
A MDD approach for generating Rule-based
Web Applications from OWL and SWRL

Joaqúın Cañadas1, José Palma2 and Samuel Túnez1

1 Dept. of Languages and Computation. University of Almeria. Spain
jjcanada@ual.es, stunez@ual.es

2 Dept. of Information and Communications Engineering. University of Murcia. Spain
jtpalma@um.es

Abstract. Rule languages and inference engines incorporate reasoning
capabilities to Web information systems. This paper presents a model-
driven approach for the development of rule-based applications for the
Web. The method is applied to ontology and rule specifications in OWL
and SWRL, generating a rich, functional Web architecture based on
the Model-View-Control architectural pattern and the JavaServer Faces
technology, embedding a Jess rule engine for reasoning and inferencing
new information. The proposal is described through an illustrative exam-
ple. A tool supporting the ideas presented this paper has been developed.

Keywords: MDD, OWL, SWRL, Rule-based systems for the Web

1 Introduction

Rule-Based Systems (RBS) is the leading technology for the development of
Knowledge-Based Systems from the beginnings of the Artificial Intelligence. RBS
is a kind of software systems in which the human expert’s knowledge applied for
solving a complex task such as diagnosis, monitoring, assessment, and so on,
is represented as a set of declarative production rules. Rules encode domain
knowledge and business logic as condition-action pairs, whereas rule engines are
able to interpret the rules and reason over the information loaded in the working
memory, using some inference method to deduct new assertions and achieve a
conclusion as the human expert would do [7,29].

Currently, a high interest exists in making the Web a more effective platform
for intelligent systems. In this context, rule languages and inference engines
provide Web information systems with reasoning capabilities [26]. Rules and
ontologies play a key role in the architecture of the Semantic Web, as they are
used to provide meaning and reasoning facilities to semantic Web applications
[8].

Ontologies are typically used for domain modeling, in which a conceptual-
ization of a particular domain is given. Although ontology formalisms are quite
mature and the Web Ontology Language (OWL) [5] has become a standard,
rule formalisms are an active area of research. The Semantic Web Rule Lan-
guage (SWRL) [15] was proposed to enrich OWL providing a high-level abstract

syntax for rules in OWL. SWRL rules are of the form of an implication between
an antecedent (body) and consequent (head). So when combining ontologies and
rules for domain conceptualization and inference modeling, ontologies can de-
scribe the relevant concepts and relationships in an application domain and rules
can be used to formalize the inference logic, increasing the amount of knowledge
that can be represented in ontologies.

This paper presents a model-driven approach to develop rule-based Web ap-
plications based on OWL and SWRL specifications. The proposal applies Model-
Driven Development (MDD) or Model-Driven Engineering (MDE) to automat-
ically produce the implementation of a functional, rich Web architecture which
embeds a rule engine for inferencing tasks. Although other formalisms for con-
ceptual and rule modeling can be used in MDD of rule-based Web applications
[3], the use of OWL and SWRL as specification formalisms in rule-based Web ap-
plications development becomes a reasonable choice since they can be considered
as standard languages widely used by the community (mainly OWL), and there
are many tools for editing and reasoning over OWL and SWRL specifications.

Recently, a tool to bridge the gap between OWL ontologies and MDE has
been presented, the TwoUse Toolkit 3 [27], which has been developed using
Eclipse Modeling Project4. It implements the Ontology Definition Metamodel
(ODM) [24] and provides a graphical environment for specifying OWL and
SWRL models. Since it is deployed as an Eclipse plugin, other Eclipse-based
tools for MDD can be straightforward applied enabling us to design a model-
driven process based on OWL and SWRL ontologies created with TwoUse.

In the proposed method, the functionality for the generated rule-based Web
application is predefined to enable end-users to create, retrieve, update and
delete instances (CRUD). In contrast to current tools for automatic generation
of CRUD systems that perform those functions on relational databases, our
contribution is that this functionality is executed on the rule engine working
memory, enabling the execution of a forward-chaining inference mechanism to
drive the reasoning process.

To put our proposal into practice, a supporting tool has been developed us-
ing MDD tools provided by the Eclipse Modeling Project. The resulting Web
application, based on the Model-View-Controller (MVC) architectural pattern,
embeds the Jess rule engine [12] to incorporate inference features. The proposed
approach materializes InSCo [1], a methodology which intertwines knowledge en-
gineering and software engineering approaches in hybrid intelligent information
systems development.

The rest of this paper is organized as follows: Section 2 introduces the model-
driven approach proposed and the supporting tool that implements it. Next, the
mapping from OWL and SWRL to Jess is detailed in section 3. The architecture
for the rule-based Web application generated is described in section 4. Some
related work is reviewed in Section 5. Finally, the main conclusions and future
work are summarized.

3 http://code.google.com/p/twouse/
4 http://www.eclipse.org/modeling/

2 Model-driven approach for rule-based Web applications

2.1 Process overview

The proposed approach uses OWL and SWRL ontologies created with TwoUse
as source models for the model-driven process. We will focus on OWL DL sub-
language of OWL. Classes, properties, and individuals define the structure and
content of data. SWRL rules describe logical dependencies between the elements
of the ontology refereed in the rule’s antecedent and consequent.

Fig. 1 shows the proposed MDD schema for rule-based Web applications,
which is divided into two processes. The first one (the bottom flow in Fig. 1)
generates the implementation of the rule base in Jess, and the second one (the
top flow in Fig. 1) produces the code for the Web architecture.

The development process starts with the specification of an OWL ontology
of the problem domain enriched with SWRL rules, using the TwoUse editor.
Such ontology is treated as a platform-independent model by the MDD process
which produces two different results: (1) ontology and rules are transformed into
a Jess rule base, a text file containing the set of templates, rules and facts in Jess
syntax; (2) furthermore, a Web-based architecture is generated from the ontology
and from an interaction and presentation model which is tightly coupled to the
ontology. Web application code is based on the MVC architectural pattern, the
JavaServer Faces (JSF) framework [13] and JBoss Richfaces components [16],
and consist of a set of generated JavaBeans, JSF pages and configuration files.

Jess Rule
model

Jess rule base

Java and JSF
Web model

Java
JSF

classes
pages

P
I
M

latform
ndependent
odels

P
S
M

latform
pecific
odels

Code

integration

Rule-based
applicationWeb

M2M
Transformations

M2T
Transformations

Interaction &
Presentation

OWL SWRL+

TwoUse Toolkit
for OWL & SWRL

Eclipse Modeling

EMF

JET

Default Presentation,
Navigation, Functionality

Fig. 1. MDD schema for rule-based Web system generation

Although the two MDD processes are executed independently, the final result
must integrate the rule base into the Web application. This is done by generating
the appropriate calls to the Jess API (Application Programming Interface) in
the Java code obtained, entailing to embed the Jess rule engine into the Web
application.

The generated Web application benefits of having the decision logic exter-
nalized from core application code, since uncoupling the rules from the source
code increases scalability and maintainability of rule-based applications [10]. In
addition, our development approach makes it possible for the two MDD pro-
cesses to be executed separately, and therefore, any change in the rule model
affecting only the rule logic (SWRL rules) without having an effect on the ontol-
ogy (classes, properties, ...) can be translated to a new rule base without having
to modify or regenerate anything else in the Web architecture. This approach
makes Web applications easier to maintain and evolve.

2.2 Tool support

A tool supporting the proposed approach is being developed using Eclipse MDD
tools and it is supported by the TwoUse toolkit for ontology edition. Using EMF5

(Eclipse Modeling Framework) we have defined two metamodels for representing
Jess and Java/JSF Web models, respectively.

Model-to-model (M2M) transformations are designed with ATL6 (Atlas Trans-
formation Language). The first M2M transformation (bottom flow in Fig. 1)
maps an ontology and rule specification to a Jess platform-specific model. The
second ATL transformation (top flow in Fig. 1) transforms the ontology and the
interaction and presentation model into a Java/JSF Web specific model.

The outputs of both ATL transformations are the respective inputs of two
model-to-text (M2T) transformations implemented in JET7 (Java Emitter Tem-
plates). As a result, the code for the rule-based Web application is obtained. On
one hand, source files with Jess rule base and facts, and on the other hand,
the Web application components, the configuration files, the Java classes, and
a Jess-Engine Bean which uses the Jess API to embed the rule engine into the
architecture. Moreover, a set of JSP/JSF web pages are generated composing the
user interface which is based on the RichFaces framework to add AJAX capa-
bility to JSF applications. Required Java libraries (Jess, JSF, Richfaces,...) and
default configuration are injected to provide presentation templates and style
sheets for pages, predefined navigation between them and default functionality
for the generated Web application.

3 MDD of Jess rule base

This section describes the transformation from OWL and SWRL to Jess. Since
OWL semantics is richer than semantics of production rule systems such as Jess,
only a part of OWL can be represented in Jess. To illustrate the subset of OWL
supported by the proposed transformation, the family relationships example [15]
was used. Fig. 2 shows the family related classes created with the TwoUse OWL
graphical editor.
5 http://www.eclipse.org/modeling/emf/
6 http://www.eclipse.org/m2m/atl/
7 http://www.eclipse.org/modeling/m2t/?project=jet

Fig. 2. Family classes in OWL

Domain concepts are represented as named classes, which can have sub-
classes. In the example the Person class has two subclasses, Man and Woman.
Individuals in OWL are instances of classes declared as being a member of a
specific class through the type link. Cain, Abel, Enoch and Seth are individuals
of Man class. OWL provides several class extension constructs to define un-
named anonymous classes. The “oneOf” expression enables the definition of an
enumerated class through the list of individuals that constitute the instances of
the class. An example of enumerated class is {female, male}.

In OWL two types of properties are distinguished: datatype properties, re-
lations between instances of classes and primitive data types (e.g. integer or
string); and object properties, relations between instances of two classes. Each
property has a domain and a range. In the family example, the hasSex object
property has a domain of Person and a range of {female, male}, relating in-
stances of the class Person to one of the possible enumerated instances. The
default behavior in OWL indicate that a property can relate an instance of the
domain to multiple instances of the range. To relate an individual to only one
other individual a property is defined as functional, as example hasSex.

It is possible to further constrain the range of a property with property re-
strictions. The “has-Value” restriction specify classes based on the existence of
particular property values. A property restriction can be treated as an anony-
mous OWL class, which means that it is possible to define another OWL class
as a subclass of a property restriction. In the example, Woman is a subclass of
“hasSex has female”. Similarly, Man is subclass of “hasSex has male”.

The family ontology defines several object properties to represent family re-
lationships between individuals, as Fig. 3 shows. The hasBrother and hasUncle
object properties have the domain of Person and the range of Man. hasParent
has Person as domain and range. Those three properties are non-functional.
Moreover, three property assertions are defined, hasBrother(Cain, Abel), has-
Brother(Cain, Seth) and hasParent(Enoch, Cain).

The generation of Jess code from OWL is supported by a model-to-model
transformation which maps elements of the OWL metamodel to elements of
a Jess metamodel. Fig 4 (a) shows the Jess model obtained from the family

Fig. 3. Family object properties and assertions to individuals

ontology, focusing on the mapping from OWL classes and properties to Jess
templates and slots. The execution of a model-to-text transformation to this
Jess model generates the code listed on Fig 4 (b).

(deftemplate Person
(slot id_Person)
(slot hasSex (allowed-values male female))
(multislot hasBrother)
(multislot hasParent)
(multislot hasSibling)
(multislot hasUncle)

)

(deftemplate Man extends Person
(slot id_Man)
(slot hasSex (default male))

)

(deftemplate Woman extends Person
(slot id_Woman)
(slot hasSex (default female))

)

Fig. 4. a) Jess model of templates and b) final Jess code obtained

A summary of the ATL transformation rules defining that mapping are as
follows. Every OWL named class is mapped to a Jess fact template. A subclass
relation is represented through the extends template property, allowing only sim-
ple inheritance of templates. OWL properties, both datatype and object ones,
are mapped to slots. Each slot is added to the template corresponding to the
domain class of the property. Functional properties generate slots (single-valued)
whereas non-functional properties generate multislots (multi-valued). When the
range of a property is an enumerated defined through a “oneOf” OWL anony-
mous class, the enumeration literals obtained from the individuals linked to the
enumeration are saved as a list of allowed-values for the slot. A “has-Value”
restriction is transformed to a slot default value.

As Fig 4 shows, the style of the generated Jess code is quite different to
the Jess code obtained in other tools like the Protege JessTab [9]. Instead of

generating a fact for every property in a propositional logic style, our proposal
transforms properties to slots in templates, obtaining a result closer to an object
oriented programming style. The reason for that design decision is that this
style is more similar to the Java classes of the Web application that will embed
the Jess rule engine, facilitating integration of the information managed in the
different layers of the Web application (Jess, Java classes and Web pages).

Fig 5 (a) shows the Jess model obtained from the family ontology focusing on
the mapping from individuals members of named classes to Jess facts definitions.
All individuals are considered different of each other. Each individual is mapped
to a fact definition. Each property assertion generates a value for a slot of the
corresponding fact definition. In the example, the assertions hasBrother(Cain,
Abel) and hasBrother(Cain, Seth) generate the Cain fact definition to have the
hasBrother multislot with Abel and Seth values. The deffacts sentence grouping
all fact definitions is loaded as the initial state of the Jess rule engine working
memory.

(deffacts all_individuals_http://...
"All individuals definitions

(Man (id_Person Cain)
(id_Man Cain)
(hasBrother Abel Seth)

)
(Man (id_Person Abel)

(id_Man Abel)
)
(Man (id_Person Enoch)

(id_Man Enoch)
(hasParent Cain)

)
(Man (id_Person Seth)

(id_Man Seth)
)

)

Fig. 5. a) Jess model of facts and b) final Jess code obtained

To finish the description of the use case, an example of SWRL rule is de-
fined to infer the uncle relationship between family members. This rule is shown
in Fig. 6 and it derives the value of the hasUncle property: for those individ-
uals of Person type (x1) who has other individual of Person type (x2) related
through the hasParent property, and that second Person (x2) has an individual
of Man type (x3) related through the hasBrother property, the rule derives a
new assertion staying the hasUncle relation between x1 and x3 individuals.

The rule antecedent is mapped to a set of pattern matchings and conditional
expressions. In the rule consequent, each individual property atom maps to a
modify function that update fact slots. The following code is generated from the
SWRL uncle rule.

Fig. 6. SWRL rule defining uncle relationship in Family ontology

(d e f r u l e R1 UncleRule
(d e c l a r e (s a l i e n c e 10))
?x1<−(Person (id Person ? x1 id Per son) (hasUncle $? x1 hasUncle)

(hasParent $? x1 hasParent))
?x2<−(Person (id Person ? x2 id Per son) (hasBrother $? x2 hasBrother))
?x3<−(Man (id Man ?x3 id Man))
(t e s t (neq ? x1 id Per son ? x2 id Per son ?x3 id Man))
(t e s t (not (member$?x3 id Man ? x1 hasUncle)))
(t e s t (member$? x2 id Per son ? x1 hasParent))
(t e s t (member$?x3 id Man ? x2 hasBrother))

=>
(modify ?x1 (hasUncle (c r ea t e$? x1 hasUncle ? x3 id Man)))

)

Each variable in the rule antecedent, ?x1, ?x2 and ?x3, is mapped to a pattern
matching allowing the rule engine to match facts for the variables. The third and
fourth test conditional expressions are obtained from the individual property
atoms of the SWRL rule antecedent. Two more test conditional expressions are
added, the first one checks that the three matched facts are different, and the
second is necessary because without it the monotonic nature of the rule engine
algorithm generates an infinite loop when the action has a modify function.

4 MDD of JSF Web architecture

A second MDD process is applied (see Fig. 1) to generate a Web architecture
that embeds rules into a Web application. The generated application is divided
in two layers: business and user interface. The business layer is composed of a
set of Java classes that we can differentiate between the JavaBeans obtained
from the named classes of the ontology, a set of helper classes implementing
some necessary functionality, and a JessEngineBean class that implements the
interaction with Jess through the Jess API, embedding the rule engine and the
rule base into the Web application. The user interface layer is composed of a list
of JSF web pages allowing end-users to interact with the system and accomplish
the predefined functionality.

4.1 Architecture of rule-based Web applications

Fig. 7 shows the target architecture for the generated rule-based Web applica-
tion.

Web Browser

Apache Tomcat

Jess

JavaEE Platform

Jess facts

Rule
set

working
memory
(facts)

rule
engine

JSF + RichFaces
pages

business logic
Java Classes

Fig. 7. Architecture of a rule-based Web application

The embedded rule engine manages the Jess rule base and a text file of
persistent facts. Basically, the rule engine consists of three parts: the working
memory which contains all the instances or facts, the rule set that includes the
production rules, and the rule engine that checks what facts in the working
memory match the rule conditions and executes the rules whose condition is
matched as true. To make the facts persistent, they are stored on disk as a text
file.

The Web application enables end-user to perform the most common func-
tions for instance management: create, list, update and delete instances (CRUD).
This functionality was predefined as a design decision of the proposed approach.
The code generation process is designed to implement these functions since they
constitute the basic information management tasks that any information sys-
tem should offer. Currently there are many tools that automatically generate
CRUD Web applications code from different sources, like from databases such
as NetBeans8, or from UML models such as MagicDraw M2Flex9. Those Web
applications perform CRUD functions on relational databases. In contrast, our
contribution provides a Web application where the information management
functions are executed on the rule engine working memory, enabling the rule
engine to run a forward-chaining inference mechanism that fires the rules which
conditions are evaluated as true and executes rule’s actions to deduct new infor-
mation or modify existing one.

Fig. 8 shows a screenshot of the resulting Web application for the family
example, in concrete the list of all instances of Person charged on the rule
engine working memory. The list contains the four individuals defined in the
OWL ontology and the three property assertions staying the brothers of Cain
and the parent of Enoch. In addition, the HasUncle property has values for
Enoch since the rule engine has derived those values firing the uncle rule. Using
the Web application, end-users can add new persons, erase or modify persons
using a form that shows all the properties of the person to edit. Some property
values such as the HasUncle, are not editable by the user since it is the rule

8 http://netbeans.org/
9 http://www.model2code.com/

engine who obtains those values. This restriction is defined at design time using
the interaction model, as described in next section.

Fig. 8. Screenshot with the list of Persons

4.2 Generating the Web components

Fig 9 shows the metamodel proposed for defining Web models based on Java/JSF
architecture. An ATL transformation maps OWL models to Web models in ac-
cordance with this metamodel. Basically the structure of the information man-
aged by the Web application is defined from OWL classes, properties, and in-
dividuals. Each OWL named class is mapped to several elements: a JavaBean,
a managed bean to be included in the configuration file, and two JSF pages,
one for listing all instances of the class and other that shows all the individual’s
properties and their values enabling instance creation and edition.

Most of the user interface is predefined as well as navigation links between
pages. However, some necessary features are included into an interaction and
presentation model which is used by the ATL transformation to obtain the Web
model. The edition of a specific individual implies that some properties are
editable by the user, whereas other are derived by the rule engine inference
process. For example, hasBrother property of an instance of Person is editable
whereas the hasUncle value is not editable because it is obtained by a rule.
This kind of restriction must be modeled in the interaction and presentation
model that enables the specification of user interactivity and element’s visibility
features, enabling user interface customization. For example, it makes it possible
to select what classes will appear in the application menu and what properties
are included as columns of the table listing all individuals of that class (see Fig.
8).

Fig. 9. Metamodel for the Java/JSF arquitecture

5 Related Work

Some previous work proposes the generation of Jess rules from ontology and rule
models, such as OWL [20] and SWRL [25]. Those works focus on the definition of
reasoners for OWL and Jess, where the main issue is to derive certain facts based
on the OWL and SWRL semantics, respectively. The most important difference
between those works and our proposal is that they run the generated rule base in
a development tool such as the Protege JessTab [9], using a reasoner embedded
in the environment to execute rules. In our work, we generate the Jess rule base
and also the necessary code to embed the Jess rule engine into a functional Web
application that can be used by end-users.

The definition of processes, techniques and models suitable for Web applica-
tion development is the goal of Web Engineering. Methodologies such as UWE
[17], WebML [11] and WebDSL [14], approach the design and development of
Web applications providing tools for Web application development which are
mainly based on conceptual models [4], focusing on content, navigation and pre-
sentation models as the most relevant concerns in the design of Web applications
[21,19]. While Web engineering methodologies for traditional Web applications
offer rather mature and established solutions, Semantic Web application method-
ologies are still in a development phase [2]. Several model-driven methodologies
provide methods to generate Semantic Web Information Systems from spec-
ifications, such as SHDM [18], Hera [30], and WebML+Sem [2]. They identify
different general design phases such as conceptual modeling, navigation modeling
and presentation modeling, supporting in a high or low grade different semantic
web technologies such as semantic model description, advanced query support,

flexible integration, ontology reasoning, and more. They also offer a wide sup-
port for ontology languages, basically all the models support both RDF and
OWL. The main contribution in our proposal with respect to those methods is
to give support to rule modeling in SWRL as a different aspect in modeling Web
applications, defining the model-driven approach to produce Web applications
embedding a rule engine. It enhances Web applications functionality providing
the capability of inferring new information through the rule engine reasoning
mechanism.

Currently the definition of a model-driven methodology for creating rule-
based systems embedded in (semantic) Web applications is a working topic. In
[6] the authors describe how to merge UML models and OWL ontologies for
automatic business rules generation in Semantics of Business Vocabulary and
Business Rules (SBVR) syntax [23]. Although they propose a general architec-
ture for applying MDA and OWL ontologies to generate the rulesets in a target
rule engine, at the moment of writing the paper they only generate the first
abstraction version of business rules. Other work regarding MDD of Web ap-
plications integrating rules [28] describes MDD principles for rule-based Web
services modeling using R2ML, and proposes an MDD approach for generating
Web services from rule models. Whereas that proposal focuses on a Web services
architecture, our work is based on a MVC architecture using the JSF framework.

6 Conclusion and future work

This paper applies MDD to rich Web system development, incorporating a Jess
rule engine for inferencing and deriving new information. OWL and SWRL for-
malisms are used as modeling languages by the model-driven approach.

To illustrate the proposed method and supporting tool, a simple and well
known use case has been used. The approach is planned to be evaluated in
several domains such as pest control in agriculture and medical diagnosis.

Since expressiveness in rule-based production systems such as Jess is poorer
than OWL and SWRL semantics, only a subset of those formalisms is supported.
Issues related with the combination of rules and ontologies have also an effect on
the proposed approach. For example, the semantics of OWL and SWRL adopts
an open world assumption, while logic programming languages such as Jess are
based on a closed world assumption. As a consequence, only DL-Safe SWRL
rules [22] are transformed to Jess. DL-Safe SWRL rules are a restricted subset
of SWRL rules that has the desirable property of decidability, by restricting rules
to operate only on known individuals in an OWL ontology. Similarly, Jess rules
only operate on facts in the working memory.

Other factor to take into account is the high time and effort necessary for
developing a MDD supporting tool, which makes any model-driven approach an
appropriate solution only when is useful to provide a tool that can be used in
the construction of many similar systems, in many domains. In contrast, some
strengths are obtained, such as the drastic cost reduction in time and effort for
development rule-based Web applications since the tool makes all the hard work

for us. Also, an incremental development is favored with this approach since
changes in the model can be directly reflected in the system implementation.

Future work extends the generated Web application with semantic Web func-
tionalities, such as semantic search based on ontology classes hierarchy as well as
instance search. To avoid the semantic gap between OWL and the rule engine, a
solution would be the use of a reasoner such as Pellet10 which directly interprets
OWL and SWRL.

Acknowledgments. This work was supported by the Spanish Ministry of Ed-
ucation and Science under the project TIN2004-05694, and by the Junta de
Andalucia (Andalusian Regional Govt.) project P06-TIC-02411.

References

1. del Águila, I.M., Cañadas, J., Palma, J., Túnez, S.: Towards a methodology for
hybrid systems software development. In: Proceedings of the Int. Conference on
Software Engineering and Knowledge Engineering (SEKE). pp. 188–193 (2006)

2. Brambilla, M., Facca, F.M.: Building semantic web portals with WebML. In:
Baresi, L., Fraternali, P., Houben, G.J. (eds.) ICWE. Lecture Notes in Computer
Science, vol. 4607, pp. 312–327. Springer (2007)

3. Cañadas, J., Palma, J., Túnez, S.: InSCo-Gen: A MDD Tool for Web Rule-Based
Applications. In: Gaedke, M., Grossniklaus, M., Dı́az, O. (eds.) ICWE. Lecture
Notes in Computer Science, vol. 5648, pp. 523–526. Springer (2009)

4. Ceri, S., Fraternali, P., Matera, M.: Conceptual modeling of data-intensive web
applications. Internet Computing, IEEE 6(4), 20–30 (2002)

5. Dean, M., Schreiber, G.: OWL Web Ontology Language Reference. W3C Recom-
mendation (2004), available at http://www.w3.org/TR/owl-ref

6. Diouf, M., Maabout, S., Musumbu, K.: Merging model driven architecture
and semantic web for business rules generation. In: Marchiori, M., Pan, J.Z.,
de Sainte Marie, C. (eds.) RR. Lecture Notes in Computer Science, vol. 4524,
pp. 118–132. Springer (2007)

7. Durkin, J.: Expert Systems: Catalog of Applications. Akron (Ohio), Intelligent
Computer Systems Inc. (1993)

8. Eiter, T., Ianni, G., Krennwallner, T., Polleres, A.: Rules and ontologies for the
semantic web. In: Baroglio, C., Bonatti, P.A., Maluszynski, J., Marchiori, M.,
Polleres, A., Schaffert, S. (eds.) Reasoning Web. Lecture Notes in Computer Sci-
ence, vol. 5224, pp. 1–53. Springer (2008)

9. Eriksson, H.: Using JessTab to integrate Protege and Jess. Intelligent Systems,
IEEE 18(2), 43–50 (2003)

10. Frankel, D., Hayes, P., Kendall, E., McGuinness, D.: The Model Driven Seman-
tic Web. In: 1st International Workshop on the Model-Driven Semantic Web
(MDSW2004), Monterey, California, USA (2004)

11. Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing Data-
Intensive Web Applications. Morgan Kaufmann, 1 edn. (Dec 2002)

12. Friedman-Hill, E.: Jess in Action: Java Rule-Based Systems. Manning Publications
(2003)

10 http://clarkparsia.com/pellet

13. Geary, D., Horstmann, C.S.: Core JavaServer Faces. Prentice Hall, 2 edn. (2007)
14. Groenewegen, D.M., Hemel, Z., Kats, L.C.L., Visser, E.: WebDSL: a domain-

specific language for dynamic web applications. In: Harris, G.E. (ed.) OOPSLA
Companion. pp. 779–780. ACM (2008)

15. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:
A Semantic Web Rule Language combining OWL and RuleML. W3C. Available
at http://www.w3.org/Submission/SWRL/ (2004)

16. JBoss: RichFaces (2007), http://www.jboss.org/jbossrichfaces/
17. Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-based web engineering.

an approach based on standards. In: Rossi, G., Pastor, O., Schwabe, D., Olsina,
L. (eds.) Web Engineering: Modelling and Implementing Web Applications, pp.
157–191. Human-Computer Interaction Series, Springer London (2008)

18. Lima, F., Schwabe, D.: Application modeling for the semantic web. In: LA-WEB.
pp. 93–102. IEEE Computer Society (2003)

19. Linaje, M., Preciado, J.C., Sanchez-Figueroa, F.: Engineering rich internet appli-
cation user interfaces over legacy web models. Internet Computing, IEEE 11(6),
53–59 (2007)

20. Mei, J., Bontas, E.P., Lin, Z.: OWL2Jess: A transformational implementation of
the OWL semantics. In: Chen, G., Pan, Y., Guo, M., Lu, J. (eds.) ISPA Workshops.
Lecture Notes in Computer Science, vol. 3759, pp. 599–608. Springer (2005)

21. Moreno, N., Meliá, S., Koch, N., Vallecillo, A.: Addressing new concerns in model-
driven web engineering approaches. In: Bailey, J., Maier, D., Schewe, K.D., Thal-
heim, B., Wang, X.S. (eds.) WISE. Lecture Notes in Computer Science, vol. 5175,
pp. 426–442. Springer (2008)

22. Motik, B., Sattler, U., Studer, R.: Query Answering for OWL-DL with rules. Jour-
nal of Web Semantics 3(1), 41–60 (2005)

23. Object Management Group: Semantics of Business Vocabulary and Business Rules
(SBVR). http://www.omg.org/spec/SBVR/1.0 (2008)

24. Object Management Group: Ontology Definition Metamodel. Version 1.0.
http://www.omg.org/spec/ODM/1.0/ (2009)

25. O’Connor, M.J., Knublauch, H., Tu, S.W., Grosof, B.N., Dean, M., Grosso, W.E.,
Musen, M.A.: Supporting rule system interoperability on the semantic web with
swrl. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) International
Semantic Web Conference. Lecture Notes in Computer Science, vol. 3729, pp. 974–
986. Springer (2005)

26. Paptaxiarhis, V., Tsetsos, V., Karali, I., Stamotopoulos, P.: Developing Rule-Based
web applications: Methodologies and tools. In: Handbook of Research on Emerging
Rule-Based Languages and Technologies: Open Solutions and Approaches, pp. 371–
392. IGI Global (2009)

27. Parreiras, F.S., Staab, S., Winter, A.: TwoUse: integrating UML models and OWL
ontologies. Tech. rep., Universität Koblenz-Landau (2007)

28. Ribarić, M., Gašević, D., Milanović, M., Giurca, A., Lukichev, S., Wagner, G.:
Model-driven engineering of rules for web services. In: Lämmel, R., Visser, J.,
Saraiva, J. (eds.) GTTSE. Lecture Notes in Computer Science, vol. 5235, pp. 377–
395. Springer (2007)

29. Russell, S.J., Norvig, P.: Artificial intelligence: a modern approach. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA (1995)

30. Vdovjak, R., Frasincar, F., Houben, G.J., Barna, P.: Engineering Semantic Web
Information Systems in Hera. J. Web Eng. 2(1-2), 3–26 (2003)

	A MDD approach for generating Rule-based Web Applications from OWL and SWRL
	Introduction
	Model-driven approach for rule-based Web applications
	Process overview
	Tool support

	MDD of Jess rule base
	MDD of JSF Web architecture
	Architecture of rule-based Web applications
	Generating the Web components

	Related Work
	Conclusion and future work

