
SPARQLAS - Implementing SPARQL Queries
with OWL Syntax

Mark Schneider

WeST — Institute for Web Science and Technologies
University of Koblenz-Landau

Universitaetsstrasse 1, Koblenz 56070, Germany
mschneider@uni-koblenz.de

Abstract. Using SPARQL for writing queries on OWL-DL ontologies
can be complicated due to its RDF triple semantics. Translating OWL ex-
pressions to this semantics is a non-trivial problem. We present SPARQL-
DL Abstract Syntax (SPARQLAS), a proper subset of SPARQL, to solve
this issue by employing the OWL Functional-Style Syntax to compose
queries. We illustrate how the translation is made possible by a model-
to-model transformation and how a query can be connected to an UML
model. Finally, we evaluate SPARQLAS against SPARQL and show the
efforts of SPARQLAS for queries on OWL-DL ontologies.

1 Introduction

With the W3C recommendation for SPARQL [1] as the query language for
RDF, querying OWL-DL ontologies can be quite complicated. Having OWL
Functional-Style Syntax [2] recommended to write new ontologies, it becomes
more difficult than necessary to query such ontologies using SPARQL. The main
problem lies in SPARQL and its RDF triple semantics. If a user wants to query
an OWL-DL ontology, he needs to translate his accustomed OWL syntax to the
proper representation in RDF triples. This translation, if done manually, can be
time consuming and is prone to syntactic as well as to semantic errors.

Existing approaches, which do not rely on RDF triples to specifically query
OWL-DL ontologies, are lacking in different aspects. Terp [3] uses SPARQL as its
query language and allows Manchester Syntax constructs to simplify the query.
However, Terp is dependent on Pellet as its SPARQL processing engine and is
consequently not applicable to other engines. SAIQL [4] introduces a new OWL-
DL query language that solves the RDF triples issue, but it is not compatible
to SPARQL. jOWL’s implementation of SPARQL-DL [5] resolves the problem
by applying OWL Functional-Style Syntax like axioms for querying, yet it only
covers a restricted set of OWL-DL expressions.

Therefore, we introduce SPARQL-DL Abstract Syntax (SPARQLAS) that
combines employing SPARQL to query OWL-DL ontologies and using OWL
Functional-Style Syntax to compose queries. With SPARQLAS, the user does
not have to translate between two languages, but is still able to utilize any

Fig. 1. Conceptual Approach

SPARQL processing engine that supports the OWL-DL entailment regime. The
optional application of a shortened version of the OWL Functional-Style Syntax
simplifies queries even more.

These advantages of SPARQLAS are accomplished by creating a new and
more readable syntax out of SPARQL and the OWL Functional-Style Syntax
and by transforming SPARQLAS to SPARQL. The transformation itself makes
a special SPARQLAS processing engine needless and assures an easy embedding
of SPARQLAS into running IDEs.

In the following, we first present in Section 2 the implementation of
SPARQLAS at the TwoUse Toolkit. There we elaborate the conceptual approach
of how a SPARQLAS query is parsed, transformed and printed to a SPARQL
query before discussing the realization of the textual syntax and the core trans-
formation. In Section 3 we show a concrete application example and in Section
4 we evaluate the efforts of SPARQLAS against SPARQL. Finally in Section 5,
we conclude and discuss some future work.

The example throughout this paper deals with the commonly known wine
ontology [6] and is querying for the region in which German wine is located.

2 Implementation

2.1 Conceptual Approach

To get a SPARQLAS query translated to a SPARQL query, we first need to
define a meta model for each language so that a model transformation can be
performed upon. For writing a SPARQLAS query and a subsequent use of a
SPARQL query, those meta models have to be linked to a textual syntax. Fig.
1 illustrates the conceptual approach and shows what steps need to be realized
for the complete translation.

Both textual syntaxes to SPARQLAS and SPARQL are created by using
the Eclipse plug-in EMFText1. EMFText is able to generate a textual syntax
derived from a meta model in Ecore [7] and a grammar in EBNF [8] notation.
It also provides the parser to achieve an EMF Resource from a SPARQLAS

1 http://www.emftext.org/index.php/EMFText

query and the printer to compose a SPARQL query out of an EMF Resource.
The actual translation between both EMF Resources is performed by an ATL2

model-to-model transformation.

2.2 Textual Syntax

The first action for implementing SPARQLAS is developing its textual syntax
with EMFText, since a textual syntax for SPARQL is already available at the
EMFText Concrete Syntax Zoo [9]. SPARQLAS is based on the theoretical con-
cepts of SPARQL-DL [10] and adopts the framework of SPARQL, but replaces
the RDF triples inside its Where clause by the OWL Functional-Style Syntax or
a shortened version of it. There are all four kinds of queries supported, namely
Select, Construct, Ask and Describe. One of SPARQLAS’ goals is to make queries
more readable, thus some SPARQL constructs are either simplified or completely
omitted. For example there is no difference between BASE and PREFIX any-
more, there is only the possibility to declare a Namespace with or without a
prefix. The complete SPARQLAS grammar can be found within the online rep-
resentation of the TwoUse project [11]. By means of these simplifications, the
example SPARQL query

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX owl: <http://www.w3.org/2002/07/owl#>

PREFIX : <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>

SELECT DISTINCT ?x

WHERE {

:GermanWine owl:equivalentClass [

rdf:type owl:Class ;

owl:intersectionOf [

rdf:first :Wine ;

rdf:rest [

rdf:first [

rdf:type owl:Restriction ;

owl:onProperty :locatedIn ;

owl:hasValue ?x] ;

rdf:rest rdf:nil]]] }

can be reduced to this SPARQLAS query:

Namespace

(=<http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>)

Select

Where(EquivalentClasses(GermanWine And(Wine Has(locatedIn ?x))))

2 http://www.eclipse.org/m2m/atl/

Prologue From (Named) Query Syntax

SPARQL Prefix, Base yes RDF Triple

SPARQLAS Namespace no OWL-DL Expression

Optional Graph Union

SPARQL yes yes yes

SPARQLAS no no no

Filter Order Limit

SPARQL yes yes yes

SPARQLAS no no no
Table 1. Differences between SPARQL and SPARQLAS constructs

2.3 Model-to-Model Transformation

The ATL model-to-model transformation can be divided into two parts, the
prologue and the query itself. The prologue consists of the Namespace declaration
and will be transformed to the equivalent PREFIX notation. During the query
part, the query form will be identified first and transformed to accordingly. If it
is a Select query, the option DISTINCT will be set additionally. Then the main
contribution of each transformation starts, translating an OWL expression to its
equivalent RDF triple(s). These translations are based on specific OWL to RDF
mapping rules [12, 13] and also finalize the transformation.

This way the expressiveness of SPARQLAS queries is equivalent to SPARQL
queries using only RDF triples of the aforementioned mapping rules, which makes
SPARQLAS a subset of SPARQL. Further, SPARQLAS is even a proper subset
of SPARQL since not every SPARQL construct can be expressed by SPARQLAS,
e.g. FILTER or OPTIONAL conditions. These constructs are omitted with
regard to simplicity and readability. The complete list of differences between
SPARQLAS and SPARQL can be found in Table 1.

This specific SPARQLAS to SPARQL transformation is implemented at
the TwoUse Toolkit3 and can be executed by opening the context menu on
a SPARQLAS file under the entry TwoUse → Transform to SPARQL.

3 Application

As a running application example, we present SPARQLAS for UML. Fig. 2
depicts a sample UML diagram according to the example query annotated with
stereotypes from the UML Profile for RDF and UML Profile for OWL [14]. Out
of this UML model, an ontology can be produced by another transformation
implemented at the TwoUse Toolkit. This ontology can then be queried using
SPARQLAS.

We developed a context menu function on UML Operations via
SPARQLAS for UML → Add SPARQLAS Query, which creates an

3 http://code.google.com/p/twouse/

Fig. 2. SPARQLAS for UML example

empty SPARQLAS Select query with the given Namespace from the
UML profile. This query file will be named after the convention
fileName.className.operationName.sparqlas4uml, e.g. according to Fig. 2 it
will be named Wine.uml.GermanWine.getRegion.sparqlas4uml. Strictly speak-
ing this is a SPARQLAS4UML query, but it imports the whole SPARQLAS
language and so shall indicate that a SPARQLAS query is linked to an actual
UML file. Furthermore, this link between UML file and query will also be ex-
pressed at the UML file itself as the EMF Resource will be added to the model
and so the query can be directly accessed through the UML model. This way it
is possible to automatically generate SPARQLAS queries from UML diagrams.
For this example the following empty Select query will be constructed:

Namespace

(= <http://www.w3.org/TR/2003/PR-owl-guide-20031209/wine#>)

Select

Where ()

4 Evaluation

At this point we would like to evaluate SPARQLAS against SPARQL. For this
purpose we examine 60 different test queries in two different ways with regard
to complexity. First, we compare the underlying meta model of SPARQLAS and
SPARQL. Due to EMFText every test query in textual syntax has an EMF
Resource representation, therefore we can count each instantiation of a meta
model class in these EMF Resources. To accelerate this counting process for
a total of 120 queries, we make use of another plug-in of the TwoUse Toolkit
called OWLizer, which can create ontologies out of Ecore based languages, e.g.
EMF Resources. These ontologies consist of the desired individuals that we need
to count and compare to achieve one indicator of complexity. After this proce-
dure, we obtain a result that implies a substantial reduction in complexity of
SPARQLAS queries against SPARQL queries. SPARQLAS queries reduce the

count of individuals in average by 82% with a minimum of 71% and a maxi-
mum of 88% reduction with a standard deviation of 4%. The absolute numbers
of individuals range from 5-32 for SPARQLAS queries and 31-178 for SPARQL
queries.

The second evaluation kind deals with the length of each query, but instead
of counting every single character, we compare the count of OWL expressions in
each SPARQLAS query to the count of RDF triples an equivalent SPARQL query
needs. This method ensures that the effort of using OWL expressions rather
than RDF triples can be evaluated. The results of this procedure suggest that
the efforts may not be as predominant as with the other evaluation scenario, yet
the average reduction is by 50% with a maximum of 82% but having a standard
deviation of 31%. This high standard deviation is explained by the fact that
there are actual queries with no effort, i.e. one OWL expression is equivalent to
one RDF triple, e.g. in case of ClassAssertion. However, there is only no effort in
simple cases, more complex queries, especially nested queries, are showing more
and more reduction. The absolute numbers of OWL expressions resp. RDF triples
of our test queries range from 1-5 resp. from 1-23.

5 Conclusion and Future Work

In this paper we have presented the implementation of a novel query language for
OWL-DL ontologies, called SPARQL-DL Abstract Syntax (SPARQLAS), that
combines SPARQL and the OWL Functional-Style Syntax or a shortened version
of it. The possible application of two different syntaxes with the same underly-
ing meta model indicates that the specific querying syntax is easily changeable.
This language can be employed just like a SPARQL query after the execution
of a model-to-model transformation from SPARQLAS to SPARQL. We have
demonstrated in a running application example, SPARQLAS for UML, how
SPARQLAS queries can be connected to UML models and performed on on-
tologies created from these models by applying the UML Profile for RDF and
UML Profile for OWL. Further, we have shown by means of an evaluation that
SPARQLAS is effectively reducing the complexity of a query on an OWL-DL
ontology, especially for nested queries.

In our future work, we will enhance SPARQLAS to support the Manchester
Syntax and discuss the usage of other syntaxes as well. This way the user will be
able to choose his preference among these syntaxes. Additionally, we will create
a new application example to connect queries with Ecore models, SPARQLAS
for Ecore, since the OWLizer plug-in is capable of generating ontologies from
such Ecore models.

Acknowledgments

The work presented in this paper is supported by EU STReP-216691 MOST.

References

1. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF
(15.01.2008) http://www.w3.org/TR/rdf-sparql-query/.

2. Motik, B., Patel-Schneider, P.F., Parsia, B.: OWL 2 Web Ontology Language
Structural Specification and Functional-Style Syntax (27.10.2009) http://www.

w3.org/TR/owl2-syntax/.
3. Bulka, B.: Pellet 2.1: Introducing Terp (01.04.2010) http://clarkparsia.com/

weblog/2010/04/01/pellet21-terp/.
4. Kubias, A., Schenk, S., Staab, S., Pan, J.: OWL SAIQL - An OWL DL Query

Language for Ontology Extraction. In: OWLED 2007 OWL: Experiences and
Directions Third International Workshop. (06.2007)

5. Decraene, D.: jOWL - SPARQL-DL Test Suite (03.2009) http://jowl.

ontologyonline.org/SPARQL-DL.html.
6. W3C: Wine Ontology (10.02.2004) http://www.w3.org/TR/2004/

REC-owl-guide-20040210/wine.rdf.
7. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework. 2nd ed., rev. and updated. edn. The eclipse series. Addison-Wesley,
Upper Saddle River, NJ (2009) 17-23.

8. International Organization for Standardization: ISO/IEC 14977:1996: Information
technology - Syntactic metalanguage - Extended BNF (1996) http://standards.

iso.org/ittf/PubliclyAvailableStandards/index.html.
9. EMFText: EMFText Concrete Syntax Zoo SPARQL (20.02.2010) http://www.

emftext.org/index.php/EMFText_Concrete_Syntax_Zoo_SPARQL.
10. Sirin, E., Parsia, B.: SPARQL-DL: SPARQL Query for OWL-DL. In: 3rd OWL:

Experiences and Directions Workshop (OWLED2007). (2007)
11. Schneider, M.: SPARQLASGrammar (13.04.2010) http://code.google.com/p/

twouse/wiki/SPARQLASGrammar.
12. Patel-Schneider, P.F., Horrocks, I.: OWL Web Ontology Language Semantics and

Abstract Syntax: Section 4. Mapping to RDF Graphs (06.02.2004) http://www.

w3.org/TR/owl-semantics/mapping.html.
13. Patel-Schneider, P.F., Motik, B.: OWL 2 Web Ontology Language Mapping to

RDF Graphs (28.10.2009) http://www.w3.org/TR/owl2-mapping-to-rdf/.
14. Object Management Group: Ontology Definition Metamodel (05.2009) 131-179,

http://www.omg.org/spec/ODM/1.0/.

