatriteria.
Design pattern specification criteria
Expressivity Variability Definition
of constraint
Dong & This.profile proposes Unlike several others nptatiorsThese notatigns;
Yang notations that focus [8] [4], the proposed profile doesdon't specify
UML more on the patternnot focus on specifying the constraints which
profile applicability context| variability of a pattern solution. | delimit the pattern
3] than on the pattern applicability.
specification.
P_UML proposes This profile is characterized by: | These notations
extensions showing the _Tne definition of tagged valueisPropose to define
pattern hot-spots in g extend the static view: the pattern
class diagram and {variable} indicates that the constraints
guiding the designer in method implementation varidsthrough notes
instantiating a pattern. according to the patter,,containing OCL
However, it does nof instantiation: constraints.
P_UML | gistinguish between the extensible! indicates that th
profile | oxtensions used ip {exensible) indicates that the
8]) ' 'class interface may be extended
pattern Instantiation by adding new attributes and/pr
from those used N methods:
pattern specification} The applicability of the
which ~ reduces the fincomplete} constraint on
expressivity of| generalization relation to indicate
notations. that new classes may be added
during the pattern instantiation
This profile is not very] Unlike all previous notations, this Similar to
expressive since thgprofile focuses on the variability P_UML, this
static view of a pattern in the functional, dynamic and profile uses note$
is presented by verystatic views. The use cagehat contain OCL
elementary separategddiagram is the entrance point fprconstraints. These
packages which containthe instantiation process, wherdatter must be
one or two classes. Thisthe application designer selectd dulfiled by a
Arnaud | reduces thg functionality variant. However| pattern to be
profile understanding angd the use case diagram is to@pplied correctly.
[4] makes the compositiop abstract and can not be used as an
more difficult. input model for the patterns
instantiation. In fact, the use cage
diagram is at a high level qf
abstraction and thus the designer
cannot identify, for example, the
optional attributes or methods
according to its needs.
ADOM-UML is an | ADOM-UML defines new| The constraints
Application based stereotypes in order to denote thare well defined
ADOM- | DOmain Modeling| multiplicity variability of the| in ADOM-UML
UML approach, in which different domain model elements.among the
[18] UML 2.0 is used as the The multiplicity stereotypes aim different layers:

modeling language o
both: the domain an

f to represent how many times

ahe domain layer
&nforces

i model element can appear in

36 S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg

application models
Unlike the previous
works [3] [4] [8], the
ADOM-UML enhances
the expressivity of the
proposed notation
since it well
differentiates betweel
the extensions used |
the language, domai
and application layerg
This means that eac
layer includes modeling
constructs that will be

many>>, <<mandatory
and <<mandatory man
5 stereotype has two
tagged values, min

nupper most m
n boundaries. However,

hdoesn’t enhance the s

specific context. Particularly, th
authors define four stereotype
<<optional single>>, <<optiona

n which define the lowest and th

.‘many’ used in these stereotyp

) UML model since each eleme
in a model can be instantiate

sapplication
| while
>language
henforces
edonstraints on
xpboth domain and
eapplication layers
Besides, ADOM-
dUML specifies
psadditional
ofonstraints
ntdependencies
2dthe domain layer

layer,

the
single> laye
y>>. Eag
associat

and ma

ultiplicity
the wor

emantic and

used in the more implicitly many times. expressed in
specific layer. OCL.
Table2. Comparison of current notations using the instaotiatriteria.
Design pattern instantiation criteria
Traceability Composition

This profile proposes new stereotypes and tad
values for the explicit representation of des

gédis profile deals with the
goomposition of pattern

D

econstraints on the

in

element can serve as a stereotype of an applic

atapplication model is create]

Dong & | patterns in software designs. These extensjosistically. That is, when tw
Yang show the pattern name, the role names of |tbe more classes represent
UML classes, the attributes and the operations in| e overlapping part of the
profile pattern and how many instances of a design parteemposition, the proposed
(3] are applied. notation shows the roles
that these classes play |n
each pattern.
This notation proposes to show the patterdke the previous work [3]
participant roles by using an ellipse in the bottpifis profile proposes
of a class that indicates the pattern name and #wensions showing thp
P UML | role through which this class participates in theomposition of patterns
pr_ofile pattern. Thereby, it provides support for tracesbi| presented by class
8] of pattern instantiation. However, the class diagfadiagrams. It does naqt
may seem to be overloaded since the notatipnesent notations to deal
presents an association between ellipses to jein thith the composition of
elements of the same pattern. patterns dynamig
specifications.
Arnaud | This profile defines a process to show the steps Bifis profile does no
& al. | patterns instantiation. However, it does not perpresent mechanisms o
UML the visualization and preservation of pattern-eslgt compose neither static, nor
profile information in patterns instances in a design mogdelynamic specifications of
[4] angequently, it does not deal with the traceab|lifyatterns.
criterion.
ADOM- | The connection between the domain anthe composition criterion i$
UML application layers is done through the stereotypast taken into account in
(18] extension mechanism. This means that a domalomain models. In fact, ag

A UML Profile for domain specific patterns: Application to real-time 37

element if their meta-classes in the language layeecording to the adaptatig
are the same (e.g., a class that appears in adgnudi one domain model an
model may serve as a classifier of classes in doesn't deal with the
application model). Thereby, ADOM-UML composition of many
provides support for traceability criterion andeusable domainartefacts,
enhances the readability of an application model. such as patterns.

[N

In summary, none of the proposed notations sagisfiethe different specification and
instantiation criteria, when representing patteftdsreover, none of them proposes
extensions showing the behavioral composition.

2.2 Overview of UML extensionsfor RT applications

Several works have proposed UML extensions to take account the real-time
system requirements such &@T-UML [20] and ACCORD/UML [21]. The basic
concepts oRT-UML were integrated in the UML standard through the Updbfile for
Schedulability, Performance, andime (denoted SPT profile) [22]. RecentMARTE
profile [10] for Modeling andAnalysis of Real-Time Embedded systems has been
standardized by the OMG. It is intended to repldogeexisting UML Profile for SPT
profile [22]. MARTE consists in defining extensiotiet provide high-level modelling
concepts to deal with RT and embedded features Imgdes well as specific modeling
artifacts to be able to describe both softwarelamrdware execution supports.

Another work proposed theML-RTDB profile [23] to express real-time database
features in a structural model. Unlike the previquefiles, it supplies concepts for
real-time database modeling such as RT attriblRds methods and RT classes. In
addition, UML-RTDB specifies two kinds of real-tinadtributes sensor attributes and
derived attributes, in order to satisfy the requiremeritswsrent real-time applications.
However, some proposed stereotypes overlap witHJii& extensions presented by
MARTE profile especially those relative to the REtimods. In fact, the UML-RTDB
stereotypes <<Periodic>>, <<Sporadic>> and <<Aperiodic>> that express
respectively periodic, sporadic and aperiodic mashin the class diagrams, has the
same meaning as the tagged vabgeurrence Kind of the <<rtFeature>> stereotype
defined in MARTE. Thereby, we adapt some MARTE et¢ypes modeling RT
aspects instead of the other UML extensions prapdse the modeling of RT
applications since MARTE is a standardized profile.

Nevertheless, the only use of UML notations modgliRT application
characteristics is insufficient to specify RT desjgatterns. That is, RT patterns must
be generic designs intended to be specialized anged by any application in RT
domain. For this reason, in addition to the UMLesdions representing RT aspects,
we need new notations distinguishing the commdaalind differences between
applications in the pattern domain. Moreover, wedheew concepts for the explicit
representation of the pattern elements roles ftréceability purpose.

In the next section, we describe the extensioniswizapropose to take into account
these new concepts.

38 S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg

3 TheUML profilefor RT design patterns

In the present work, we extend the unified modeliagguage “UML 2.1.2" [9]to
represent design patterns for RT applications. &'leasensions allow (i) to express the
variability in a pattern, (ii) to identify the rddeplayed by each pattern element in the
application instantiating it and (iii) to specifylfRapplications constraints and their non
functional properties. The proposed extensionslaseribed in the next section.

3.1 UML extensionsfor specifying domain-specific patterns

In this section, we propose new stereotypes showliegoptional and fundamental
elements participating in a pattern and assistiegdesigner in pattern reuse. Thus, the
class diagram Metamodel is extended with the fdlhgvstereotypes:

« Stereotype <<optional>> (applied to thd=eature UML Metaclass): This stereotype

is inspired from <<optional single>> and <<optiomahny>> stereotypes defined in
[18]. In fact, the variety of applications withiheg RT domain is quite large. For this
reason, we can not speciéyactly how many times a pattern element can appear in a
specific RT application. Thus, we use <<optionalstereotype to represent the
optional features (i.e. attribute or method) that be omitted in a pattern instance.

Each method or attribute which is not stereotypeaptional>> in a fundamental
classifier (i.e. class, interface ...) means thds ian essential element that plays an
important role in the pattern.

« Stereotype <<mandatory>> (applied to the UML Metaclasse€iass, Association,
Interface, Lifeline and ClassAssociation): This stereotype is inspired from
<<mandatory single>> and <<mandatory many>> defimedll8]. We propose the
<<mandatory>> stereotype to specify a fundamenté&ment (association,
aggregation,...) that must be instantiated at lease doy the designer when he models
a specific application. For the clarity purposduadamental element in the pattern is
drawn with a highlight line like this clag.

Besides, each pattern element which is not highdidjimeans that it is an optional one,
except the generalization relation that permitsefaresent alternative elements. All the
attributes and methods of an optional class ardiditip optional.

- Stereotype <<extensible>> (applied to the UML Metaclasse€lass, Interface and
ClassAssociation): This stereotype is inspired from {extensibleg§¢md value proposed
in [8]. It indicates that the class interface may dxtended by adding new attributes
and/or methods. Moreover, two properties relatedh® extensible stereotype are
proposed, in order to specify the type of featyatribute or method) that may be
added by the designer.

- extensibleAttribute tag: It takes the valufalse, to indicate that the designer cannot
add new attributes when he instantiates the patt@tinerwise, this tag takes the
valuetrue.

- extensibleMethod tag: It indicates if the designer may add new méshwhen he
instantiates the pattern. The default valueus.

A UML Profile for domain specific patterns: Application to real-time 39

- Stereotype <<variable>> (applied to the Operation UML Metaclass): This
stereotype has the same meaning with the {variatzigged value proposed in [8]. It
indicates that the method implementation variesiting to the pattern instantiation.

3.2 UML Extensionsfor instantiating domain-specific patterns

Some of the existing notations (Dong & Yang UML fideo[3] and P-UML profile [8])
provide support on how to keep trace of the pattenan instantiated. These notations
focus only on generic design patterns for whicis itlifficult to recognize the pattern
instance when it is composed with others in a paldr design. Thus, it is essential to
hold the pattern name and the role played by elrhent (class, attribute and method)
in the instantiation.

However, a domain specific pattern is instantiabedthe scope of a domain.
Therefore, it is easy to retrieve the pattern-ssldhformation even after the pattern is
applied or composed with other patterns. We asshateomitting both the name and
the role of pattern attributes and operations wilt create any ambiguity. For this
reason, we propose to present only the pattern mantie¢he role names of the classes
in order to avoid overloaded models. In fact, patelated information should be
minimized in the class and sequence diagrams &afataility [3].

We propose to define two new stereotypes for th@iak visualization of patterns
in an application design:

« <<patternClass>> stereotype: It is applied to tl@ass UML metaclass in order to
indicate that it is an instantiated pattern claws ot originally defined by the designer.
We propose to define two properties related todteseotype:

- patternName tag : indicates the pattern name,

- participantRole tag : indicates the role played by the classpatéern instance.

« <<patternLifeline>> stereotype: It is applied to tHéfeline metaclass in order to

distinguish between the objects instantiated frow pattern sequence diagram and
those defined by the designer. This stereotype thes same properties than
<<patternClass>> stereotype.

These stereotypes allow to eliminate any confugiben patterns are composed. That
is, when two or more classes represent the ovargppart of the composition, the
proposed stereotype shows the roles that thessesladay in each pattern.

3.3 UML extensionsfor modeling RT aspects

In addition to the above described stereotypesndigishing the fixed parts from the
optional and variable parts in the pattern, thecéijgation of RT design patterns needs
UML extensions supporting the modeling of RT aspethus, we import stereotypes
from HLAM (High Level Application Modeling) and NFENon Functional Properties)
sub-profiles of MARTE [10] (cf. figure 1). Note thaMARTE provides support
required from specification to detailed design df &nbedded systems characteristics.
However, only the extensions describing RT applcest features at a high level of

40 S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg

abstraction are taken into account since RT patteam be instantiated to model many
RT applications and not only the embedded systems.

From HLAM sub-profile, we import the <<rtFeaturestereotype in order to model
temporal features. This stereotype extends thealastses: message, action, signal and
behavioral features. It possesses nine tagged sratmeong which: relD1 (i.e.
specification of a relative deadline), absD1 (§pecification of an absolute deadline),
Miss (i.e. percentage of acceptance for missingl#aaline), occKin (i.e. specification
of the type of event: periodic, aperiodic or spérad. . We propose to annotate each
model element that has real-time features withptleeiously described stereotype.

1 I
MARTE :: NFP sub-profile MARTE :: HLAM sub-profile
A 4
. <<import>> <<import>>
RT patterns profile ' P ' P
L 1
1 1
== e |
: pa £ patternLifeline :
1 q 1
= patternMame: String [1] -
!) . R £} patternMame: String [1] !
: & paticipantRole: String [1] :_ _____ --- B participantRole: String [1] :
Bommmmmmmmmm oo & ----- - (um) bsIoooIZozIZZIIZZzIZZzzatooood
" Lifeline N 1
: : {urai) 1 {umi) {umi) {urai) :
" Class [N W | Association Feature Operation 1
3 4—;—‘ I
b A ! A A A !
': """""""""" «sterentypes :
! cstereatypes mandatory «sterectypes ssterectypes |
: extensible optional variable :
1 1
|| & extensibleAttribute: Boolean [1] |
|| & extensibleMethod: Boolean [1] |
|] |
| (urn) |
B
! ¥ AssociationClass {urnd) !
: Interface :
1 - 1
1 Ll 1
P -
___. Instantiation pattern Extensions
--- Specification pattern Extensions

Fig 1. RT pattern profile Metamodel

From NFP Modeling sub-profile of MARTE, we impowad stereotypes: <<Nfp>>
and <<NfpType>>. The first one extends the Propewyaclass. It shows the attributes
that are used to satisfy non functional requiremenhe second stereotype extends the
DataType metaclass. There is a set of pre-decldFeéel Types which are useful for
specifying NFP values, such as NFP_Duration, NFRagiae and NFP_DataTxRate.

In the following section, we illustrate the RT dgsipattern profile through the
specification of RT controller pattern.

A UML Profile for domain specific patterns: Application to real-time 41

4 A RT design pattern example

In this section, we propose to illustrate the psmabextensions through an example of
a reusable RT design pattern that explicity shawe generic data which are
fundamental and which represent the core of RTiegains, on the one hand, and the
allowed variants, on the other hand.

4.1 RT controller pattern

RT applications perform several RT processes amwdrigh: the RT data acquisition
and the data control processes. We focus in thgempan modeling the static as well as
the dynamic view of RT data control process throtlgh definition of RT controller
pattern.

- Interface:
Name: controller pattern
Context: This pattern is applicable in all RT applicatiomsich need to be managed by
Real Time Database (RTDB) systems. In fact, a RTHaB all the requirements of
traditional databases, but it also requires managérof time-constrained data and
time-constrained transactions [11].
Intention: The pattern aims to model the control of the @daiguired from environment
and the initialization of corrective action(s) ivelation is found.

- Solution:
Satic specification: Figure 2 presents the controller pattern statievvie

Participants:

- Observed_element: This class represents theig#sorof a physical element that
is supervised by the controller. It can be an aftcia car, a road segment, and so on.
One or more measure types (i.e. Temperature, Regsstie) of each observed element
could determinate its evolution. These measureslassified into either base measures
or derived measures. Base measures stand for RiTtlizt are issued from sensors,
whereas derived measures stand for RT data thatadoelated by the controller using
base measures. The refreshment of each derivedaRiTigdrequired every time one of
the base data is updated.

The ObservedElement class has theElmentlD and ElementSatus fundamental
attributes. In addition, it has dspdateStatus () method allowing to update the status of
observed element according to the variation otcdpgured values.

- Controller: A controller has to monitor physicalements for responding to
conditions that might violate safety. It takes pditally the value captured for each
observed element as well as the minimum value lamdniaximum value that define the
interval for which the controller does not detestamomaly. If a captured value does
not verify the boundary constraint, then the cdigranitiates some corrective actions,
such as a reset and a shut-down, or sends an tarotify an operator.

On the other hand, the controller receives peraljican update message from an
observed element to notify it about the modificataf its measures. In this case, the

42 S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg

controller is waiting for a message. If this messdges not arrive on time, then the
controller performs appropriate recovery action$[1
As illustrated in Figure 2, the controller class tiaur methods. The only fundamental
method isVerifyValue()since it is essential to check that the boundanstaints are
fulfilled for all RT applications. This method iegormed periodically. In addition, it
must be achieved before a deadline. Thus, \teefyValue()method is stereotyped
<<rtFeature>> in order to define the periodicite relative and absolute deadlines that
are tagged respectively period, relDl and absDEk ethodCalculateDerivedValue()
is optional since it can be omitted in a patterstantiation, when the designed
application does not have derived measures. teieatyped <<rtFeature>> since it is
sporadic and has to meet the deadline defined &yésigner. The methoastify(),
initiateCorrection() are optional since the choice of the approprig@overy action
depends on the application instantiating the patter

- Operator: The alarm signals sent by the contraltersupervised by the operators.
These latter provide decisions to validate repoitedients in case the controller only
reports errors and does not have the responsikdlitstke further actions; or in case the
confirmation of an operator is needed to achieeectirrection.

The Operator class is optional since the contralber take the correction initiative
without the intervention of an operator.

cextensibles
Controller «extensibles

Observed_Element

+maonitar

ertFeatures verifyValue(): Boolean 1] 1.7 & element_Description: String
% «optional, tFeatures calculateDerivedyalue() &l element_Status: <Undefined>
% «optional, rtFeatures notify()
% coptional, tFeatures initiateCorrection() @ update_Status()
[0.1]
«extensibles
Operator

= operatar_|D: String

@ validate)

Fig 2. Specification of RT controller pattern static view

Dynamic specification: Figure 3 presents the controller pattern dynangewi

In order to verify the validity of each observe@rabnt measure, the controller takes
the current captured value and the value threshiolgsarallel. Then, it verifies that
each measured value is in the closed range [Miniswame, Maximum-value]. If this
constraint is violated or the update message redeiom an observed element occurs
too late, then the controller notifies the operaipiinitiates the appropriate recovery
actions.

A UML Profile for domain specific patterns: Application to real-time 43

st monitor measures

:controller :observedElement :measure (from sensor pattern) operator

! 1
loop | [For each measufe of an observedElement]

D:-‘ <<rtFeature>> VerifyValue (val, MinVal, MaxVal)

T

1

1

1

par o | update L I
o 1
o ———— ——— — - ———————————— - ————— 1
1 1

getUpdatedValue ()# getvalue () N ,

1

val val !

rc— - — — —— —— — — — |
1

________________ e ,
getMinimumValue () |

1

. N 1

e _Minval || Minval | :
1

getMaximumValue () | 1

bl 1

1

e _Maxval || _ _ Maxval__ __ _| :
as an N |
1l L ! I
1

1

1

1

|

1

1

1

opt [If (val?'MaxVaI || val<MinVal) || time out of update message]
D <<rtFeature>> notify () _ﬂ
!

opt | [If (val>:Ma><VaI || val<MinVal) || time out of update message]

Dq_-‘ <<rtFeature>> initiateCorrection ()

Fig 3. Specification of RT controller pattern dynamicwie

4.2 RT sensor pattern instantiation: an example

This section proposes to illustrate the reuse otcBftroller pattern through the design
of freeway traffic management system.

The increasing road transport traffic and the isaasrise of the number of vehicles
have caused a great growth of the magnitude ofidréibws on public roads. In
consequence, freeway traffic management systeme bhatome an important task
intended to improve safety and provide a betteelledf service to motorists. We
describe, in the following an example of a freewsgffic management system:
COMPASS [19]. We focus precisely on modeling thenpass control data subsystem
and we explain how this design issue can be fat#it by the reuse of the RT
controller pattern.

The current traffic state is obtained from the a#aé sources: inductance loop
detectors and supervision cameras. In fact, vehielector stations use inductance
loops to measure speeds and lengths of vehicictdensity (i.e. number of vehicles
in a road segment) and occupancy information. WArthe supervision cameras are

44 S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg

used to supplement and confirm the data receivexigin the vehicle detector stations
and to provide information on local conditions whiaffect the traffic flow. The
processed data are then transmitted at regularititeevals to the Central Computer
System to monitor traffic and identify traffic imlgnts, when they occur.

Figure 4 illustrates the class diagram of the frgtwaffic management system reusing
RT controller pattern. It indicates that thentroller monitors two types of elements
(Road_Segment and vehicle). In addition, theOperator optional class is instantiated

since it is essential to notify the operators of detected events in the COMPASS
system.

spatternClazss
Surveillance_Operator

epatternClasss 1 login: String

patternMarne = contraller = password: String

]

=

articipantRole = operatar
P P P . epatternClasss
@ validate() patterniame = controller
1.7 patticipantRole = observedElement
s
spatternClasss !
patternMame = controller spatternClasss
participantRole = controller Vehicle
i [1] 0 5 wvehicle_nurn: String
gpatternClasss [l
Controller
epatternClasss
& ertFeatures verifyvalue(): Boolean Road-Segment
@ ertFeatures notify() .) N
@ entFeaturer calculateDerivedinfoTrafficy 1 (]| =5 i (ol [eetings iy
= end_point_location: String
) road_Status: String
Incident 1l @ update_Status)

=} incident_type: String
£} incident_instant: DateTime

spatternClasss
patternMarme = caontroller
patticipantRole = observedElement

Fig 4. Example of controller pattern instance

5 Conclusion

The design of RT applications differs from the desbf classical applications. RT
applications have to guarantee that each actiangarction) meets its deadline, and that
data are used during their validity interval. Thiisis necessary (i) to give a great
importance to RT applications design and (ii) todfé from previous experiences of
developers by reusing the knowledge previously @medun the design practices. For
this reason, dealing with RT domain engineeringobes a necessity since it allows to
identify reusable patterns which reduce the complef RT applications design.

A UML Profile for domain specific patterns: Application to real-time 45

In order to represent RT design patterns in a meeglable manner, this paper
proposed UML-based extensions distinguishing cfebetween the different parts
constituting the pattern. These extensions helpldsggner in determining the variable
elements that may differ from one application tother and allows to identify, easily,
design patterns when they are applied to modelrécpkar RT application. Besides,
this paper proposed to guide the designer in mogdéatures specific to RT domain
through the use of stereotypes imported from MARfi6file. These stereotypes
provide facilities to model RT applications chagaidtics at a high abstraction level,
being independent from the nature of tools usedhferimplementation of RT systems.
The paper illustrated the proposed notations thiahg specification of RT controller
pattern and its instantiation to design a freewaffit management system.

Our future works include two axes. Firstly, we lyeking into the formalization of
RT design patterns. Secondly, we must examine bowégrate the design patterns in
the context of the model driven architecture ineortb add more assistance when
generating models by reusing patterns. This cotiligmew benefits and impulse for
both the knowledge capturing techniques and théwsoé development process
quality.

References

1. Gamma E., Helm R., Johnson R.E, Vlissides J.igDepatterns: Elements of Reusable
Object-Oriented Software, Addison-Wesley Editio894.

2. Fowler M., Analysis Patterns — Reusable Objectidls, Addison-Wesley, 1997.

3. Dong J. and Yang S., Visualizing design pattemith a UML profile, proceedings of IEEE
Symposium on Human Centric Computing Languages anddfments, pp: 123-125, 2003.

4. Arnaud N., Front A.and Rieu D., Expression efgasde la variabilité¢ dans les patrons de
conception, Revue des sciences et technologiesirdertation, série : Ingénierie des
Systemes d'Information, vol. 12/4, pp. 21-24, 2007.

5. Eden A.H., Gil J., Hirshfeld Y., Yehudai A., Wards a mathematical foundation for design
patterns, Technical report, dept.of informatiorhtemogy, U.Uppsala, 1999.

6. Mikkonen T., Formalizing Design Patterns, Pi2@ath International Conference on Software
Engineering— ICSE, pp. 115-124, 1998.

7. OMG, UML 2.0 OCL specification, 2003.

8. Bouassida N., Ben-Abdallah H., Extending UML tddg design pattern reuse, Sixth Arab
International Conference On Computer Science Appdinaf Dubai, 2006.

9. OMG, Unified Modeling Language (UML) Infrasttuce: v2.1.2, formal/2007-11-04, 2007.

10. OMG, A UML Profile for MARTE: Modeling and Angis of Real-Time Embedded
systems, OMG document number: ptc/2008-06-09, 2008.

11. Ramamritham K., Real-Time Databases. Journal isfributed and Parallel Databases,
1(2):199-226, 1993.

12. Ramamritham K., Son S., and DiPippo L., Real-Thaabases and Data Services. Real-
Time Systems, 28:179-215, 2004.

13. Kim D.K., France R., and Ghosh S., A UML-batmtjuage for specifying domain-specific
patterns, Journal of Visual Languages and Compuppg65—289, 2004.

14. Douglass B. P., Real-Time Design Patterns: RoBuatable Architecture for Real Time
Systems, Addison-Wesley Edition, September 27, 2002

15. M. Amirijoo, J. Hansson, and S. H. Son. Speatfon and management of QoS in real-time
databases supporting imprecise computations. |E&Rs&ctions on Computers, 55(3), 2006.

46 S. Rekhis, N. Bouassida, R. Bouaziz, and B.Sadeg

16. Yacoub S. M., Ammar H., Pattern-Oriented Anigly@nd Design: Composing Patterns to
Design Software Systems, Published by Addison-WeRtefessional, August 2003.

17. Czarnecki K., Eisenecker U.W., Generative Pmogrmamg — Methods, Tools, and
Applications, Addison-Wesley, 2000.

18. Reinhartz-Berger 1., Sturm A., Utilizing domaimdels for application design and validation,
Information and Software Technology, vol 51, patjgg5-1289, 2009.

19. COMPASS Website, Available from:
http://www.mto.gov.on.ca/english/traveller/compassih.htm

20. Douglass B. Real Time UML, Third Edition : Adeas in The UML for Real-Time
Systems. Pearson Education, Inc, 0-321-16076-24.200

21. Lanusse A., G’erard S., and Terrier F.. Reaktimodeling with UML: The ACCORD
approach. In J. B’ezivin and P.-A. Muller, editoffhe Unified Modeling Language,
UML’'98- Beyond the Notation. First International Vkshop, Mulhouse, France, June 1998,
Selected Papers, volume 1618 of LNCS, pages 319-S38mger, 1999.

22. OMG. "UML Profile for Schedulability, Performee and Time, v1.1", formal/2005-01-02,
January 2005.

23. Idoudi N., Louati N., Duvallet C., Bouaziz R., 8gdB. and Gargouri F., How to model a
real-time database. Proceedings of' 1PEE International Symposium on Object-oriented
Real-time distributed Computing (IEEE ISORC'2009), Tmkjapan, pages 321-325, March
17-20, 2009.

24. Port D., Derivation of Domain Specific DesidPatterns. USC Center for software
engineering, 1998.

