
A Feasibility Study on the Validation of Domain
Specific Languages Using OWL 2 Reasoners

Ye Liu, Sören Höglund, Ali Hanzala Khan, and Ivan Porres

TUCS Turku Centre for Computer Science
D. of Information Technologies, Åbo Akademi University

Joukahaisenkatu 3-5, FI-20520 Turku, Finland
e-mail:name.surname@abo.fi

Abstract. In this article we report on our experiences using the OWL
2 reasoners HermiT and Pellet to validate domain-specific languages de-
fined using UML-like metamodels. Currently there exists few tools to
validate metamodels. Using ontologies and reasoners to define and val-
idate metamodels is a possible solution to this problem. We evaluate
the reasoners according to expressiveness, correctness, performance and
problem reporting capabilities. We use metamodels from the Atlantic
Zoo metamodel repository as input for our comparison, and report on
our experiences with the zoo.

1 Introduction

Model Driven Engineering (MDE) [8] advocates the use of models to represent
the most relevant design decisions in a software development project. Each soft-
ware model is described using a particular modeling language, such as the Unified
Modeling Language (UML) [13] or a domain-specific language. The definition of
a modeling language is given using a metamodeling language or a language to
define modeling languages. These metamodeling languages share common fun-
damental concepts such as classes, properties and the specialization of classes
and properties, we call such languages UML-like metamodeling languages.

The study of metamodeling languages has led to a number of practical tools
such as model repositories, diagram editors, model transformation tools and
code generation tools that simplify enormously the creation of new development
tool chains that use UML or domain-specific modeling languages in software
development projects. However, the topic of metamodel validation is seldom
discussed and there is a lack of tool support for this task.

In our previous work [6], we described a mapping from a UML-based meta-
modeling language to OWL 2. In this article we discuss our practical experiences
in validating metamodels from a public repository using two OWL 2 reasoners.
The main objective of these experiments is to obtain empirical evidence that the
idea of using OWL 2 reasoners to validate metamodels in practice is viable.

We proceed as follows: in Section 2 we discuss the need for metamodel valida-
tion. In Section 3 we detail the objectives of the study. In Section 4, Section 5 and
Section 6 we present the materials used in the investigation. Section 7 presents
the results, and Section 8 is the conclusion.

2 The need for Metamodel Validation

The creation of a new metamodel is not a simple task since it requires a good
knowledge of the problem domain and how to capture its properties using a small
set of metamodeling concepts. A metamodel often includes many constraints on
how concepts in a model can be related to each other, such as multiplicity,
domain and range, composition and subset constraints. If not chosen carefully,
these constraints may lead to contradictions.

For example, lets assume we are creating a metamodel for a Statechart lan-
guage that includes concepts such as simple states, composite states (that can
contain other states) and transitions between states. A fragment of such a meta-
model is shown in the top of Figure 1. This metamodel contains a rather obvious
contradiction: there is an association with the minimum multiplicity larger than
the maximum multiplicity. This contradiction means that there are no valid
models that can make use of this association.

Fig. 1. Examples of invalid metamodels. Top: Invalid due to multiplicity. Bottom:
Invalid due to composition error

Another possible contradiction is shown in the bottom of Figure 1. The de-
picted metamodel requires each instance of State to be in a composite rela-
tionship with an instance of CompositeState. However, as CompositeState is a
subclass of State it inherits this requirement, which leads to each instance of
CompositeState having to be in a composite relationship with another instance
of CompositeState. Given a finite set of instances of CompositeState, it is im-
possible not to violate one of the composition requirements — elements having
only one owner and there being no cycles in the compositon. As a consequence
there is no model with a finite number of elements that conforms to the given
metamodel.

As shown in the examples, we consider it necessary to validate a new meta-
model to ensure that no such problems exist before actual tools and models are
created.

2.1 Metamodel Validation using OWL2 Reasoners

To tackle the previous problem, we are working towards the integration of an au-
tomatic metamodel validation tool in a metamodel editor. The validation is based
on the idea of translating a metamodel into an ontology and using a reasoner
to check the ontology for consistency and class satisfiability. We have decided to
use the OWL 2 Web Ontology Language [1] as our metamodel representation
language.

OWL 2 provides classes, properties, individuals, and data values, that we
can use to define the main concepts of UML-like metamodeling languages as
shown by the authors [6]. OWL 2 has different concrete syntaxes (functional-
style syntax, Manchester syntax, RDF/XML, etc.). In this article, we use the
OWL 2 functional-style syntax, because it allows ontologies to be written in a
compact form and preserves readability.

We have noticed that OWL 2 is not expressive enough for some restrictions in
metamodels. For instance, there is no decidable combination of axioms in OWL
2 to express UML composition and its relevant restrictions. This problem could
be solved by writing extra rules in another language. One possibility is to use
the OCL Object Constraint Language [12]. It is part of the UML standard and
it is used to describe metamodel and model constraints. However, OCL operates
on the syntactic level, which leads to a very extensive ruleset for UML elements.
To avoid this problem, we have decided to use SWRL[7]. SWRL combines OWL
and the RuleML (Rule Markup language). It extends the set of OWL axioms
to include rules, thus restrictions in metamodels can be represented in SWRL
rules.

To validate an ontology expressed in OWL 2 and SWRL, we need a reasoner
that supports both languages. There are tools which provide reasoning services
for OWL 2 ontologies as well as support of DL-safe SWRL rules [9], such as
Pellet and HermiT. We introduce them in Section 6.

It is still an open question if this idea is feasible in practice. In the next
section we present a study that tries to answer this question.

3 Objectives of the Study

The main goal of this article is to study the feasibility of using OWL 2 and SWRL
reasoners to validate metamodels for domain specific languages. The feasibility
criteria is as follows:

1. Expressiveness of OWL2 and SWRL
One of the main objectives of our research is to judge the expressiveness of
OWL 2 and SWRL in terms of expressing the concepts of Domain Specific
Languages developed by using an UML-like Metamodeling language.

2. Correctness of Reasoners Some of the existing reasoners are experimental
research tools under constant development. We would like to know whether
the current implementation of each reasoner is mature enough to produce
reliable results.

3. Performance
We want to know how much processing time is required to validate a meta-
model. Can a modern desktop computer perform this task with ease? Can
the validation be performed on the fly while editing a metamodel or when
we save the metamodel into a file?

4. Problem Reporting
Are the messages produced by an OWL2 reasoner intelligible by the meta-
model creator? Can we trace back inconsistencies in a generated ontology to
the original metamodel elements?

5. Problems in published metamodels Since we are also planning to vali-
date many existing metamodels, we are also interested to know if there are
problems in published metamodels.

3.1 Study Execution

In order to answer the previous questions we select a number of metamodels,
transform them into an ontology and check them for consistency and satisfia-
bility using a reasoner. We measure execution time and observe eventual error
messages.

In order to asses the maturity of the reasoner implementation, we have de-
cided to select two independently developed reasoners and compare their output.

To ensure that the metamodels to validate are representative we have not
created the metamodels ourselves. Instead we have decided to process all the
metamodels in a public repository: the Atlantic Metamodel Zoo [16].

We describe the materials for our study in the next three sections.

4 The Atlantic Metamodel Zoo

The Atlantic Metamodel Zoo is a library of metamodels maintained by the At-
lanMod team. At the time of writing this text, it contains 286 metamodels rep-
resenting diverse domains such as LateX, Java, HTML. The metamodels are
available in different languages, including UML 2, OWL, KM3 etc.. We choose
to validate the metamodels expressed in UML 2.

Metamodels expressed in UML 2 are identified by their headers and the
elements for describing its structure. The headers must include the namespace
URL for the UML metamodel and elements prefixed with uml:. An example of
such a metamodel is shown in Listing 1.1. This example shows two classes: Book
and Chapter associated by a simple composition.

The metamodels in the Atlantic Zoo vary considerably in size and complex-
ity. In any case, these metamodels are considerably smaller than the UML meta-
model and they do not contain OCL constraints. We consider that the metamod-
els in the Atlantic Zoo provide a good sample of metamodels for domain-specific
languages.

5 A Metamodel to OWL2 Transformation

The transformation from a metamodel expressed using UML to OWL 2 is im-
plemented using the Model-to-Text transformation tool MOFScript [5] [11].

MOFScript consists of two parts: the MOFScript tool and the MOFScript
language. The MOFScript tool is an implementation of the MOFScript language
and it provides ways of editing, compiling and executing MOFScript transforma-
tion code. MOFScript transformations are MOFScript language programs that
define a set of rules that can translate metamodel elements and relations between
them to expected output through print statements. The MOFScript transforma-
tion code is written based on one or more input metamodels, then compiled and
executed on one or more loaded input files which contains models conforming to
the input metamodels.

The input metamodel in our implementation is UML2 2.1.0, the input file is a
.uml file which contains a UML metamodel in XML syntax. There are two output
files: one contains an OWL 2 ontology written in OWL 2 functional syntax [2]
and the other contains SWRL rules in OWL RDF/XML syntax.

As mentioned in the previous sections, there are some restrictions of meta-
modeling concepts that have to be written in SWRL rules. However, ontology
reasoners can not process OWL 2 functional syntax with SWRL rules embedded.
As a solution, we create extra SWRL rules written in RDF syntax in a separate
OWL document and import this ontology in the main ontology written in OWL
2 functional syntax. For instance, the generated ontologies of the metamodel
shown in Listing 1.1 are Listing 1.2 and Listing 1.3.

6 OWL 2 Reasoners

Once the ontology of a metamodel has been generated by using the transforma-
tion described before, we use a reasoner to check the ontology consistency and
satisfiability. In terms of an ontology representing a metamodel:

1. Metamodel consistency means that there exists at least one model that con-
forms to that metamodel.

2. Metaclass satisfiability means there is at least one model element that can
belong to the class (without making the metamodel inconsistent). In the
context of a metamodel, instantiating an unsatisfiable metaclass leads to
a contradiction and therefore the metaclass cannot be used in any model.
This is also refered as concept satisfiability in the services provided by the
reasoners.

The selection criteria for a reasoner were complete support for OWL2, SWRL
and also that the reasoner is freely available as open source. The first two require-
ments are motivated by the ontologies used in our study. The last requirement
ensures that the study is easily repeatable by others.

Based on these criteria, we have chosen the following two reasoners:

1. Pellet: An open source Java-based ontology reasoner developed by a Clark&
Parsia LLC, which is an R&D firm, specializing in Semantic Web and ad-
vanced systems[4].

2. HermiT: An open source reasoner that is implemented in Java, and developed
by Information Systems Group of Oxford University [10].

These reasoners are either already available as a Protege (an open source
ontology editor) plugin or will be supported. They can also all be used from the
command line.

In our experiment, we run HermiT 1.2.1 from the command line and use
the options -k and -U to check the consistency and concept satisfiability respec-
tively. In the case of Pellet, we use version 2.0.1 from the command line and
use the options consistency and unsat to check the consistency and concept
satisfiability respectively.

7 Study Results

Since metamodel validation involves both reasoners and metamodels, the re-
sults of our study depends on two aspects: the reasoning tools an the input
metamodels. First, we evaluate the reasoners in terms of maturity, performance,
expressiveness, and their problem reporting mechanism. Then we investigate any
reported problems in the published metamodels.

7.1 Expressivness

The expressiveness is evaluated in two aspects: the concepts contained in the
metamodels and the Description Logic which the reasoners are based on.

On one hand, the metamodels in the Atlantic Zoo are simple in the sense
that they do not cover all the concepts that are within the ability of the UML
metamodeling language. For example, there are no metamodels that contain
any ordered properties, ordered composition or ordered subset properties. The
constraints of these concepts are expressed in SWRL rules.

On the other hand, we notice problems with UML composition: translating
composition to OWL 2 requires the transitivity axiom and irreflexive axiom,
whereas the OWL 2 specification forbids the two axioms used on the same object
property. This can be solved by expressing them in SWRL, although SWRL rules
are only applied on individuals rather than classes.

7.2 Maturity of reasoners

Both HermiT and Pellet can process all the ontologies generated from the At-
lantic Zoo without generating any run time error or getting into an infinite loop.
Furthermore, both reasoners always produce the same report for all the meta-
models. This is significant because they have been implemented independently
by two different development groups. Based on this, we claim that the current

implementation of both HermiT and Pellet are mature enough for the task of
validating metamodels.

During our experiment, we found that Pellet 2.0.1 supports OWL 1.1 func-
tional syntax [3] which is different from OWL 2 in terms of prefix declaration
and datatype maps. HermiT supports strict OWL 2 functional syntax. So the
ontologies to be processed by HermiT and Pellet are slightly different syntac-
tically, Accordingly, the MOFScript transformation for each syntax should be
different too.

7.3 Performance

We run our performance experiments using a desktop computer with an Intel
Core 2 6400 processor running at 2.13GHz, 2GB of RAM, Linux Fedora Core 10
and Java 1.6.0 10 rc2. We process each metamodel three times and report the
average execution time.

Figure 2 shows the time required for HermiT and Pellet to process each
metamodel. The x-axis represents the number of axioms in a generated on-
tology. The y-axis represents the total time in seconds necessary to load an
ontology representing a metamodel, and check it for consistency and satisfiabil-
ity. As for the counting of number of axioms, though, certain expressions are a
combination of OWL 2 axioms. For instance, the minimum cardinality in the
Figure 1 is expressed as follows, which is a combination of axiom SubClassOf
and ObjectMinCardinality, we count this as one axiom.

SubClassOf(State ObjectMinCardinality(2 State_outgoing))

As we can observe from the figure, HermiT is consistently faster than Pellet,
but both tools can process each metamodel in less than four seconds.

Based on this, we consider that the effiency of the two reasoners is satisfactory
for the given problem and an average desktop computer.

7.4 Problem Reporting

Pellet produces an error message if a given input contains a syntax error or
the wrong file header. Such input cannot be further checked for consistency
and unsatisfiability. When checking consistency, Pellet simply shows if the input
ontology is consistent or not. When checking unsatisfiability, given a consistent
ontology, Pellet reports the number of elements checked, time used and number
of unsatisfiable elements. If there are unsatisfiable elements, the specific class
names are shown.

Pellet provides an option to print verbose information while reasoning. The
printed information indicating input size, specific numbler of classes, properties
and individuals, expressivity, used time summary, etc.. Once an element that
leads to an inconsistency is found, Pellet stops further processing and points out
a possible reason, but the actual reason still needs be verified by users.

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 0 500 1000 1500 2000

T
im

e
(s

ec
on

ds
)

Size (lines of axioms)

Reasoner Performance Comparision

Pellet
HermiT

Fig. 2. Reasoners Performance Comparision

HermiT also provides verbose infomation printing, such as the file under
processing, timing for parsing, etc.. In contrast to Pellet, when an input is in-
consistent, HermiT shows no possible reasons. As far as processing procedure is
concerned, HermiT differs from Pellet in that it allows checking unsatisfiablity
of an inconsistent metamodel.

Regardless of how the two reasoners report the results, the information they
give can be difficult to interpret when a metamodel is inconsistent or has un-
satisfiable concepts. In the best case, they show the name of the unsatisfiable
concepts but no further explanations. More information on what makes a concept
unsatisfiable would be extremely helpful.

7.5 Problems in Published Metamodels

During our experiment with the 286 metamodels in the Atlantic zoo, we found
279 metamodels that are consistent and satisfiable and 7 with validation prob-
lems. The 7 unsatisfiable metamodels are ekaw, paperdyne, pcs, micro, sigkdd,
Openconf and iasted. These are all generated from ontologies dealing with con-
ference organization by the OntoFarm Project [14] .

We investigated the reason of the unsatisfiablity and found problems in the
metamodels in the source .uml files. The original metamodels have two classes
Evaluated_Paper and Assigned_Paper, which both have a self association with
a minimum cardinality of 3 and a maximum cardinality of 1.

We also examined the original ontologies [15] from which the UML meta-
models are generated. The ontologies only state that the minimum cardinality
is 3, but do not contain any axiom about the maximum cardinality. We suspect
the problem lies in the transformation used to convert each ontology to UML.

8 Conclusions

In this article we have studied the feasibility of an approach to validate meta-
models using a OWL 2 reasoners. The first step of validation is transforming
UML metamodels to OWL 2 ontologies. We use MOFScript to implement the
transformation from UML to OWL 2 and SWRL. The second step is to validate
the generated ontologies with a reasoner. This second step was the focus of this
article.

We have processed all the metamodels in the Atlantic Zoo. This comprises
286 metamodels for domain-specific languages created independently. To our
knowledge this is the most comprehensive empirical evaluation on the use of
OWL 2 in metamodeling to the date.

The size of the metamodels can be considered small when compared to the
metamodel of the UML language. None of the metamodels use OCL constraints
or advanced metamodeling features such as subset properties. However, we con-
sider that the Atlantic Zoo provides a good sample of how metamodel in domain-
specific languages are used in practice.

Based on our experiences, we consider that OWL 2 combined with SWRL
can be used to represent all the metamodels in the repository. Also, the Pellet
and HermiT reasoners could process each metamodel in less than four seconds
and always provided the same results.

References

1. Conrad Bock, Achille Fokoue, Peter Haase, Rinke Hoekstra, Ian Horrocks, Alan
Ruttenberg, Uli Sattler, and Michael Smith. OWL 2 Web Ontology Language
Document Overview. W3 Recommendation Available at http://www.w3.org/TR/

owl2-overview/.
2. Conrad Bock, Achille Fokoue, Peter Haase, Rinke Hoekstra, Ian Horrocks, Alan

Ruttenberg, Uli Sattler, and Michael Smith. OWL 2 Web Ontology Language Struc-
tural Specification and Functional-Style Syntax. W3 recommendation, available at
http://www.w3.org/TR/2009/REC-owl2-syntax-20091027/.

3. Boris Motic, Peter F. Patel-Scheneider, Ian Horrocks. OWL 1.1 Web Ontology Lan-
guage Structural Specification and Functional-Sytle Syntax, May 2007. Available
at http://www.webont.org/owl/1.1/owl_specification.html.

4. Clark and Parsia. Pellet: OWL 2 Reasoner for Java. Homepage, available at
http://clarkparsia.com/pellet.

5. Eclipse Foundation. MOFScript Homepage. Available at http://www.eclipse.

org/gmt/mofscript/.
6. Sören Höglund, Ali H. Khan, Ye Liu, and Ivan Porres. Representing and Validating

Metamodels using OWL 2 and SWRL. Technical Report 973, D. of Information
Technologies,Åbo Akademi University, Joukahaisenkatu 3-5, FI-20520 Turku, Fin-
land, 2010.

7. Ian Horrocks, Peter F. Patel-Schneider, Harold Boley, Said Tabet, Benjamin
Grosof, and Mike Dean. SWRL: A Semantic Web Rule Language Combining OWL
and RuleML, 2004. Availible at http://www.w3.org/Submission/SWRL/.

8. Stuart Kent. Model Driven Engineering. In Proc. of IFM International Formal
Methods 2002, volume 2335 of LNCS. Springer-Verlag, 2002.

9. Vladimir Kolovski, Bijan Parsia, and Evren Sirin. Extending the shoiq(d) tableaux
with dl-safe rules: First results. In Bijan Parsia, Ulrike Sattler, and David Toman,
editors, Description Logics, volume 189 of CEUR Workshop Proceedings. CEUR-
WS.org, 2006.

10. Information System of Oxford University. Hermit OWL Reasoner.
11. Jon Oldevik. MOFScript User Guide, December 2009. Document available at

http://www.eclipse.org/gmt/mofscript/doc/MOFScript-User-Guide-0.8.pdf.
12. OMG. UML 2.0 OCL Specification, October 2003. Document, available at http:

//www.omg.org/.
13. OMG. UML 2.2 Superstructure Specification, February 2009. Available at http:

//www.omg.org/.
14. OntoFarm Project. Ontofarm project homepage. Available at http://nb.vse.cz/

~svatek/ontofarm.html.
15. OntoFarm Project. Conference track. Available at http://nb.vse.cz/~svabo/

oaei2009/.
16. AtlanMod Team. AtlanMod metamodel zoo. Available at http://www.emn.fr/

z-info/atlanmod/index.php/Zoos.

Appendix

1 <?xml ve r s i on=”1 .0 ” encoding=”ISO−8859−1”?>
2 <uml : Model xmi : v e r s i on=”2 .1 ”

xmlns : xmi=”http :// schema . omg . org / spec /XMI/2 .1 ”
xmlns : uml=”http ://www. e c l i p s e . org /uml2 / 3 . 0 . 0 /UML”
xmi : id=” dkpFAOiaEd6gMtZRCjS81g ” name=”Metamodel ”>

3 <packagedElement xmi : type=”uml : Package ”
xmi : id=” dkpFAeiaEd6gMtZRCjS81g ” name=”Book ”>

4 <packagedElement xmi : type=”uml : As soc i a t i on ”
xmi : id=” dkpFCuiaEd6gMtZRCjS81g ”
name=”A Book Chapter ”
memberEnd=” dkpFCeiaEd6gMtZRCjS81g
dkpFC−iaEd6gMtZRCjS81g ”>

5 <ownedEnd xmi : id=” dkpFC−iaEd6gMtZRCjS81g ” name=”book ”
type=” dkpFA−iaEd6gMtZRCjS81g ” isUnique=” f a l s e ”
a s s o c i a t i o n=” dkpFCuiaEd6gMtZRCjS81g ”>

6 <upperValue xmi : type=”uml : L i t e ra lUn l im i t edNatura l ”
xmi : id=” dkpsEuiaEd6gMtZRCjS81g ” value=”1 ”/>

7 <lowerValue xmi : type=”uml : L i t e r a l I n t e g e r ”
xmi : id=” dkpsE−iaEd6gMtZRCjS81g ” value=”1 ”/>

8 </ownedEnd>
9 </packagedElement>

10 <packagedElement xmi : type=”uml : Class ”
xmi : id=” dkpFA−iaEd6gMtZRCjS81g ” name=”Book ”>

11 <ownedAttribute xmi : id=” dkpFBeiaEd6gMtZRCjS81g ”
name=” t i t l e ” type=” dkpFDeiaEd6gMtZRCjS81g ”
isUnique=” f a l s e ”/>

12 <ownedAttribute xmi : id=” dkpFCeiaEd6gMtZRCjS81g ”
name=”chapter s ” type=” dkpFBOiaEd6gMtZRCjS81g ”
isUnique=” f a l s e ” aggregat ion=”composite ”
a s s o c i a t i o n=” dkpFCuiaEd6gMtZRCjS81g ”>

13 <upperValue xmi : type=”uml : L i t e ra lUn l im i t edNatura l ”
xmi : id=” dkpsEOiaEd6gMtZRCjS81g ” value=”* ”/>

14 <lowerValue xmi : type=”uml : L i t e r a l I n t e g e r ”
xmi : id=” dkpsEeiaEd6gMtZRCjS81g ”/>

15 </ownedAttribute>
16 </packagedElement>
17 <packagedElement xmi : type=”uml : Class ”

xmi : id=” dkpFBOiaEd6gMtZRCjS81g ” name=”Chapter ”>
18 <ownedAttribute xmi : id=” dkpFBuiaEd6gMtZRCjS81g ”

name=” t i t l e ” type=” dkpFDeiaEd6gMtZRCjS81g ”
isUnique=” f a l s e ”/>

19 <ownedAttribute xmi : id=” dkpFB−iaEd6gMtZRCjS81g ”
name=”nbPages ” type=” dkpFDOiaEd6gMtZRCjS81g ”
isUnique=” f a l s e ”/>

20 <ownedAttribute xmi : id=” dkpFCOiaEd6gMtZRCjS81g ”
name=”author ” type=” dkpFDeiaEd6gMtZRCjS81g ”
isUnique=” f a l s e ”/>

21 </packagedElement>
22 </packagedElement>
23 <packagedElement xmi : type=”uml : Package ”

xmi : id=” dkpFAuiaEd6gMtZRCjS81g ” name=”Primit iveTypes ”>
24 <packagedElement xmi : type=”uml : PrimitiveType ”

xmi : id=” dkpFDOiaEd6gMtZRCjS81g ” name=”In t e g e r ”/>
25 <packagedElement xmi : type=”uml : PrimitiveType ”

xmi : id=” dkpFDeiaEd6gMtZRCjS81g ” name=”St r ing ”/>
26 <packagedElement xmi : type=”uml : PrimitiveType ”

xmi : id=” dkpFDuiaEd6gMtZRCjS81g ” name=”Boolean ”/>
27 </packagedElement>
28 </uml : Model>

Listing 1.1. An example of metamodel presented in UML 2

1 Pr e f i x (r d f s :=<http ://www. w3 . org /2000/01/ rdf−schema#>)
2 Pr e f i x (owl2xml:=<http ://www. w3 . org /2006/12/ owl2−xml#>)
3 Pr e f i x (owl:=<http ://www. w3 . org /2002/07/ owl#>)
4 Pr e f i x (xsd:=<http ://www. w3 . org /2001/XMLSchema#>)
5 Pr e f i x (rd f :=<http ://www. w3 . org /1999/02/22− rdf−syntax−ns#>)

6 Pr e f i x (:=<http ://www. zoo . org / examples#>)
7
8 Ontology (<http ://www. zoo . org / examples#>
9 Import (< f i l e : // Book . owl>)

10
11 Dec la ra t i on (Class (: Book Book))
12 FunctionalDataProperty (: Book Book t i t l e)
13 DataPropertyDomain (: Book Book t i t l e : Book Book)
14 DataPropertyRange (: Book Book t i t l e xsd : s t r i n g)
15
16 Dec la ra t i on (Class (: Book Chapter))
17 FunctionalDataProperty (: Book Chapte r t i t l e)
18 DataPropertyDomain (: Book Chapte r t i t l e : Book Chapter)
19 DataPropertyRange (: Book Chapte r t i t l e xsd : s t r i n g)
20
21 FunctionalDataProperty (: Book Chapter nbPages)
22 DataPropertyDomain (: Book Chapter nbPages : Book Chapter)
23 DataPropertyRange (: Book Chapter nbPages xsd : i n t)
24
25 FunctionalDataProperty (: Book Chapter author)
26 DataPropertyDomain (: Book Chapter author : Book Chapter)
27 DataPropertyRange (: Book Chapter author xsd : s t r i n g)
28
29 Dec la ra t i on (ObjectProperty (: conta in s))
30 I r r e f l e x i v e O b j e c t P r o p e r t y (: conta in s)
31 SubObjectPropertyOf (: owns : conta in s)
32 Inver seFunct iona lObjectProper ty (: owns)
33 SubClassOf (: Book Book ObjectAllValuesFrom (: owns

: Book Chapter))
34 SubClassOf (: Book Chapter DInstance

ObjectAllValuesFrom (: owns owl : Nothing))
35 Dec la ra t i on (ObjectProperty (: Book Book chapters))
36 ObjectPropertyDomain (: Book Book chapters : Book Book)
37 ObjectPropertyRange (: Book Book chapters : Book Chapter)
38 SubClassOf (: Book Book ObjectMinCardinal i ty (0

: Book Book chapters))
39
40 SubClassOf (: Book Book DInstance ObjectAllValuesFrom (: owns

owl : Nothing))
41
42 Dec la ra t i on (ObjectProperty (: Book Book book))
43 ObjectPropertyDomain (: Book Book book : Book Book)
44 ObjectPropertyRange (: Book Book book : Book Book)
45 SubClassOf (: Book Book ObjectMinCardinal i ty (1 : Book Book book))
46 SubClassOf (: Book Book ObjectMaxCardinal ity (1 : Book Book book))
47)

Listing 1.2. Ontology in OWL 2 functional syntax

1 <?xml ve r s i on=”1 .0 ” encoding=”UTF−8”?>

2 <rd f :RDF
3 xmlns : rd f = ’ http ://www. w3 . org /1999/02/22− rdf−syntax−ns#’
4 xmlns : r d f s = ’ http ://www. w3 . org /2000/01/ rdf−schema#’
5 xmlns : xsd = ’ http ://www. w3 . org /2001/XMLSchema#’
6 xmlns : owl = ’ http ://www. w3 . org /2002/07/ owl#’
7 xmlns : swr lx = ’ http ://www. w3 . org /2003/11/ swrlx ’
8 xmlns : swr l=’ http ://www. w3 . org /2003/11/ swr l#’
9 xmlns : ru leml =’ http ://www. w3 . org /2003/11/ ru leml ’

10 xmlns : owlx = ’ http ://www. w3 . org /2003/05/ owl−xml ’
11 xmlns = ’ http :// example . org /compoRule#’
12 >
13 <owl : Ontology rd f : about=”compoRule ”/>
14
15 <owl : ObjectProperty rd f : ID=”conta in s ”/>
16 <swr l : Var iab le rd f : ID=”x ”/>
17 <swr l : Var iab le rd f : ID=”y ”/>
18 <swr l : Var iab le rd f : ID=”z ”/>
19 <swr l : Var iab le rd f : ID=”a ”/>
20 <swr l : Var iab le rd f : ID=”b”/>
21 <ru leml : Imp>
22 <ru leml : body >
23 <swr l : IndividualPropertyAtom>
24 <swr l : p roper tyPred i ca te rd f : r e s ou r c e=”#contans ”/>
25 <swr l : argument1 rd f : r e s ou r c e=”#x ”/>
26 <swr l : argument2 rd f : r e s ou r c e=”#y ”/>
27 </swr l : IndividualPropertyAtom>
28 <swr l : IndividualPropertyAtom>
29 <swr l : p roper tyPred i ca te rd f : r e s ou r c e=”#contans ”/>
30 <swr l : argument1 rd f : r e s ou r c e=”#y ”/>
31 <swr l : argument2 rd f : r e s ou r c e=”#z ”/>
32 </swr l : IndividualPropertyAtom>
33 </ruleml : body>
34 <ru leml : head>
35 <swr l : IndividualPropertyAtom>
36 <swr l : p roper tyPred i ca te rd f : r e s ou r c e=”#contans ”/>
37 <swr l : argument1 rd f : r e s ou r c e=”#x ”/>
38 <swr l : argument2 rd f : r e s ou r c e=”#z ”/>
39 </swr l : IndividualPropertyAtom>
40 </ruleml : head>
41 </ruleml : Imp>
42 </rd f :RDF>

Listing 1.3. SWRL rules written in OWL RDF syntax

