
Valeria de Castro, Juan Manuel Vara, Esperanza Marcos,

Mike Papazoglou, Willem-Jan Van den Heuvel (Eds.)

2
nd

 International Workshop on

Model-Driven Service Engineering

(MoSE 2010)

Málaga, Spain, 29 June 2010.

MoSE 2010

Proceedings of the 2
nd

 International

Workshop on Model-Driven Service

Engineering

In conjunction with the

TOOLS 2010 Federated Conferences

Organized by

Kybele Research Group

Department of Languages and Computing Systems II

Rey Juan Carlos University

Supported by

Rey Juan Carlos University

Preface

Model-Driven Engineering (MDE) deals with the provision of models,

transformations between them and code generators to address software

development. One of the main advantages of model-driven approaches is the

provision of a conceptual structure where the models used by business

managers and analysts can be traced towards more detailed models used by

software developers. This kind of alignment between high level business

specifications and the lower level Service Oriented Architectures (SOA) is a

crucial aspect in the field of Service-Oriented Development (SOD) where

meaningful business services and business process specifications are those

that can give support to real business environment usually changing with

increasing speed.

SOD has become currently in one of the major research topics in the field of

software engineering, leading the appearance of a novel and emerging

discipline called Service Engineering (SE), which aim to bring together

benefits of SOA and Business Process Management (BPM). SE focuses on

the identification of service (a client-provider interaction that creates value

for the client) as first class elements for the software construction. The

convergence of SE with MDE can holds out the promise of rapid and accurate

development of software that serves software users’ goals.

In this context, the 2
nd

 Workshop on Model Driven Service Engineering

(MoSE 2010) aims to provide a forum to discuss different issues related to SE

in conjunction with MDE, boarding open research problems in this area as

well as practical experiences. Particular interests include methods, modelling

languages, development methodologies and techniques in the field of SOD.

We have received in this edition 10 contributions. All the papers received

have been reviewed by, at least, three members of the international Program

Committee. As the result of the review process 5 works were accepted as

regular papers for their presentation at MoSE 2010 workshop. Moreover, we

have also heard Dr. Eelco Visser from the Department of Software

Technology at Delft University of Technology who presented the invited

lecture: “Service Models for WebDSL and Mobl”.

We wish to thank all the contributors to MoSE 2010, in particular the authors

who submitted papers and likewise, we acknowledge the time and effort

contributed by all the members of the Program Committee who have very

carefully reviewed the submitted papers. In closing, we would like to thank

the Rey Juan Carlos University for their financial support.

June 2010

Valeria De Castro

Juan Manuel Vara

Esperanza Marcos

Mike Papazoglou

Willem-Jan Van den Heuvel

Organization Chair

MoSE 2010

Workshop Organization

Workshop Organizers

Valeria De Castro Rey Juan Carlos University, Spain

Juan Manuel Vara Rey Juan Carlos University, Spain

Esperanza Marcos Rey Juan Carlos University, Spain

Mike Papazoglou Tilburg University, Netherlands

Willem-Jan Van den Heuvel Tilburg University, Netherlands

Progam Committee

Yuan An Drexel University, USA

Rolv Braek University of Science and Technology, Norway

Jorge Cardoso University of Coimbra, Portugal

Alfonso Castro Telefonica I+D, Spain

Rafael Corchuelo University of Seville, Spain

Marcos Didonet Del Fabro IBM Software Group, France

Ruben Fuentes Technical University of Madrid

Nora Koch Ludwig Maximilians University, Germany

Guadalupe Ortiz Bellot University of Cadiz, Spain

Genoveva Vargas Solar CNRS, LSR-IMAG, France

Organizing Committee

Verónica Bollati Rey Juan Carlos University, Spain

Carlos Cuesta Rey Juan Carlos University, Spain

Elisa Herrmann Rey Juan Carlos University, Spain

Marcos López Rey Juan Carlos University, Spain

Diana Sánchez Rey Juan Carlos University, Spain

Belén Vela Rey Juan Carlos University, Spain

Table of Contents

Modelling Self-Management in Service-Oriented Systems using SelfMML.

Carlos Rodriguez, Jorge Jesus Gomez Sanz and Juan Pavon.

On the Design of a Domain Specific Language for Enterprise Application

Integration Solutions. Rafael Z. Frantz, Carlos Molina Jimenez and Rafael

Corchuelo.

Tool support for Service Oriented development from Business Processes.

Andrea Delgado, Ignacio García-Rodríguez de Guzmán, Francisco Ruiz and

Mario Piattini.

Organic Aggregation Service Engineering Framework (OASEF): A New

Model-driven Approach to Service Engineering. Yuanzhi Wang.

Inference of performance annotations in Web Service composition models.

Antonio García-Domínguez, Inmaculada Medina-Bulo and Mariano Marcos-

Bárcena.

Modelling Self-Management Requirements inServie-Oriented Systems using SelfMMLCarlos Rodríguez-Fernández1, Jorge J. Gómez-Sanz1, and Juan Pavón1Faultad de Informátia,C/ Prof. José Garía Santesmases, s/n,28040 Madrid, Spain{arlosro,jjgomez,jpavon}�fdi.um.esAbstrat. This paper introdues a language alled Self-ManagementModelling Language (SelfMML) whih supports the modelling of self-management apability requirements. The paper presents a ase studyrelated to the automati re-binding features in servies whih illustratesand analyses the language usage in servie-oriented systems.1 IntrodutionSoftware Systems intended to provide servies usually should be operative atpeak performane 24/7 to meet the end-user needs and the business require-ments. Therefore, it is desired that suh systems have the apability of man-aging themselves without human intervention, sine a system ould done suhoperations in a faster and more aurate way. This apability is alled self-management[1℄.The self-management de�nition is detailed by its four aspets: self-optimisation,self-on�guration, self-healing and self-protetion[1℄. Self-optimisation is the au-tomati looking and �nding of opportunities to tune the system to improve theperformane and the e�ieny; Self-on�guration is the automati on�guring ofthe system following high level poliies; Self-healing is the automati reoveringfrom unhealthy state; and Self-protetion is the proteting itself from attaksand asading errors, with antiipatory or reative ations [1℄.Obtaining suh apabilities in a servie-oriented system is not a trivial workand require a ostly engineering e�ort. This work ould be failitated if thedeveloper had speialised tools whih support the de�nition of those apabili-ties. To support this laim, this paper studies the impat of applying the Self-ManagementModelling Language (SelfMML) for the modelling of self-managementapability requirements in a servie-oriented system.The Self-Management Modelling Language (SelfMML) is a language whihintends to assist in the engineering of self-management apability requirements,providing visual representations related to the spei�ation of them. A visualeditor tool for this language is provided to reate, view, edit and store SelfMMLspei�ations. This tool an be downloaded at http://selfmml.sf.net.The hosen ase study for applying SelfMML is based on a well known se-nario in servie-oriented omputing: the re-binding. Spei�ally, the re-binding

apability requirement in an on-line blog system, whih is onsidered as a self-management apability requirement that will be modelled using the proposedlanguage.It is important to remark that we fous on the modelling aspets, not inthe requirement engineering proess. Hene, we intend to provide a modellinglanguage that permits a developer to e�etively apture and speify a self-management requirement, but we do not provide assistane for the requirementengineering proess that uses this language. The SelfMML sope is limited to theself-management requirement spei�ation. A self-management apability repre-sents an expeted behaviour from the system, whih should be implementedin some way during the hosen development proess. During the realisation ofthese, the engineer an identify elements and design the arhiteture of the �nalsystem aording to the spei�ed expeted behaviour, analogous to the reali-sation of use ases. The developer ould onsider some framework or referenearhiteture for self-management or just develop an ad-ho solution. A methodto realise and verify self-management requirements modelled by SelfMML is notstudy in this work.This work is strutured as follows. Setion 2 desribes the language SelfMML.Setion 3 presents a ase study used as illustrative example of the languageusage. Setion 4 shows some related work that has been taken into aount forthis language. Setion 5 introdues the onlusions.2 The Self-Management Modelling Language (SelfMML)The Self-Management Modelling Language (SelfMML) is a language to be usedin the modelling of self-management apabilities that a system should have,that is, self-management apability requirements. This language is made fromUML 2.2 Superstruture, onretely, opies all elements from the Use Cases andAtivities pakages and extends them with new elements. Also imports elementsfrom the Kernel pakage for the de�nition of the elements.The language has a meta-model that de�nes its abstrat syntax. Furtherinformation about the meta-model an be found in http://selfmml.sf.net.The language is desribed below (see �gures 1, 2 and 3).
Fig. 1. SelfMML (1)

Fig. 2. SelfMML (2)� Self-Management Capability. Self-Management Capabilities are the abil-ities of systems to do management operation by themselves on themselves.This element is provided for the representation of self-management apabilityrequirements in a system.Self-Management Capabilities are usually related to quality requirements asmaintainability, portability, reliability, usability, availability, among others [2,3℄,in a way that ontribute to the satisfation of them. The language has the QualityGoal and Quality Level elements for the representation of quality requirements(see �gure 1).� Quality Goal. This element represents a quality requirement desribed asa goal that the system should maintain. It has a harateristi property thatdesribes the harateristi or fator related to the quality requirements, andalso has a satisfation property that desribes how the quality goal is satis�edby the using of some expression in natural language or another languagesuh as Objet Constraint Language (OCL). Suh expressions ould desribewhat are aeptable values for the quality metris related to the qualityrequirement, following the IEEE 1062-1998 Standard reommendations.� Quality Level. This element represents a quality level whih groups qualitygoals that the system should maintain.The language lets developers model how self-management apabilities arerelated to Quality Requirements and Use Cases, by the using of the relationshipsontribute for quality goals and require for use ases. Also the inlude relationshipis provided to desribe what quality goals are inluded in a spei� quality level(see �gure 2). Quality Goals an be onneted to desribe ontribution with theontribute relationship too.Problems are the target of self-protetion and self-healing apabilities. Thelanguage provides elements to model possible problems in the system followingthe philosophy from the Failure Modes and E�et Analysis methods (FMEA)[4℄.These elements are:� Failure. This element desribes a failure that ould happen in the system.� Failure Case. This element desribes what is the wrong behaviour that asystem shows when some failure has happened (failure modes in FMEA).� Misuse Case. This element desribes a misuse of a system that an userdoes whih an lead to a failure[5,6,7℄.

� Attak. This element desribes an attak against the system.A failure, a misuse ase or an attak an be related to a quality goal withthe threaten relationship indiating that the �rst ones threaten the satisfationof the seond ones. Failures an be onneted to failure ases with the ativaterelationship indiating that the �rst ones ativate the wrong behaviour desribedin the seond ones. Also failures an be onneted to use ases with the a�etrelationship indiating that the �rst ones a�et the normal operation of thefuntionality desribed in the seond ones. Failures, misuse ases and attaksan be onneted to failures with the ause relationship indiating that the �rstones ause the seond ones.A self-management apability, as a self-protetion apability, an be on-neted to problems (failures, misuse ase and attaks) to indiate that the a-pability takes antiipatory ations to avoid, redue the onsequene or reduethe likelihood of suh problems using the avoid, redueConsequene and redue-Likelihood relationships respetively. Also, as a self-protetion apability, theelements an be onneted to attaks with the defend relationship to indiatethat the system reats to suh attaks; and an be related to failures with theisolate relationship to indiate that the system isolates suh failures to avoid theasading failures that they ould ause.A self-management apability, as a self-healing apability, an be onnetedto a failure with the reoverFrom relationship indiating that the apabilityreovers the system from the failure. Also, it an be onneted to a failure asewith the deativate relationship indiating that the apability deativates thewrong behaviour of the system.Aording to the self-on�guration and self-optimising aspet of the self-management, a self-management apability ould have the intention to tune aertain on�guration parameters to improve the performane of the system, andould also have the intention to omplete or update a ertain on�guration pa-rameters following high level poliies, in reation to hange events in the systemor in the environment. SelfMML provides two elements to model suh on�gu-rations and hange events:� Change Event. This element desribes a hange event in a system.� Con�guration. This element desribe a on�guration desription.A self-management apability ould be related to a on�guration with thefollowing relationships: tune, omplete and update, indiating that the apabilitytry to tune, ompete or update the on�guration. A apability ould be relatedto a hange event with treat relationship indiating that the apability treatsthe event.SelfMML provides a set of ativity nodes to speify the abstrat proess ofa self-management apability using ativities diagrams (see �gure 3). A self-management proess usually has a struture aording to four phases[1℄: moni-toring, analysis, planning, and plan exeution. In monitoring phase the interest-ing information is gathered; in the analysis phase, the information is proessedin order to infer some needed knowledge; in the planning phase the obtained

knowledge is used to deide what plan exeutes or to build a new one; �nally inthe plan exeution phase the seleted or built plan is exeuted.
Fig. 3. SelfMML (3)The elements for monitoring and analysis are the following (see �gure 3):� Monitoring Node. This element desribes the monitoring ativities andit ontinually generates tokens after eah monitoring yle. The method toobtain information by monitoring ould be pulling, pushing, intereption orany other kind or variant; the node does not imply the using of any partiularmethod.� Analysis Node. This element desribes the analysis ativity to infer knowl-edge from the monitoring reports.The provided elements to model the seletion or onstrution of plans arethe following (see �gure 3):� Plan Seletion Node. This element is for the seletion of plans using OCLexpression, it reeives tokens from the inoming edge and opy one for eahoutgoing edges. The ontinuity of the token depends on the Plan SeletionGuard Node.� Plan Seletion Guard Node. This element is to onstrain the exeutionof plans, it reeives tokens from the inoming edge and presents them tothe outgoing edges only if the OCL expression desribed in the spei�ationproperty is evaluated to true.� Plan Seletion Proess Node. This element desribes a seletion whihis done by a more sophistiated proess that annot be expressed by OCL. Itopies all inoming tokens to all outgoing edges, but the ontinuity of suhtokens depends on the evaluation of the guards on the outgoing edges. Then,a simple terms in guards an be used to desribe what plan is seleted.� Plan Constrution Node. This element desribes a plan onstrution a-tivity.In order to speify the plan exeution ativities the language provides thefollowing elements (see �gure 3):� Plan Step Exeution Node. This element desribes a step of a ertainplan to be exeuted.

� Plan Exeution Node. This element desribes an unde�ned plan to beexeuted (useful when the plan is onstruted).3 Case Study: The Servie Re-bindingThe studied system is a blog system suh as blogger.om. Publisher an submitposts using a publishing servie. This publishing servie lets users write a postand attah to the post any kind of �les. It will use an external storage servieto store the attahed �les.This servie is onstrained by two quality requirements related to the avail-ability and the reliability. Both requirements are inluded in an aeptable qual-ity level for standard users. The �rst requirement onstrains the availability ofthe publishing servie in a value that should be equal or greater than 98%. Theseond requirement onstrains the reliability in a fault response likelihood valueequal or less than 0.05 (see �gure 4).Several problems an a�et the requirements ful�lment, this paper identi�edonly four of them. There are two failures that an a�et the normal operation ofthe servie: the used storage servie beomes unavailable; and the used storageservie gives too many fault responses, beoming unreliable. Both failures anause other two: the unavailability and the unreliability of the publishing servierespetively, and an threaten the quality requirements satisfation desribedbefore (see �gure 4).

Fig. 4. Failures and Quality Goals diagramBoth failures in the publishing servie ativate two failure ases (see �gure4). The Frequent Error Responses Submitting Posts desribes that �randomly�the system answers with an unexpeted error when the publisher is submitting anew post. The Publishing Servie Unavailable desribes that when the publisheraesses to the servie the system shows the message �The Publishing Servie isUnavailable, please try later�.

In order to treat these problems, there is a requirement: �The system shouldhave the apability of deteting suh problems and automatially re-bind toan alternative Storage Servie, following a given seletion riteria based on thequality levels o�ered by them. It assumes that exist a Registry that have afull desription of Storage Servies that an be used by the Publishing Servie.The system should try to selet the servie that o�ers the highest quality levelrelated to the availability and the reliability. But, when the seletion is notlear (beause exist an alternative with the highest availability but without thehighest reliability, or otherwise) the system should follow the poliy desribedby an administrator�. In order to avoid the re-seletion of a problemati serviethe system will manage a blak list of them and will use the list to subtratproblemati servies from the list given by the Registry. This apability shouldbe present in the provider software agents of the Publishing Servie.

Fig. 5. The Publishing Servie Re-binding Capability treating problems diagramThe apability will try to reover the system from the Storage Servie Un-available and Storage Servie Beomes Unreliable failures. It also deativates thefailure ases aused indiretly by the failures. These �intentions� are related tothe self-healing aspet of the apability (see �gure 5).Sine the apability selets the servie whih o�ers the highest quality levelin availability and reliability attributes, it redues the likelihood of the Publish-ing Servie Unavailable and Publishing Servie Beomes Unreliable failures (see�gure 5). Therefore, the apability ontributes to the satisfation of both qual-ity requirements: the high availability and the high reliability of the servie (see�gure 6).The apability requires the development of some use ases in order to operateproperly (see �gure 6). The alternative storage servies are found in a Registry,thus the apability needs the loation of this registry as input. The Con�gureRegistry Loation use ase desribes the funtionality of on�guring the loationof the registry. The apability will manage a blak list of servies, but problematiservies ould be healed and the administrator ould need remove it from theblak list at run-time. But even, the administrator ould need add problematiservies to the blak list beause it was deteted by another system. TheManage

Fig. 6. The Publishing Servie Re-binding Capability onneted to funtional and qual-ity requirements diagramBlak List use ase desribes this funtionality. Also the apability requires theCon�gure QoS Criteria for Seletion use ase to let the administrator on�gurewhat QoS riteria the apability should take into aount to selet alternatives;and also requires the View Re-binding Result Report use ase whih desribesthe funtionality of viewing, by the administrator, the re-binding logs that areprodued at run-time.This apability is detailed by a self-management proess model (�gure 7, 8and 9). There are two monitoring ativities: Storage Servie Faults Monitoringand Storage Servie Availability Monitoring. The former monitors the numberof faults in a period of time in order to update the urrent value of the qualitymetri �fault-response-likelihood� of the Storage Servie; and the latter monitorsthe urrent operational status (available, unavailable) of the Storage Servietoo. These monitoring ativities generate reports whih are onsumed by theAnalysis Of the Needs to Rebind. The Storage Servie Faults Monitoring ativitywill monitor the using of the Storage Servie in order to ath faults, and theStorage Servie Availability Monitoring ould monitor the using, but also oulddo the monitoring either diretly asking to the Storage Servie, or subsribingitself to some heartbeat signal.The Analysis Of the Needs to Rebind ativity deides if the rebinding isneeded or not. The deision is made using the monitoring reports and the qual-ity requirements of the storage servie. If the �fault-response-likelihood� metriof the Storage Servie is equal or greater than 0.05 the reliability of the Pub-lishing Servie will derease, and if the Storage Servie beomes unavailable thePublishing Servie will get into failure. Therefore, in these ases the rebindingwill be needed. However, the Storage Servie ould have a noti�ation systemthat inform to its lients of temporary unavailability for administration purpose.Then the analysis ativity ould take into aount suh informations to makea better deision alulating how the estimated period of time in unavailabilityan a�et the quality level of the Publishing Servie. Another ase where therebinding is not needed is when there is already a rebinding in exeution.If the rebinding is needed, then the proess get into a plan seletion phase(see �gure 7). The plan seletion is made heking if there are available servies

Fig. 7. The Publishing Servie Re-binding Proess (1) diagramandidates or not. There are two plans: update the blak list, blok the usingof the publishing servie, and do nothing, beause there are no andidates; orupdate the blak list and rebind, beause there is at less one andidate.
Fig. 8. The Publishing Servie Re-binding Proess (2) diagramThe �gure 8 shows the diagram of the part orresponding to the seletionand exeution of the plan when there are no andidates. The �rst elements in the�ow is the plan seletion guard node that ontains the OCL spei�ation whihonstrains the opy of the token to the outgoing edge. In this ase, the on-straint is: �if the andidates list is empty then lets the token ontinue�. The restof elements in the �ow are the updating of the blak list with the urrent stor-age servie, the unavailability noti�ation and the unregistering to isolate itselffrom the rest of the system. The Final Node indiates that the self-managementproess will stop ompletely, even the monitoring ativities.The �gure 9 shows the diagram of the part orresponding to the seletion andexeution of the plan when there is at less one andidate. As before, the �rst ele-ments in the �ow is the plan seletion guard that onstrains the opy of the tokento the outgoing edge. When there is at less one andidate in the list the token isopy and the �ow ontinue through the rest of plan step ativities. The plan �rstupdates the blak list and noti�es a temporary unavailability for administrationpurpose. After that, selets one servie aording to the given seletion riteriaand rebinds the publishing servie to it. Finally, noti�es the availability. TheFlow Final Node indiates that the �ow stop, but not the proess.

Fig. 9. The Publishing Servie Re-binding Proess (3) diagram4 Related WorkThe Related Work fous on the works whih try to develop a language that anbe used to model self-management aspets. There are some works that are morerelated to the topi of this paper.One of them is the �UML Pro�le for Modelling Quality of Servie and FaultTolerane Charateristis and Mehanisms Spei�ation� [8℄. This one has threeparts: an UML Pro�le and a Catalog for Quality of Servie; an UML Pro�le forRisk Assessment; an UML Pro�le for Fault Tolerane Mitigation.The QoS part is for modelling QoS requirements. This pro�le is limited toquality of servie modelling. SelfMML lets developers model not only quality ofservie requirements but rather any kind of software quality requirements thatould be related to self-management.The Risk Assessment part is to be used for risk assessment modelling, butalso inluded treatment of risks. This part is based on the CORAS method forseurity analysis[9℄. The interesting part for this work is the meta-model andthe modelling language of the treatment of risk by use ases and ators. Thethreats are personi�ed and modelled as ators, the threat senarios as use ases,and the treatments as use ases too. The onnetion with QoS is the modellingof risks that ould a�et the QoS Level of the system. The treatment of risk isspei�ed by use ases. SelfMML makes a di�erene between a apability of thesystem to do some management operation by itself and the use ases that suh aapability ould require. This di�erene allows the modelling of self-managementapabilities that ould not require any use ase. But also there are ases whena treatment of problems is not well desribed by an use ase but rather by andediated entity, e.g. the ase study presented in this work, the rebinding ouldnot be well desribed if only use ases are used.Finally, the Fault Tolerane Mitigation meta-model and Pro�le part is formodelling fault tolerane mehanisms for the system. It is mainly for modellingstrutures that will enable a system to support faults. It inludes the modellingof redundany on�guration, monitoring ollaborations, fault detetion poliies,among others. Our work will inlude fault tolerane, sine the fault tolerane

ould be onsidered as part of autonomi omputing [3℄, speially when it isrelated with self-protetion and self-healing. The struture of systems for themaintenane of health is not addressed by the language presented here, but willbe onsidered in future works.Another work omes from Ian Alexander [7℄. This work does not proposea meta-model, what makes that work more informal, but de�nes a graphiallanguage that suggest a onepts related to some aspet of self-management,e.g. �misuse ase�, �mitigates�, �threat�, or �threatens�. It was used to inspirepart of the work presented here.Finally, there are several works whih present graphial languages for sup-porting goal-oriented requirement engineering. Some of them are i* [10℄, TRO-POS [11℄ and GRL[12℄. In these works requirements are identi�ed as goals whihan represent funtional requirements and non-funtional requirements (namedas �soft-goal�). Also the languages provide another onepts, whih an help inrequirement engineering works, suh as: ator, task (or plan) and several relation-ships . Using these languages, self-management requirements an be modelledas goals. However, these languages lak ertain elements whih an help in theapturing, traing and spei�ation of these kind of requirements. Some of themare provided by SelfMML, spei�ally, elements and relationships for modellingfailures, their auses and their e�ets, the require relationship, and the elementsrelated to the spei�ation of self-management proesses.5 ConlusionThis work has presented the Self-Management Modelling Language as a languagethat an be used in the modelling of self-management apabilities in servie-oriented systems. Also a ase study has been presented to study the appliation ofthe language to model self-management requirements in servie-oriented systems.This language has enabled the modelling of a self-management apability inthe ase study as a requirement in the system, failitating the apturing andspei�ation of it. However, there are other issues, that ould be identi�ed inthe ase study, whih would be interesting to model in servie-oriented systems,but the language at this moment did not provide any spei� way to do it.The requirement required the spei�ation of some poliies in order to make aseletion. A model of what poliy options the administrator has and how thepoliies are used to make the seletion ould be interesting to have. Also, theloation of the apability ould be inferred by the name of the apability, but itwould be interesting to assoiate the apability to a spei� servie in a serviearhiteture model. The integration of SelfMML with a language that an be usedto model servie arhitetures like Soa Modelling Language (SoaML), ould �llthis gap. We would like to study both issues as future works in order to developa more ompleted language.A method for realising and verifying self-management requirement spei�edwith SelfMML is an open issue for future work. We would also like to exploremodel to model transformation from self-management elements to design ele-

ments to support more ompletely the engineering of self-management apa-bilities of a target system. Spei�ally, sine agents are suitable to realise self-management apabilities [1,13℄, self-management elements seem suitable to bemapped to design elements related to agent approahes.AknowledgementsThis work has been developed with support of the program "Grupos UCM-Comunidad de Madrid" with grant CCG07-UCM/TIC-2765, and the projetTIN2005-08501-C03-01, funded by the Spanish Counil for Siene and Tehnol-ogy.Referenes1. Kephart, J.O., Chess, D.M.: The vision of autonomi omputing. IEEE Computer36(1) (2003) 41�502. Nami, M.R., Shari�, M.: Autonomi Computing: A New Approah. In: AMS '07.(Marh 2007) 352�3573. Sterritt, R., Bustard, D.: Autonomi omputing � a means of ahieving depend-ability? IEEE ECBS 0 (2003) 2474. : Failure modes and e�ets analysis. Tehnial Report MIL-P-1629, U.S. Army(1949)5. Sindre, G., Opdahl, A.: Eliiting seurity requirements by misuse ases. In:TOOLS-Pai� 2000. (2000) 120�1316. Andreas, G.S., Opdahl, A.L.: Templates for misuse ase desription. In: REFSQ'01.(2001) 4�57. Alexander, I.: Misuse ases: Use ases with hostile intent. IEEE Software 20 (2003)58�668. : UML Pro�le for Modeling Quality of Servie and Fault Tolerane Charateristisand Mehanisms Spei�ation. OMG. v1.1 edn. (April 2008)9. Braber, F., Hogganvik, I., Lund, M.S., Stølen, K., Vraalsen, F.: Model-based seu-rity analysis in seven steps � a guided tour to the oras method. BT TehnologyJournal 25(1) (2007) 101�11710. Yu, E.S.K.: Modelling strategi relationships for proess reengineering. PhD thesis,Toronto, Ont., Canada, Canada (1996)11. Giunhiglia, F., Mylopoulos, J., Perini, A.: The tropos software developmentmethodology: Proesses, models and diagrams. In Giunhiglia, F., Odell, J., Weiÿ,G., eds.: AOSE'02. Volume 2585 of Leture Notes in Computer Siene., Springer(2002) 162�17312. Amyot, D., Mussbaher, G.: URN: Towards a new standard for the visual desrip-tion of requirements. In: Teleommuniations and beyond: The BroaderApplia-bility of SDL and MSC: Third International Workshop, SAM 2002, Aberystwyth,UK, June 24-26, 2002. Revised Papers. Volume 2599 of Leture Notes in ComputerSiene., Springer Berlin / Heidelberg (2003) 21�3713. Kota, R., Gibbins, N., Jennings, N.R.: Deentralised strutural adaptation in agentorganisations. In: Organized Adaption in Multi-Agent Systems. Volume 5368 ofLeture Notes in Computer Siene., Springer Berlin / Heidelberg (2009) 54�71

On the Design of a Domain Specific Language for
Enterprise Application Integration Solutions ⋆

Rafael Z. Frantz1, Carlos Molina-Jimenez2, Rafael Corchuelo3

1 UNIJUÍ University, Department of Technology, Ijuı́, Brazil
rzfrantz@unijui.edu.br

2 School of Computing Science, University of Newcastle, UK
carlos.molina@ncl.ac.uk

3 Universidad de Sevilla, ETSI Informática - Avda. Reina Mercedes, s/n. Sevilla 41012 Spain
corchu@us.es

Abstract. Enterprise application integrations involve the participation of sev-
eral existing applications with which the integration solution exchanges data over
LANs and the Internet. In these scenarios, operations might occasionally produce
exceptional results at runtime due to impairments introduced by the electronic in-
frastructure such as node crashes, messages lost, delayed or incorrectly composed
by applications. To address the problem, the paper suggests a domain specific
language to specify the integration solution: it produces platform-independent
models and has built-in primitives to produce events that notify of potential ex-
ceptional situations. The paper also shows how these events can be processed by
an event condition action–based monitor to trigger recovery actions.

Key words: Enterprise Application Integration, Domain Specific Language.

1 Introduction

The computer infrastructure of a typical today’s enterprise can be conceived as an
heterogenous set of applications (termed the software ecosystem) that includes tens
of applications purchased from different providers or built at home. An application is
a piece of software that performs an independent and specific business function. Ex-
amples of typical functions are calculation of salaries, tax liability, etc. A recurrent
challenge that appears in enterprises is the need to enhance the functionality of their
software ecosystem by making some of the existing applications to interoperate with
others. In the literature, this problem is known as Enterprise Application Integration
(EAI) and is all about making two or more existing applications, that belong to the same

⋆ The first author conducted part of this work at the University of Newcastle, UK as vis-
iting member of staff. His work is partially funded by the Evangelischer Entwicklungsdi-
enst e.V. (EED). The second author is partially funded by UK EPSRC Platform Grant No.
EP/D037743/1. The third and first authors are partially funded by the European Commission
(FEDER), the Spanish and the Andalusian R&D&I programmes (grants TIN2007-64119, P07-
TIC-2602, P08-TIC-4100, and TIN2008-04718-E).

enterprise, to synchronize their data or to create new functionalities on top of them; in
either case, the software that implements the integration is called the EAI solution.

The integration of two or more applications inevitably involves access to each other’s
data. In the simplest case, an application integration would involve the transmission of
a single unit of data (for example, via a RPC) directly from an application to another.
However, in practice, application integration normally involves a large number of in-
teractions among applications that, in general, result in a rather complex flow. In these
scenarios, the data normally endures some processing between the source and the des-
tination and is subjected to several constraints such as order, timing and validation. For
example, data from two or more applications can be validated against syntax errors, then
merged and re-formatted to compose a single message, and then delivered to a third ap-
plication before the expiration of a deadline. To handle this complexity, it is convenient
to regard the EAI solution, as a business process that interacts with the participating
applications (in this article we call them assets).

From these observations, it follows that the final job of the designer is to produce
the EAI solution that implements the new business process on top of the existing com-
puter infrastructure. Two factors make this problem a challenging task: First, computer
technology is not static but constantly changing. For example, a piece of software or
hardware can be upgraded. A good solution should be able to cope with computer in-
frastructure evolution, without drastic re-designs. Second, computer infrastructure is far
from being 100% reliable. For example, a communication network can fail and delay
or lose messages. Again, a good solution should be able to provide continued service –
possibly of a degraded quality – despite the occurrence of failures of the infrastructure.

With the above arguments in mind one can argue that a key tool to address the
problem of EAI is a specification language and a programmatically way that address
the two issues mentioned above.

The Model Driven Architecture (MDA) is a promising software engineering ap-
proach suggested by the Object Management Group (OMG) [14]. Its aim is the au-
tomation of the software cycle which normally includes design, implementation, de-
ployment, integration, re-design, re-implementation, etc. It relies on the use of tools (as
opposite to the conventional manual approach) along the different stages of the soft-
ware cycle. Central to the MDA are the concepts of model, metamodel and abstraction
levels. In brief, a model is the specification of the system under construction, at a given
level of abstraction; whereas the metamodel can be a Domain Specific Language (DSL)
used to specify the system. The main abstraction levels, in a descent way, are: compu-
tation independent (CIM), platform-independent (PIM), platform-specific (PSM) and
deployment level. All them provide different models to describe the solution.

A good alternative to address the first challenge presented above is a DSL with
built-in constructs to capture the most fundamental concepts involved in EAI solutions
such as messages, communication pipes and processing filters, but at a high-level of
abstraction. For instance, such languages can be used to describe solutions by means of
PIMs, that is, specifications that are implementation neutral and can be programmati-
cally transformed into executable code. Equally important, to address the second issue,
such a language should offer a means for capturing exceptional situations likely to have
an impact on the EAI solution. To the best of our knowledge and in accordance with

2

results from previous research [6], DSLs with these highly desirable features are still a
research topic. We are aware that there are some preliminary results in this direction.
For example, in [6] the authors present Guaraná – a DSL designed to produce PIMs; in
other words, it addresses the first issue hinted above; a limitation of Guaraná is that as
it is, it can only specify normal execution flows; in other words, it does not address the
second issue since it does not have any mechanisms to specify exceptional situations.
As an alternative to cover the gap, we suggest the enhancement of Guaraná with con-
structs for detection and handling of exceptional situations. In pursuit of this goal, we
show in this paper how Guaraná ports can be enhanced to signal exceptions when com-
munication operations (e.g. read, write, solicit) executed by ports against an asset fail
to complete, or a validation test on received data produces abnormal results. We target
port operations first because we consider that they are the most fault-prone operations
in an EAI solution. Also, we show how a conventional Event Condition Action (ECA)
mechanisms can be used to handle these exceptions. Several engineering requirements
combine to make EAI a hard problem; before tackling them, it is worth clarifying what
requirements we take on board in our research and what assumptions we make.

The first requirement we account for is that the existing assets are and should con-
tinue to be functionally independent from each other with and without the EAI solution
in operation. Mutually-dependent assets fall outside the scope of this paper. It follows
that our EAI solution should provide only exogenous coordination. To meet this re-
quirement we rely on loosely-coupled interactions between the solution and the assets.

Another typical requirement on the EAI solution is that it should not involve the
modification of the code or configuration of the original asset; the implication of this
restriction is that the EAI solution can count only on the original interfaces that the
participating assets offer, to make them interoperate.

We make no assumptions about the physical locations of the assets. They can be
located within the same building and be linked by a LAN or in different continents and
communicate over the Internet. The involvement of the Internet presents the designer
with additional challenges: Internet communication is far from being fully reliable;
it can lose and duplicate messages; and introduce unpredictable delays. Without due
attention, these impairments can render an EAI solution unoperational. Communication
delays become highly relevant in EAI solutions with strict and tight time constraints.

Since we focus on EAI, we can leave authentication and security issues out of the
equation as these problems are not of major concern in these scenarios. Likewise, we
can assume that access to data between assets is always granted, likely under some
restrictions of no relevance to our discussion.

This paper is structured as follows: Section 2 places our research in context and
discusses the related work; Section 3, offers a brief introduction to our DSL Guaraná
and places it within the context of the model driven approach; Section 4, is the heart of
our paper – it discusses our failure semantics and shows how Guaraná’s ports can handle
exceptional situations; Section 5, presents a realistic scenario of enterprise integration
that we use as a validating example, and discusses our event condition action-based
exception handling mechanism to support Guaraná. Finally, we draw conclusions and
future work in Section 6.

3

2 Related Work

The UML-profile [13] for EAI solutions is directly related to our work on Guaraná
and is arguably an attractive alternative. We rule it out on the basis that UML profiles
are basically extensions to UML intended to cover the limitations of the native UML;
unfortunately, the UML-profile for EAI solutions has not been very successful due to
its complexity and lack of expressiveness (see [1] for a discussion on the adequateness
of using UML-profiles to represent DSLs).

The Business Process Modeling Notation (BPMN) [18] can be used for specify-
ing EAI solutions but at CIM level, that is, at a level that is too abstract for EAI de-
signers. Related to our work are also EAI technologies like BizTalk [10], Mule [12]
and Camel [5] which produce technology-dependent solutions: in the context of MDA,
BizTalk fits the platform-specific level while Mule and Camel belong to deployment
level. We regard BPMN, BizTalk, Mule and Camel as complimentary to Guaraná, rather
than competitive.

Our work is closely related to the on-going research on exception handling in Web
services composition. Of interest to us is the discussion presented in [19]. We share
with the authors the idea of using ECA policies to handle exceptional events. However,
the paper studies the problem at BPEL level of abstraction and suggests the use of an
integrated exception handling mechanism with the intention of conducting execution
planning to prevent the occurrence of exceptions. Our goal is different – we address
exceptions at PIM level of abstraction and propose mechanisms to recover from ex-
ceptional situations rather than to prevent their occurrences. A similar discussion on
exception handling at BPEL level and complimentary to [19] can be found in [9]. In [4]
the authors propose a policy-driven middleware solution (implemented in .NET and
manually portable to other platforms) to handle exceptions in web service composition;
we consider this a valid result but too implementation specific, since our interest is in
abstract PIMs. With this paper we share the view that communication operations are the
most fault-prone. Relevant to us is also the classification of faults which can roughly be
mapped into the exception that Guaraná’s ports can detect.

An illuminating discussion about the complexity of handling exceptional situations
in EAI, such as the unexpected cancellation of an operation due to infrastructure fail-
ures or human related events, is presented in [7]. Authors argue that to be effective, a
compensation mechanism should take into consideration the state of the two interacting
applications. As the discussion is at conceptual level, the authors present no solution.

3 An Overview of Guaraná – a Domain Specific Language for EAI

A DSL is a well focused language developed to address problems in a particular
domain. It provides a set of dedicated abstractions, elements and notations with for-
malization to assist the designer in expressing its solution at the level of abstraction of
its DSL. In MDA, a given model is programmatically transformed into a model of a
lower level of abstraction. Models of high-level of abstraction are implementation neu-
tral and called PIMs; whereas models of low-level of abstraction are implementation
specific and called PSM. There are estimations [17] that show that for each dollar spent

4

Fig. 1. Abstraction levels for an Integration Solution.

on developing an application, companies usually spend from 5 to 20 dollars to integrate
it into EAI solutions. From this perspective, the MDA approach looks like a promis-
ing alternative to cut these costs down. For instance, the designer can produce a PIM
model of the EAI solution that can be re-used to automatically derive as many PSMs as
necessary to match technology evolution within the enterprise.

The feasibility of the MDA approach depends on the availability of the source meta-
model, target metamodel, transformations, etc. For instance, in the EAI domain a DSL
is still a miss. We suggest Guaraná as an alternative to cover the gap. Guaraná produces
graphical designs of EAI solutions at a high-level of abstraction; it uses Enterprise In-
tegration Patterns (EIP) [8] and covers currently existing gaps in the field.

3.1 Abstraction Levels for Integration Solutions

In the MDA, the specification of an EAI solution can undergo several transforma-
tions through different levels of abstractions before it is finally implemented on top
of the software ecosystem. This idea is shown in Fig. 1 with the intention of placing
Guaraná within this context. The figure shows five levels of abstraction separated into
business and technology. Level 5 is the most abstract one and is entirely technology-
specific solution neutral in contrast, level 1 is the final technology-specific deployable
solution. Guaraná belongs to the third level.

LEVEL 5: Models are produced by business analysts and provide an informal de-
scription of the problem at a high-level of abstraction, that is, with no notion of appli-
cations, message flows or technology like software ecosystems. Models are specified in
natural language and normally suffer from imprecisions, omissions and ambiguities.

LEVEL 4: Here models are considered CIMs. They are refinements of models
from level 5, produced manually by business analysts and expressed in standards like
BPMN [18]. The notions of participating applications (source and consumer of data)
and message flow appear at this level; yet the model does not capture core domain

5

specific design concepts like the internal structure of the solution or the communica-
tion with its applications. The absence of these concepts prevents their programmatic
transformation into executable models.

LEVEL 3: Models of this level are produced from models of level 4 manually by
system analysts with expertise in EAI solutions. They precisely specify the functionality
and structure of the solution in a manner that it can be programmatically converted into
PSMs of level 2. So they deal with concepts at the granularity of applications, processes,
tasks, message flow, integration links, ports, wrappers, etc. These models are expressed
in a DSL with built–in constructs to describe all the EAI specific concepts listed above.

LEVEL 2: Models of this level result from automatic conversion of models from
level 3; they are PSM and can be mapped into executable code of the chosen technology.

LEVEL 1: Models of this levels are the actual executable code of the solution and
are programmatically generated from models from level 2.

3.2 Guaraná Constructors

Guaraná provides a set of domain specific constructors to design EAI solutions. This
language not just introduces and describes this domain specific concepts, but also pro-
vides a very expressive and needful graphical notation for this constructors, that allow to
visually design an EAI solution. Below we introduce the main constructors and in Fig. 3
we provide an example of a designed EAI solution with Guaraná where the use of these
constructors can be seen. Decorators are used to provide visual information about the
participating assets and their layer(s). They do not have an influence on the executable
model. Building blocks represent the processing constructors of the EAI solution and
are composed of tasks. There are two types of building blocks in Guaraná: wrappers
and processes. A wrapper communicates the EAI solution to an asset, so it contains
communication-specific tasks and has a port connected to a decorator. Processes model
the essential services of the EAI solution, so they contain integration-specific tasks;
they are connected (through ports and integration links) to each other and/or to wrap-
pers. Slots are memory buffers used within building blocks for port to task and task to
task internal communications. Tasks are message processing constructors and appear
inside processes and wrappers. A task reads messages from incoming slots, processes
them (e.g. enriches, translates, filters, etc.) and deposits the result in the outcome slot.
Ports are used to communicate the internal building blocks of an EAI solution and the
EAI solution with its assets. Integration links are channels that transport messages be-
tween building blocks. They are used to connect the entry/exit ports used by building
blocks.

4 Failures in Application Integration Solutions

The general assumption we make about the reliability of the components involved
in an enterprise application solution is that they will occasionally fail. Thus our goal
is to provide the enterprise application integration with mechanisms to tolerate the oc-
currence of failures as opposite to prevent their occurrence. For this to be possible, we
need to identify the failure behavior that the enterprise application integration are likely

6

to exhibit. The failure behavior is also known as failure model or failure semantics [2]
and stipulates what kind of errors the system (the enterprise application integration for
instance) will be able to tolerate: detect at runtime, execute corresponding recovery ac-
tion and return to the normal execution flow possibly with a degraded performance.
An application EAI solution can fail in different ways, non-surprisingly, different au-
thors suggest different classes of failures (see for example [4], [9]); yet it seems to be
a general consensus that most of the failures that impact EAI solutions emerge from
the execution of operations that involve exchange of data with assets; the reason be-
ing that these operations normally involve network communication and possibly over
unpredictable channels like the Internet. The EAI solution can run distributed in differ-
ent machines, so in this case network problems also should be considered for building
blocks’ communication. This type of errors are not addressed in this paper. On this
basis and to comply with space restrictions, this paper focuses only on two types of
failures that might occur inside ports used by the EAI solution to communicate with its
assets: omission failures and response failures. Yet it is worth mentioning that our idea
is general enough to be expanded to other operations executed by the EAI solution.

Omission Failures (OMF): In our communication model we assume that once a
communication operation (read, write and solicit-response) is started by the EAI solu-
tion, it terminates within a strictly defined time interval and declared by the EAI solution
either success or failure. The failure result models situations in which the network and
asset problems might prevent the solution to send or receive a piece of data to/from the
asset within the deadline interval, when this happens we say that the asset has exhibited
an omission failure. Notice that in our communication model operations completed be-
yond the time constraint are taken as failure, so data received by a read operation after
the expiry of the deadline is ignored. In our discussion we use OK and OMF:NOK to
represent success and failure, respectively.

Response Failures (REF): As suggested by leading standards in e-business middle-
ware like RosettaNet [15] and/or by well known integration technologies like BizTalk
[11], it is not enough to receive a response in time as the responder, the asset in this
case, might respond incorrectly. Thus a received message has to satisfy some syntactic
validation tests (e.g., headers and body inspected and understood) before it can be taken
by the EAI solution for processing. This kind of failures are known as response failures.
To model them we run a validation test on every message received by the EAI solution,
that produces either success or failure. Again, we use OK and REF:NOK to represent
success and failure, respectively.

4.1 Exceptions of Guaraná Ports Operations

Guaraná provides four types of ports for communication: one-way EntryPort, one-
way ExitPort, two-way SolicitorPort and two-way ResponderPort. One-way EntryPorts
are used for reading messages in an internal EAI solution communication and from
assets, as well; one-way ExitPorts are used similarly, but for writing. Two-way Solic-
itorPorts are used to solicit data from assets in solicit-response mode; in principle this
operation can be split into two individual operations or abstracted as single atomic one;
for simplicity we discuss only the latter case. Two-way ResponderPorts are irrelevant
in our arguments and not discussed further.

7

(A)

Receive Location 1

Receiving ProcessCommunicator

SlotRead

Asset

X

Control Channel

REF: NOK

OK OK

OMF: NOK

read

operation
message validation

operation

Send Location 1

Sending Process
Communicator Slot

Write

Control Channel
OMF: NOK

OK

write

operation(B)

Sending Process

Communicator

Slot

Receiving Process
Solicit

Response
Slot

Control Channel
OMF: NOK

OK

REF: NOK

OK

solicit-response

operation

Solicit Location 1

message validation

operation

(C)

Asset

X

Asset

X

Fig. 2. (A) Entry Port, (B) Exit Port, (C) Solicitor Port.

The instrumentation of our failure model in Guaraná’s ports is shown graphically in
Fig.2. EntryPort and SolicitorPorts can contain one or more locations with their respec-
tive communicators. Each location is associated to a single source of data (e.g., appli-
cation layer such as database, file, user interface). We assume the existence of a single
location as this is enough to explain our ideas. The actual communication operation
(read, write and solicit-response) is performed by the communicator; so to implement
our omission failure model, we provide communicators with the notion of deadline to
complete their operations. Read messages are delivered by communicators to the receiv-
ing processes. The sending processes are irrelevant in our discussion yet we can mention
that they process the message destined to assets, before passing it on to the communica-
tors. To model response failures, we include a validation operation inside receiving pro-
cesses. As show in the figure, in response to a given operation (e.g., take read operation
of EntryPort A) communicators produce either OK or OMF:NOK. The OK message
represents the normal response and is fed into the normal flow, whereas OMF:NOK
represent the abnormal result and is notified to the control channel. Similarly, the vali-
dation operations produce either OK (fed into the normal flow) or REF:NOK which is
notified into the control channel.

5 Validation

To validate our ideas we will show how both the normal and exceptional execution
flow can be specified in Guaraná.

5.1 Example

To set the scene, we will use the scenario of an application integration problem un-
der study at Unijuı́, Brazil. Apart from some small modification introduced to highlight
the issues of our research interest, the scenario is realistic. The project involves five
assets: a Call Center System (CCS), Payroll System (PS), Human Resources System

8

Payroll

System

HR

System

Mail

Server

SMS

Notifier

Call Center

System

x_

User:

Passwd:

Date:

OK Cancel

(1)

(2)

(3)

(4)

(5) (6)

(7)
(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

Fig. 3. UNIJUÍ’s integration solution with fault-tolerance.

(HRS), E-mail Server (ES) and Short Message Service (SMS). The CCS manages the
university telephone system. The PS processes the monthly payments of the employees.
The HRS manages the personal data of the employees. The ES runs the e-mail service.
SMS runs a service for sending text messages to mobiles phones. The problem can be
informally described as follows:

1. Employees use the phone facilities of the university for making external phone calls
of both business and personal purposes. All calls are recorded by CCS.

2. Business calls are free. The cost of personal calls is deducted from the caller’s
salary which is processed by the PS on the last day of the month at 9:00 a.m.
– No calls can be deducted before notifying the caller by e-mail, SMS text or both.

3. To deduce the cost of a call, the PS requires: 1) the caller’s name, personnel number,
e-mail and mobile phone number, from the HRS; and 2) the cost and destination of
the call, from the CCS.

4. To guarantee that a call will be deducted from the current month’s salary the PS
needs to receive the input by 8:00 a.m. on payment day.
– Input received after this time is logged and processed in the next month.

The description has two salient features: 1) It includes operations with strict time
constraints, for example, “input by 8:00 a.m. on payment day”. 2) It accounts for poten-
tial exceptional situations and separates the normal execution flow (normal text) from
the exceptional one (italic text). This problem can be solved by using the exception
mechanism introduced in Section 4.

5.2 Integration Solution

The Guaraná specification of our example is shown in Fig. 3; ignore for the time
being, deadline constraints and potential exceptions. The integration flow is started by
the timer task (3) located inside the wrapper (1) that communicates with the CCS –
represented by a decorator (2). This task creates an activation message every t units
of time (e.g. five minutes) and writes it to a slot (4). The message activates a solicitor

9

Fig. 4. ECA - based exception handling mechanisms.

port (5) that extracts all phone calls made in the last five minutes. The CCS offers
only a user interface, so the solicitor port uses a scrapper (a technique for extracting
information through a user interface) to interact with the CCS. The splitter task (6)
breaks the message into individual messages containing just one phone call each. These
messages are sent, through an integration link (7), to the central process (10). Messages
related to irrelevant (e.g., free or insignificant cost) calls are filtered out by a filter (8).
Messages of interest are replicated (9) to the wrapper of the HRS and to a correlator
(12). The HRS is queried by the message created by a custom task (11); the response
from the HRS is sent to the central process (10) where it enriches the original message
by means of an enricher (13). The enriched message is sent after the corresponding
translations (14, 18 and 20) to match destination formats, to the PS, SMS and ES.
Messages that, for some reasons, do not contain a phone number or an e-mail address
are filtered out (respectively by filters 16 and 19). A slimmer (7) shortens messages
down to the short text standard before sending them to the SMS.

5.3 An ECA-based Exception Handling Mechanism

To handle exception occurrences at programming level and independently from the
normal execution of the EAI solution, we suggest the use of an exception handling
mechanism based on the conventional Event Condition Action (ECA) paradigm. We
show its functionality with the help of Fig. 4 which is a simplified version of Fig. 3
meant to highlight port operations between the EAI solution and the five assets involved.

Our mechanism involves a monitor and a control channel that links the monitor with
the EAI solution (say by a publish/subscribe paradigm). Also, the monitor is linked
to the EAI solution by the recovery channel for recovery actions. The EAI solution
represents the normal execution flow (normal text of our validating example) whereas
the monitor represents potential exceptional executions (italic text of the example). The
monitor is instrumented with ECA rules that execute exceptional actions upon receiving
exceptional events through the control channel. As shown in Fig. 4, exceptional results
(OMF:NOK and REF:NOK) from the execution of port operations (solicit-response,
message validation and write) are published to the control channel. The normal results

10

of the operations are fed only into the normal execution flow, but if necessary, they can
also be published to the control channel to be used by the monitor.

The exceptional actions are application-specific and fall outside the scope of this
paper; yet we can briefly mention that they are recovery actions whose execution brings
the control flow back to the normal execution. For instance, an operation can be sim-
ply ignored, retried, etc. Some typical recovery patterns are discussed in [9] and [3].
The rules can be written in a rule language (see for example [4]) and executed by a
conventional rule engine supported by timers, event-log files, queues, etc., (see for ex-
ample [16]). The discussion of these details falls outside the scope of this paper. The
rules shown inside the monitor are only illustrative and far from being complete; they
are meant to show how exceptional situations can be handled; to save space we will
focus only on the exceptional execution flow of point 2 of our example: No calls can be
deducted before notifying the caller by e-mail, SMS text or both.

In our simplified notation R, evt, cnd, act and t stand for rule, event, condition,
action and time respectively. The 07 : 55 represents the time on the payment day to
notify the PS to stop it from processing a call deduction when the caller has not been
notified. Similarly OMF 5:NOK is in log checks for the existence of OMF 5:NOK
records in the log file of the rule engine. R1 captures the possibility that the write
operation against the SMS fails; the condition checks if the notification by e-mail has
failed and if there is time to retry the SMS operation; when the exceptional event OMF
4:NOK is received and the condition holds, the recovery action RetryWriteOperation
on SMS is executed. R2 is complimentary to R1 as it also reacts to the OMF 4:NOK
exceptional event; yet it is triggered when it is time (t >= 07 : 55) to notify the PS of
the problem and executes the StopCallDeduction on PS recovery action to stop the PS
from processing the call under question.

6 Conclusion and future work

It is worth emphasizing that at the current stage of our research the failure semantics
of Guaraná’s ports consider only omission and response failures that may be raised
due to a local time constraint at port level when ports interact with assets. Our future
work is to enhance Guaraná’s failure semantics also with the capability of capturing
message processing failures that may occur into the sending process element at ports
(see Fig. 2). This element can be used to validate the message before forwarding it to
the communicator so that assets are prevented from receiving and processing invalid
messages that will only produce NOK outcomes and exception signals. Another idea
is to extend this idea to the whole EAI solution and thus considering those message
processing failures that may occur within building blocks, since the principle here is
the same as for sending processes; in principle each building block involved in the flow
might produce success (OK) or failure (NOK) after processing a message.

Considering the whole EAI solution, the failure semantic could be enriched with
the notion of a global deadline (global time constraint). This kind of constraint should
specify a time-to-live for messages, meaning the message is valid and can be normally
processed by the EAI solution, as well as, be delivered to the target asset(s) within this
time. In this case a corresponding class of failure could be raised and handled, if the EAI

11

solution did not meet the global time constraint. There would be a direct relationship
between these two kinds of constraints, since the total amount of time in local time
constraint could give a hint to build the global time constraint.

The paper recognizes the need to account for exceptional situations that normally
impact EAI solutions at run time and suggests an approach to capture them at an abstract
level of the specification. To address the problem and in support of the model driven
approach to cope with computer technology evolution, the paper contributes with an
innovative DSL that 1) produces PIMs; and 2) whose operation (ports at current stage)
invocations account for exceptional outcomes: they either produce a normal result or
an exceptional event that is processed by an event condition action-based monitor that
triggers recovery procedures.

References
1. A. Abouzahra, J. Bézivin, M.D. Del Fabro, and F. Jouault. A practical approach to bridging

domain specific languages with UML profiles. In Proceedings of the Best Practices for
Model Driven Software Development at OOPSLA, volume 5, 2005.

2. F. Cristian. Understanding fault–tolerant distributed systems. Communications of the ACM,
34(2):56–78, February 1991.

3. V. Ermagan, I. Kruger, and M. Menarini. A fault tolerance approach for enterprise applica-
tions. Services Computing, 2008. SCC ’08. IEEE Int’l Conf on, 2:63–72, July 2008.

4. A. Erradi, P. Maheshwari, and V. Tosic. Recovery policies for enhancing web services relia-
bility. In Proc. Int’l Conf. Web Serv., pages 189–196, 2006.

5. Apache Foundation. Camel Home, 2008.
6. R.Z. Frantz, R. Corchuelo, and J. González. Advances in a DSL for Application Integration.

In Proceedings of the Zoco’08 Workshop, pages 54–66, Gijón (España), 2008.
7. P. Greenfield, A. Fekete, J. Jang, and D. Kuo. Compensation is not enough. In EDOC ’03:

Proceedings of the 7th International Conference on Enterprise Distributed Object Comput-
ing, page 232, Washington, DC, USA, 2003. IEEE Computer Society.

8. G. Hohpe and B. Woolf. Enterprise Integration Patterns - Designing, Building, and Deploy-
ing Messaging Solutions. Addison-Wesley, 2003.

9. A. Liu, Q. Li, L. Huang, and M. Xiao. A declarative approach to enhancing the reliability of
bpel processes. In Proc. IEEE Int’l Conf. Web Services, pages 272–279, 2007.

10. Microsoft. Microsoft BizTalk Server 2006 R2 Home, 2008.
11. Microsoft. BizTalk Framework 2.0: Document and Message Specification, Dec 2000.
12. Inc. MuleSource. Mule 2.x User Guide, 2008.
13. Object Management Group (OMG). OMG EAI Profile Home, 2004.
14. Object Management Group (OMG). OMG Home, 2009.
15. Rosettanet. Rosettanet: Implementation framework–core specification, version: V02.00.01,

revised 6 mar, 2002.
16. M. Strano, C. Molina-Jimenez, and S. Shrivastava. A rule-based notation to specify exe-

cutable electronic contracts, cs–tr no. 1115. Technical report, School of Computing Science,
Newcastle University, 2008.

17. J. Weiss. Aligning relationships: Optimizing the value of strategic outsourcing. Technical
report, IBM, 2005.

18. Stephen A. White. Business Process Modeling Notation (BPMN) Specification 1.0, 2009.
19. L. Zeng, H. Lei, J j. Jeng, J-Y. Chung, and B. Benatallah. Policy–driven exception-

management for composite web services. In Proc. Seventh IEEE International Conference
on E–Commerce Technology (CEC05), 19–22 July, pages 355–363. IEEE Computer Society,
2005.

12

Tool support for Service Oriented development from

Business Processes

Andrea Delgado
1
, Ignacio García-Rodríguez de Guzmán

2
, Francisco Ruiz

2
,

Mario Piattini2

1 Computer Science Institute, Faculty of Engineering, University of the Republica,

Julio Herrera y Reissig 565, 1300, Montevideo, Uruguay

adelgado@fing.edu.uy
2Alarcos Research Group, Dep. of Information Technologies & Systems, University of

Castilla - La Mancha, Paseo de la Universidad 4, 13071, Ciudad Real, España

{ignacio.grodriguez, francisco.ruizg, mario.piattini}@uclm.es

Abstract. The integration of Business Process Management (BPM), Service

Oriented Computing (SOC) and Model Driven Development (MDD) paradigms

to improve the development of services oriented solutions from business

models is nowadays in the spotlight. Organizations wanting to remain

competitive despite the constant changes in their business are paying more

attention to their business processes and its base lifecycle. Business process

modeling is also at the centre of software development efforts, as making those

models explicitly constitutes the basis for services definition. Transformations

between business process and services models allow the automatic generation

of services from business processes in a repeatable and systematic way, easing

the development process. In this paper we present MINERVA’s tool support for

service oriented development from business processes, including QVT

transformations from BPMN to SoaML models to automatically generate

service models from business process models.

Keywords: Service Oriented Computing (SOC), Model Driven Development

(MDD), Business Process Management (BPM), business processes, service

oriented methodologies, model transformations, tool support.

1 Introduction

The development of services oriented solutions to realize business process provides

organizations with the needed organizational agility to react to changes, allowing

performing changes to each one –business and software – with minimal impact in

each other. The integration of Business Process Management (BPM) [1][2], Service

Oriented Computing (SOC)[3][4][5] and Model Driven Development (MDD)

[6][7][8] paradigms to improve the development of services oriented solutions from

business models is nowadays in the spotlight. Organizations wanting to remain

competitive despite the constant changes in their business are paying more attention

to their business processes and its base lifecycle as defined in [9][10][11]. The

implementation of business processes with services also contributes in reducing the

gap between the areas of business analysis and Information Technology (IT), easing

communication and understanding of business needs. The model driven development

supports the definition and maintenance of the relationship between the various

models involved, and automates as much as possible the passage from one another by

means of transformations. The main objective of the ongoing research work is to

provide support to the continuous improvement of business processes based on their

lifecycle, applying SOC and MDD paradigms to business process to enable the

needed organizational agility. This vision is expressed in MINERVA [12] (Model

drIveN and sErvice oRiented framework for the continuous business processes

improVement & relAted tools) which is a framework comprising elements in three

dimensions: conceptual [13], methodological [14] and tool support, including the

Business Process Maturity Model (BPMM) [15] and measures [10][16] for the design

and execution of business processes, to guide the improvement effort.

In this article we present MINERVA’s tool support for service oriented

development from business processes in three main aspects: a method plug-in

developed in Eclipse Process Framework (EPF) [17] Composer to support the defined

Business Process Service Oriented Methodology (BPSOM) [14]; Query/Views/

Transformations (QVT) [18] transformations from Business Process Modeling

Notation (BPMN) [19] models to Service Oriented Architecture Modeling Language

(SoaML) [20] models -based on the defined ontology [13]- to generate services

automatically, and the technical architecture and selected tools to support

MINERVA’s lifecycle. The rest of the article is organized as follows: in section 2 the

EPF Composer method plug-in to support the methodological approach is described,

in section 3 the technical architecture and tools selection of MINERVA are presented,

in section 4 the defined QVT transformations are described along with an example, in

section 5 related work is presented and finally in section 6 conclusions and future

work are discussed.

2 BPSOM method plug-in

The methodological approach defines a Business Process Service Oriented

Methodology (BPSOM) [14] as a plug-in to be incorporated in the software base

development process used in the organization. The methodology is defined as a

method plug-in and published as a web site [21] using the EPF Composer to provide

interoperability with other processes defined in the same way. BPSOM defines

activities, roles, work products and its templates in three Disciplines defined as key

for service oriented development: Business Modeling, Design and Implementation. In

Fig. 1 several elements of the methodology are shown, on the left side the defined

categories can be seen: Disciplines, Work products, Roles and Lifecycle, along with

some of its comprising elements such as activities, tasks, deliverables, roles. On the

right side an example of tasks definition is presented for BM2 - Identify Business

Processes, showing participating roles, work products defined as inputs and outputs,

purpose, description and Discipline that comprises it. Due to space reasons, a brief

description of BPSOM is presented here, the complete definition is presented in [14].

Fig. 1. Global view of BPSOM web site created using EPF composer

The defined lifecycle is iterative and incremental following the unified process[22]

incorporating the four phases: Inception, Elaboration, Construction and Transition.

The activities are inserted in the phases of the base software development process,

making the corresponding adaptations when needed. The defined lifecycle serves as a

guide to indicate the emphasis on the realization of activities at each stage of

development. As an example, the activity’s worfklow for the defined Elaboration

iteration is shown in Fig. 2.

Fig. 2. Activity’s workflow for an Elaboration iteration in BPSOM

Disciplines and activities. BPSOM activities are defined in three key Disciplines to

guide the service oriented development effort: Business Modeling, Design and

Implementation. These activities have to be integrated with other existing activities of

the base development process, such as requirements capture, architecture definition,

service testing and deployment, and project management.

Business Modeling. The Business Modeling Discipline aims to understand and

describe the business processes in the organization, mainly those related to the

application being developed. Business processes are modeled with the selected

notation, recommended the Business Process Modeling Notation (BPMN). It also

promotes the involving of the project team with the organization for which the

development is being carried out, in issues such as: the area of business, operation,

employees, etc. of the organization. There are two activities defined to reach these

goals: BM1 – Asses the target Organization and BM2 – Identify Business Processes.

Design. The Design Discipline adds the following goals to the ones defined for

generic software design: to identify and specify the services needed to perform the

business processes modeled in the Business Modeling Discipline, classifying them by

type of service, to generate and maintain a services catalogue for services reuse in the

organization (functionalities, components), and to define the services composition

(orchestration, choreography) needed to realize the identified business processes. Five

activities are defined to reach these goals: D1 – Identify and categorize services, D2 –

Specify services, D3 – Investigate existing services, D4 – Assign services to

components and D5 – Define services interaction.

Implementation. The main goal of the Implementation Discipline is to get the

identified services implemented and working as defined. To reach this goal the

activity I1 – Implement services is defined.

Work products. Work products provide the basis for controlling development

progress and reaching the defined goals of the activities, Disciplines and lifecycle

iterations. The defined work products in BPSOM are as follows: Assessment of the

target organization, Business Processes document, Services document, Services

catalogue and Services implemented. Each document has a defined template to guide

its realization, defining its content.

Roles. The roles in BPSOM are a selection of base roles that we consider to be the

more important ones for service oriented development based on business processes:

Analyst, Business Analyst, Architect and Developer. Each role performs several

activities as primary role, and is responsible for some work products realization. The

Business Analyst is explicitly included now to emphasize the importance of the

participation of Business people in the Business Modeling Discipline.

3 Technical architecture and tools

To support service oriented development from business processes following

BPSOM methodology, a selection of existing tools is given. The aim of MINERVA

framework is to integrate free existing tools facilitating the development using

BPSOM; for every activity a tool is recommended for its realization. So far we are

working with an integrated selection of tools available in the Eclipse IDE: Eclipse

BPMN Modeler [23] for business process modeling, Medini QVT [24] Eclipse plug-

in for business process to services QVT transformations, Magic Draw Cameo SOA+

[25] Eclipse plug-in for SoaML modeling and ModelPro [26] Eclipse plug-in for JEE

code generation. The technical architecture and the first selection of tools are shown

in Fig. 4, to support the complete MINERVA’s lifecycle.

Fig. 4. MINERVA tool support for services development from business processes

As it can be seen in Fig. 4 and according to BPSOM, the first activity shown

corresponds to the business process modeling that is done by Business People, in a

BPMN modeler. After the business process model is defined, in step (1) the business

process execution model is obtained expressed in XPDL [27]/BPEL [28], and in step

(2) the business process model is exported in XMI/XSD format, so it can be imported

for IT People in the Eclipse IDE. Several tools allow these kinds of export files from

business process models, and with the release of BPMN 2.0 [29] we expect the format

would be homogeneous for all tools. After the BPMN model is imported in Eclipse

IDE, activities that will be transformed to services have to be marked as of “Service”

type according to the service design activities from BPSOM, defining its input and

output messages, operations, implementation, among others. Running the QVT

transformations defined in Medini QVT plug-in in step (3), the corresponding

elements in SoaML profile are obtained. The inputs for the QVT transformations are

the source model in XMI format that is the XMI file associated with the BPMN

business process model, and the two corresponding metamodels: BPMN Modeler and

SoaML metamodels in ecore format, from which the QVT transformations are

defined. Then the target XMI file corresponding to the SoaML model that is

generated by the transformation is loaded into Magic Draw Cameo SOA+ plug-in,

and in step (4) using ModelPro plug-in the code is generated from the obtained

SoaML model. Step (5) represents the invocation of the generated service components

from the business process execution engine. Finally, in step (6) monitoring of the

business process execution and its evaluation by means of techniques such as Process

Mining [30] over log files is done, using tools as Prom [31] and its analysis plug-ins.

Business Process Modeling Tools. For business process modeling we are evaluating

several tools that implements BPMN standards, including BizAgi modeler which

allows XPDL export, Visual Paradigm Business Process Architect which allows XMI

export, as it is desirable that Business People could model the business processes to

give them to IT People. For our proof of concept we are using directly the Eclipse

BPMN modeler as we want to focus on QVT transformations.

Service Oriented Modeling Tools. There are few implementations of the SoaML

specification yet that can be seen in [32]. Although we are analyzing the

functionalities provided by each of them along with it ease of use, we have integrated

the MagicDraw CAMEO SOA+ and the ModelPro Eclipse plug-ins for the proof of

concept, as we are using Eclipse as base platform. SoaML implementations provide

the needed stereotypes to specify SoaML models, and to generate code in the desired

technology. We are planning our own implementation of SoaML as Eclipse plug-in.

Code generation from services in SoaML. The ModelPro plug-in generates JEE

code from SoaML models, providing several examples. For the generation of code for

our own example we need to add elements to the generated SoaML model, via new

defined transformations or manually, to provide the MDA engine with the required

information for doing the generation of code.

4 QVT transformations

BPSOM methodology guides the derivation of services from business processes by

means of activities, roles and work products definition. To improve the development

process, the automatic generation of services oriented models from business process

models is added, which is presented in the following.

4.1 QVT transformations definition

To define QVT transformations between service models and business process models,

we previously defined an ontology [13] in the conceptual dimension of MINERVA, in

which we identified the relations between these models, in order to understand what

elements we want to obtain in service models from elements in business process

models. Following the Model Driven Architecture (MDA) [8] standard, we transform

BPMN models into SoaML models by defining QVT transformations from a BPMN

metamodel as origin metamodel, to the SoaML metamodel as the target metamodel.

Then, a BPMN model compliant with the BPMN metamodel will be transformed into

a SoaML model compliant with the SoaML metamodel.

There are many elements in each metamodel to be related, so to begin with we

selected a sub-set of key concepts and relationships to define the QVT

transformations that allow us to obtain the structural view of services, from the

business process model. Other views will be also modeled as the dynamic view of

services interaction specified by sequence diagrams, as defined in BPSOM. The sub-

set of concepts and relationships that we have defined in the ontology and used in the

QVT transformations definition are shown in Fig.4; the complete set of concepts and

relations is detailed in [13].

Fig. 4. Key concepts and relationships used in QVT transformations

First of all the services model is obtained from the business process diagram (BPD) as

the root element. Each pool in the BPD defines a participant in the services

architecture model, and each lane in each pool corresponds to an internal participant.

Each participant provides and requires services corresponding to exchanged messages

with other participants, so, the generated services will be associated with each

participant. Each activity marked as “Service Type” will be transform into a

ServicePoint or RequestPoint, depending on the direction of the message: if it is an

incoming message then the service is provided in the generated ServicePoint, if it is

an outgoing message then the service is request in the generated RequestPoint. We are

aware that there are many other alternatives to specify these transformations, which

we will explore in our future work. In Table 1 the QVT transformations from BPMN

to SoaML comprising the concepts and relationships shown in Fig.4 are presented.

Table 1. Sub-set of the defined QVT transformations from BPMN to SoaML

Sub-set of relation rules defined

top relation ProcessToModel {

 checkonly domain bpmn bp : bpmn::BpmnDiagram{name = pn};

 enforce domain soaml sm : SoaML::Model{name = pn }; }

top relation PoolToParticipant {

 checkonly domain bpmn p : bpmn::Pool{name = pn};

 enforce domain soaml s : SoaML::Participant{name = pn};}

top relation LaneToParticipant {

 checkonly domain bpmn p : bpmn::Lane{name = pn };

 enforce domain soaml s : SoaML::Participant{ name = pn };}

top relation ActivityMessageToServicePoint {

 checkonly domain bpmn c : bpmn::Activity{lanes = p : bpmn::Lane{},

 activityType = bpmn::ActivityType::Task,

 incomingMessages = im : bpmn::MessagingEdge{}, name = cn};

 enforce domain soaml t : SoaML::ServicePoint {

 participant = s : SoaML::Participant {},

 isService = true, name = cn};

 when { p.pool.bpmnDiagram.pools.lanes.activities -> exists

 (x:bpmn::MessageVertex | (x.outgoingMessages.target =

 c.incomingMessages.target) and

 (x.oclAsType(bpmn::Activity).activityType=c.activityType));

 PoolToParticipant (p.pool, s); }}

The first rule shown in Table 1 named “ProcessToModel” generates a SoaML

“Model” element from a “BpmnDiagram” element corresponding to the BPD of

BPMN, relating the top level business process to the services model. The second rule

named “PoolToParticipant” generates SoaML “Participant” elements from “Pool”

elements of the BP model, one Participant from each Pool. The third rule named

“LaneToParticipant” generates SoaML “Participant” elements from “Lane” elements

inside the pools of the BP model, which will be used to describe the internal

architecture of each participant in the services architecture. The fourth rule named

“ActivityMessageTo ServicePoint” generates SoaML “ServicePoint” elements from

those activities in the BP model which have incoming messages from another activity,

associating it with the participant that provide the service. In this rule it is necessary

to look for all the activities in the BPMN model to see which are connected by

messages connectors. The OCL expression in the “when” clause of the rule, evaluate

all the activities in the model, checking whether they have outgoing messages to the

activity being evaluated, that is incoming messages, and comparing the type of

activities to be “Activity” instead of “Service” as we defined. This is a restriction of

the BPMN Modeler metamodel in which activity elements are defined as “Activity”,

“Gateway”, etc. and are differentiated with the ActivityType property, not providing

the types “Service”, “Manual”, etc that we defined to use, which is minimal for the

purpose of demonstrating the feasibility of QVT transformations from BPMN

metamodel to SoaML metamodel.

4.2 QVT transformations example

To illustrate the proposal for SoaML service models generation from BPMN business

process models, the Make Appointment business process from a generic hospital is

modeled using the Eclipse BPMN Modeler, as shown in Fig. 5.

Fig. 5. Make Appointment business process

The business process shown in Fig. 5 starts when a Patient requests an appointment

with a Doctor. The Receptionist checks the Patient information assigning a Doctor.

After that, two activities are executed in parallel: the Doctor registers the appointment

with the Patient and a communication is sent to the Patient with the appointment’s

information. From this business process we want to obtain two Participants: Client

and Hospital, three Participants including in the previous ones: Patient for Client, and

Receptionist and Doctor for Hospital. The Client participant offers a service in the

activity “Acknowledge Appointment”, and requires a service from the Hospital in the

“Check Patient Information” activity. The Hospital participant offers a service in the

activity “Check Patient Information”, and requires a service in the activity

“Acknowledge Appointment”. After executing the defined QVT transformations the

target XMI file is obtained with the SoaML elements generated, as shown in Fig. 6.

Fig. 6. SoaML target XMI file generated from the BPMN business process

The two participants and the three included participants are generated; for the Client

participant the ServicePoint “Acknowledge Appointment” is created, and for the

Hospital participant the ServicePoint “Check Patient Information” is obtained. For the

generation of the associated RequestPoint we are working on the rules to navigate

through the messages to the target participants that provide them. After the SoaML

XMI file is generated, it has to be loaded into the Magic Draw Cameo SOA+ plug-in

to show the SoaML diagrams and to generate the code by the ModelPro engine.

5 Related work

In the last few years there have been many efforts aiming to apply SOC and MDD

paradigms to business processes, from which a selection of works that defines

methodological approaches or aims to automate the generation of service and

software artifacts from business process are presented in the following. As the best of

our knowledge there are no other works relating BPMN models with SoaML models

directly as we do, but transformations from BPMN to UML can be seen in [33] where

UML artifacts as Activity Diagrams (AD) and Collaboration and Deployment

diagrams are generated from BPMN business process models, as a way to travel form

business to IT vision, and [34] where BPMN business processes are transformed into

AD and from these diagrams use cases and analysis classes are generated, with focus

on business process security. Model driven approaches are proposed in [35] including

a methodology, models, metamodels and transformations to obtain service oriented

Web Information Systems (WIS) expressing the interaction of services to perform

business processes, in [36] a business value model is integrated to the work to derive

software artifacts from it using ATL[37], in [38] collaborative service oriented

architecture is defined and transformations from BPMN models into UML models

and BPEL models also using ATL. In [39] models and metamodels for services are

defined in the PIM4SOA approach relating them to the defined architecture

(brokerless, centralized and decentralized broker). Transformations based on the

application of patterns are proposed in [40] starting with the macroflow-microflow

pattern which establishes the conceptual basis and the process-based integration

architecture pattern that guides the design of an architecture based on sub-layers for

the service composition layer. In [41] conceptual transformations are defined based

on the successively application of patterns from the top to the bottom layer, using

graphs for pattern matching. [42] proposes going from BP models to technical

processes matching existing services by applying transformation patterns classified

with respect to the quality of the transformation. [43] goes from a business model

(CIM) to an analysis model (PIM), identifying serviceAction in tasks, then to a

Design model (Architecture specific model, ASM), mapping services to the target

architecture. In [44] a methodology for the development of services associated with

business processes is defined with focus on Web Services (WS) implementation, and

in [45] a survey on existing approaches for identification and analysis of Business and

Software Services along with a consolidated proposal is presented.

6 Conclusions and future work

The tool support presented in this article is part of the MINERVA framework we are

working on, to support the continuous business process improvement based on the

business process lifecycle for BPM activities. The described elements comprise a

methodology BPSOM as a basis for the development process, QVT transformations

to automate as much as possible the defined steps for services generation, and a set of

integrated tools using as a basis the Eclipse open IDE. BPSOM is modeled in the EPF

Composer as a method plug-in to be integrated in the existing software development

process used in the organization, with this tool. A proof of concept example was

developed using the selected tools, to illustrate the steps defined in the proposal to go

from a BPMN business process model to a SoaML service oriented model. The

defined QVT transformations although simple serve as the basis for the further

definition of transformations for the remaining SoaML elements. We believe that

MINERVA could be a useful guide to be used in organizations that need rapid and

easy integration of methodologies, tools and concepts to adopt the BPM, SOC and

MDD paradigms. Our future work is now focused on the definition of the remaining

QVT transformations to effectively generate complete SoaML services models from

BPMN business processes models, from which to obtain the associated code. We are

also working in an implementation of the SoaML profile as an Eclipse plug-in, and

we plan to integrate the method plug-in BPSOM into Eclipse to automatically aid in

the realization of the methodology activities’ flow.

Acknowledgments. This work has been partially funded by the Agencia Nacional de

Investigación e Innovación (ANII) from Uruguay; ALTAMIRA project (Junta de

Comunidades de Castilla-La Mancha, Spain, Fondo Social Europeo, PII2I09-0106-

2463) and PEGASO/MAGO project (Ministerio de Ciencia e Innovacion MICINN,

Spain, and Fondo Europeo de Desarrollo Regional FEDER, TIN2009-13718-C02-01).

References

1. Business Process Management Initiative, <http://www.bpmi.org/>

2. Smith,H.,Fingar,P.,Business Process Management: The third wave, Meghan-Kieffer, (2003)

3. Papazoglou, M.; Traverso, P.; Dustdar, S.; Leymann, F.: Service-Oriented Computing: State

of the Art and Research Challenge, IEEE Computer Society, (2007)

4. Krafzig, D. Banke, K. Slama, D., Enterprise SOA, Service Oriented Architecture: Best

Practices, Prentice Hall, 1st. ed., (2005)

5. Erl, T., SOA: Concepts, Technology, and Design,Prentice Hall, (2005)

6. Mellor, S., Clark, A., Futagami, T., Model Driven Development - Guest editors introduction,

IEEE Computer Society, September/October (2003).

7. Stahl, T.; Volter, M. et. al.: Model-Driven Software Development, Technology, Engineering,

Management, John Wiley & Sons, Ltd., (2006)

8. Model Driven Architecture (MDA) v. 1.0.1, OMG, http://www.omg.org/mda, (2003)

9. Weske, M., BPM Concepts, Languages, Architectures, Springer, (2007)

10. Mendling, J., Metrics for process models, Springer, (2008)

11. van der Aalst, W.M.P., ter Hofstede, A., Weske, M., Business Process Management: A

Survey, In: International Conference on Business Process Management, (2003)

12.Delgado, A., Ruiz F., García - Rodríguez de Guzmán I., Piattini M., MINERVA: Model

drIveN and sErvice oRiented framework for the continuous business processes

improVement & relAted tools, In: 5th International Workshop on Engineering Service-

Oriented Applications (WESOA’09), Stockholm, (2009), Springer (2010) in press.

13. Delgado, A., Ruiz, F., García - Rodríguez de Guzmán, I., Piattini, M.: Towards an ontology

for service oriented modeling supporting business processes, In IV International Conference

on Research Challenges in Information Science (RCIS’10), Niza, (2010)

14. Delgado, A., Ruiz, F., García - Rodríguez de Guzmán, I., Piattini, M.: Towards a Service-

Oriented and Model-Driven framework with business processes as first-class citizens, In:

2nd Int. Conf. on Business Process and Services Computing (BPSC’09), Leipzig, (2009)

15. Business Process Maturity Model (BPMM), OMG, http://www.omg.org/spec/BPMM

16.Sánchez, L., Delgado, A., Ruiz, F., García, F., Piattini, M.: Measurement and Maturity of

Business Processes. Eds.: Cardoso, J., van der Aalst, W.,Handbook of Research on Business

Process Modeling, Information Science Reference (IGI Global),pp.532-556, (2009)

17. Eclipse Process Framework Composer (EPF Composer), http://www.eclipse.org/epf/

18.Query/Views/Transformations(QVT),v.1.0,OMG,http://www.omg.org/spec/QVT/1.0,(2008)

19. Business Process Modeling Notation (BPMN), OMG, http://www.omg.org/spec/BPMN/

20 Soa Modeling Language (SoaML),OMG, http://www.omg.org/spec/SoaML/, (2009)

21. BP Service Oriented Methodology (BPSOM) http://alarcos.esi.uclm.es/MINERVA/BPSOM/

22.Jacobson, I., Booch, G., Rumbaugh, J. The Unified Software Development Process,

Addison-Wesley, (1999)

23. SOA Tools Platform (STP) BPMN Modeler, http://www.eclipse.org/bpmn/

24. Medini QVT, ikv++ technlogies ag, http://projects.ikv.de/qvt/

25. Magic Draw CameoSOA+,http://www.nomagic.com/ text.php?lang=2&item=338&arg=295

26. ModelPro, http://modeldriven.org/

27. XML Process Definition Language (XPDL), v.2.1, WfMC, http://www.wfmc.org/xpdl.html

28.WS BP Execution Language (WS-BPEL),OASIS, http://docs.oasisopen.org/wsbpel/2.0/

29.BPModeling Notation (BPMN), v.2.0, OMG, http://www.omg.org/spec/ BPMN/2.0/, (2009)

30. van der Aalst, W.M.P., Reijers, H. A., Medeiros, A.,Business Process Mining: an Industrial

Application, Information Systems Vol.32 Issue 5, 713-732, (2007)

31.ProM, Process Mining Group, Eindhoven University of Technology, Eindhoven, The

Netherlands, http://prom.win.tue.nl/research/wiki

32. SoaML implementations, http://www.omgwiki.org/SoaML/ doku.php?id=tool_support

33.Liew,P., Kontogiannis,K. Tong,T., A Framework for Business Model Driven

Development,12th Int. Workshop on Se Tech. and Engineering Practice (STEP’04), (2004)

34.Rodríguez,A.; Fernández-Medina, E.; Piattini, M.: Towards CIM to PIM Transformation:

From Secure Business Processes Defined in BPMN to Use-Cases. 5th Int. Conf. on BPM

(BPM’07)(2007)

35. de Castro, V., Marcos, E., López Sanz, M., A model driven method for service composition

modelling: a case study, Int. J. Web Engineering and Technology, Vol. 2, No. 4, (2006)

36.de Castro V., Vara Mesa J. M., Herrmann E., Marcos E., A Model Driven Approach for the

Alignment of Business and Information Systems Models, (2008)

37. Jouault, F., Kurtev, I.,Transforming Models with ATL (ATLAS Transformation Language),

Satellite Events at the MoDELS Conference, (2005)

38. Touzi J., Benaben F., Pingaud H., Lorré J.P., A model-driven approach for collaborative

service-oriented architecture design, Int. Journal of Prod. Economics,Vol.121 Is.1, (2009)

39. Roser,S., Bauer,B., Muller,J., Model- and Architecture-Driven Development in the Context

of Cross-Enterprise Business Process Engineering”, International Conference on Services

Computing (SCC’06), (2006)

40.Zdun, U., Hentrich, C., Dustdar, S., Modeling Process-Driven and SOA Using Patterns and

Pattern Primitives, ACM Transactions on the Web, Vol. 1, No. 3, Article 14, (2007)

41. Gacitua-Decar V., Pahl C., Pattern-based business-driven analysis and design of service

architectures, 3rd Int. Conf. on Software and Data Technologies SE (ICSOFT’08), (2008)

42. Henkel,M., Zdravkovic,J., Supporting Development and Evolution of Service-based

Processes, International Conference on e-Business Engineering (ICEBE’05), (2005)

43. Herold S., Rausch A., Bosl A., Ebell J., Linsmeier C., Peters D., A Seamless Modeling

Approach for Service-Oriented Information Systems, 5th International Conference on

Information Technology:New Generations(ITNG 08), (2008)

44.Papazoglou, M., van den Heuvel, W., Service-oriented design and development

methodology, Int. J. Web Engineering and Technology, Vol. 2, No. 4, pp.412-462, (2006)

45. Kohlborn T., Korthaus A., Chan T., Rosemann M., Identification and Analysis of Business

and SE Services- A Consolidated Approach, IEEE Transactions on Services Comp., (2009)

OASEF: A Synthetic Approach to Service
Engineering

Yuanzhi Wang

Department of Computer Science
The Australian National University, Australia

derek.wang@anu.edu.au

Abstract. Engineering complex service-oriented systems presents grand
challenges due to their great complexity, volatility, and uncertainty in
their rapidly evolving technology and social contexts. It demands an ef-
fective engineering approach in order to satisfy the needs of service eco-
nomics. This paper proposes an approach called Organic Aggregation
Service Engineering Framework (OASEF). Experience from proof-of-
concepts case studies shows that it provides a practical means to develop
service-oriented systems. It enables and promotes a focus on higher-level
intellectual engineering efforts, and provides a mechanism to capture and
reuse engineering capacities in a model-driven environment.

Keywords: Service Engineering, Model-driven Engineering, Service-oriented
Computing

1 Introduction

Deriving and managing complex Service-Oriented Systems (SOS) presents great
challenges due to their nature and characteristics in a dynamically complex en-
vironments [1]. Firstly, SOS often involve great complexity in terms of variety,
scope, and inter-relationship. On the one hand, technologies such as Service-
Oriented Computing (SOC) and Cloud Computing (CC) greatly facilitate de-
velopment and integration of applications and systems. On the other hand, eco-
nomical and social globalisation processes inevitably force individuals, organi-
sations, and communities to collaborate and compete with each other within
interacting value-chains. As a result, the size, variety, and scope of interrelated
systems scales up rapidly.

Secondly, SOS often present a high degree of uncertainty. Autonomous ser-
vices are often provided and consumed by different agents for different types
of purposes, without necessarily knowing each other in advance [2]. Moreover,
defining a service contract at any time cannot completely incorporate unknown
usage with necessary variations. Therefore, it presents great challenges to sat-
isfy not only the explicit requirements of current target applications, but also
the needs of envisioned future applications or unknown potential users. Lastly,
in highly volatile and heterogeneous environments, the velocity and variety of

appropriate response have to match those of the environmental changes. An ef-
fective service engineering hence has to support and facilitate dynamic evolution
by changing and reshaping their internal structures and behaviour, in a more
frequent and predictable fashion, compared with traditional systems.

These special characteristics and challenges can hardly be resolved by merely
adopting traditional software processes and engineering methodologies, or solely
relying on more advanced implementation technologies [3]. In order to enable
incorporation of wide range of business and social systems within rapidly grow-
ing global service economics, there is an important and urgent demand for a
mature discipline of service engineering [4]. In our view, such a discipline, to
be effective, must provide sufficient support for addressing the grand challenges
of complexity, uncertainty, and volatility while engineering SOS in their open
environments. We believe one way to approximate this ideal is to enable and
promote derivation and reuse of important higher-order intellectual efforts and
lower level technological capacities. This is because evidences have shown that
great complexity involved in engineering problems is better dealt with by intel-
lectual cognitive experience and capacities, which lead to sensible perception of
reality, logical reasoning of problematic situations, and systematic derivation of
conceptual plans [5]. Therefore, effective and efficient accumulation and use of
these intellectual resources is the key crucial factor to manage the ever-presenting
complexity, uncertainty, and volatility in a timely fashion while changes present
themselves. In the meantime, in order to take full advantage of advanced tech-
nologies and implementation infrastructures, and at the same time, deal with
their increasing heterogeneity and complexity, a discipline of service engineering
should also exploit effective means to develop, encapsulate, and automate the
engineering capacities and processes about lower-level realisation and implemen-
tation.

Therefore, our vision of an effective service engineering approach should en-
able and support efficient and flexible formation and exploitation of both higher-
order intellectual resources and lower-order implementation processes. That is,
both types of engineering resources should be explicitly identified, developed,
captured, and used, as major engineering means, to produce and manage sys-
tems, in a flexible, systematic, and automatic means, at least partially if pro-
cessing in its entirety is not possible. Specifically, our objective is to achieve
an effective service engineering approach that: i) promotes a focus on high-level
intellectual activities within the world of human mind, such as exploring and un-
derstanding problematic situations, and identifying and capturing higher order
engineering purposes and intentions; ii) links the captured higher-order engineer-
ing resources with other lower-order engineering activities by using the former
to guide and shape the latter systematically and sensibly, within a coherent
overall process; and iii) provides a means to capture, aggregate, and reuse these
important engineering resources, including both higher-order and lower-order
capacities, to facilitate flexible and rapid aggregations of processes and systems.

This paper presents a new approach to service engineering based on such
a vision, which is called Organic Aggregation Service Engineering Framework

(OASEF). It is based on a philosophy that takes a synthetic approach to growing
and managing processes and systems via sensible and responsive aggregations of
resources and capacities. This work mainly has the following contribution: firstly,
it emphasises exploration and exploitation of higher-order engineering efforts,
and links them with lower-level technological resources within an overall process
model; secondly, it promotes a concept of organic aggregation in engineering that
captures engineering capacities as reusable resources, and, more importantly,
uses them in a sensible, agile, and controlled fashion.

The remainder of the paper is organised as follows: section 2 presents the pro-
posed OASEF framework in details, including a general engineering framework it
conforms to, its conceptual model, and modelling methodology; section 3 briefly
illustrates its important concepts and methods using results from two proof-of-
concept case studies; section 4 analyses its features and limitations based on
observation and experience during the case studies, and compares it with some
related work; section 5 concludes this paper with a summary.

2 The OASEF approach to service engineering

It is important for a discipline of service engineering to have a well-founded
engineering framework that coherently organises engineering activities and re-
sources according to the nature and characteristics of services and systems under
consideration. The aim of this work is to provide and assess such a framework.

2.1 OASEF conceptual model

The design of OASEF started from generalisation of other engineering disci-
plines. Figure 1 depicts a general conceptual framework to which OASEF con-
forms. It includes a theoretical foundation, or a coherent conceptual system,
which consists of of inter-related theories, knowledge, and wisdom that are
shaped or influenced by individual and social experience, beliefs, philosophies,
and culture [6]. Such a foundation, either implicitly or explicitly, guides and
shapes, positive experience and practices that are justified in the course of con-
tinuous engineering activities, which gradually form a range of concrete and
specific guiding principles. These principles, articulated, well explained, and un-
derstood, provide valuable guidance for engineering activities in practice.

Moreover, based on the abstract foundation and principles, more concrete
engineering activities are arranged and conducted within a specific engineer-
ing process, which, in turn, is realised or supported by a range of practical
engineering methodologies. The latter provides specific and concrete means to
realise the aiming higher level engineering purposes, and to solve practical hu-
man problems in a controllable, repeatable, and efficient fashion [6]. Specific
languages, tools, and implementation techniques practically enable or facilitate
the engineering processes and methodologies, and eventually produce or manage
the target systems in reality. Altogether, these coherent engineering elements,

Fig. 1: A meta-model for service engineering

involving a variety of stakeholders, contribute to engineering of resources, infras-
tructure, events, processes, and systems that aim to satisfy identified engineering
needs and human purposes.

The overall structure of OASEF is depicted in figure 2. It conforms to the
general framework, and is based on a theoretical foundation rooted in some
multi-disciplinary knowledge, such as general system theory and modern philos-
ophy of mind. It also incorporates some practical principles by which its pro-
cess and methodology are guided or reinforced. These guiding principles, such
as “environment-driven view of service” [7], “pervasive change and evolution”,
“support for systems adaptation and agility”, and “facilitating knowledge and
capability reuse”, will not be presented here due to space limitation. Although
their meanings are well known, widely accepted, and often taken for granted,
they provide important empirically verified guidance for engineering activities.

As shown in the figure, OASEF incorporates a flexible process model called
Organic Aggregation Process (OAP) in the context of service engineering. Fig-
ure 3 illustrates its inner structure and inter-relationships at a detailed level.
The lines with text besides them represent specific process activities, whereas
the joint point between two lines represents direct correspondence between one
activity to another. Moreover, activities are arranged hierarchically in this struc-
ture. An activity represented by a single line, starting from point A to point B
in the clockwise direction, may comprise a sequence of subordinate activities
that are represented by a series of adjacent lines, which also starts from point
A and ends with point B clockwise. Superordinate activities are represented by
thicker lines and larger-size fonts on the hierarchy. For example, perception com-
prises subordinate activities of sensation and abstraction. The latter, in turn,
comprises system abstraction and general abstraction.

The OAP concepts and process are integrated in OASEF at various level,
as illustrated in the middle part of figure 2. The activity of Perception acquires
information about the Reality world through Sensation, and forms general or
system-specific abstraction of knowledge. The latter is used by Conception to
conduct human intellectual activities in the world of Mind. Specifically, Concep-

Guiding principles

Evolutionary view

Feedback & Monitoring

Competition&Cooperation

Realisation

Rationalisation

Capability Images

Action

Service Discovery

Service Provision

Style, Platform, Framework

Service Infrasturcture

Service Management

Capability Exploration Capability Design

Service Invocation

Service Composition

Service System Images

Rational Images

Problem Situation Desired End

Foundation: System theory, theory of organism and evolution, complexity and chaos theory

theory of communicative action, philosophies in epistemology ...

Environment−driven view

Adaptation & Agility

Communication matters

Capacities reuse, pattern

Service Implementation

Models of various forms

Process Modeling

Runtime environment

BPEL, JAVA...

App Server, Service Engine...

Problem situation models
Desired End models

Process

Perception

Service Model, soaML,BPMN...

Service Modeling

BPMN, UML

General Abstraction
Sensation

System Abstraction

Data, Models, Documents...

general abstraction: causation network

system abstraction:UML,BPMN...

service,process: soaML,BPMN...

(OAP)

(Eclipse EMF/MOF/AOT)

Model−driven Method

World Images

Reality World

Fig. 2: OASEF: Organic Aggregation Service Engineering Framework

tion activities involve Rationalisation, the reasoning and sense-making processes
that produce understanding of perceived situations, inferred problems, and de-
sired ends, which are realised by subordinate activities such as Problem Situa-
tion and Desired End. Conception also includes high-level design, engineering
decision-making, and plan-making sub-processes through Realisation activities,
such as Capability Exploration and Capability Design that identify and design
desired capabilities in accordance with outcome of Rationalisation. Furthermore
Action, conducted in the world of Reality, deal with concrete service systems
by finding and invoking existing services, providing new services, or composing
composite services. Service Infrastructure provides information of implementa-
tion environment such as Enterprise Service Bus (ESB), whereas Service Man-
agement provides control and monitoring of services in run-time environments.

Therefore, OASEF derives and manages services using interconnected OAP
activities. Achievement of these activities collectively forms specific images rep-
resenting unified repository of knowledge, which can be referenced, or used as

Fig. 3: The structure of OAP process model in service engineering

input, by successive activities. For example, the Rationalisation takes World
Images from Perception as input. It produces Rational Images that represent
rationalised Desired Ends models to deal with identified Problem Situation. Real-
isation takes the Rational Images and produces Capability Images that represent
required realisable capabilities. The latter is taken by Action as input and even-
tually produces SOS that alter the state of the Reality with an aim of improving
rationalised problematic situations.

2.2 OASEF modelling and tools support

The conceptual model of OASEF is brought into reality using specific modelling
techniques and model-driven methodologies. Various abstract models, either gen-
eral purpose modelling language such as UML, or specially designed modelling
languages, are used as essential artefacts to facilitate OASEF activities, and to
link these activities altogether throughout the engineering life cycle.

OASEF emphasises activities of Abstraction and Rationalisation in the early
stage of the life cycle. The objective of Rationalisation modelling is to analy-
sis and justify the rationale and needs of engineering processes toward sensible
decisions of actions. Two types of modelling formalism, namely Problem Situ-
ation Models (PSM) and Desired End Models (DEM), are designed to capture
the crucial higher order cognitive achievement. For example, output of Problem
Situation activity is captured in terms of complex inter-relationships between
various problems, facts and constraints, and high-level purposes. Together, PSM
and DEM provide an important means to explore and represent problematic sit-
uations and desired ends that justify successive engineering activities and their
produced engineering results.

As an example, the graphical notations of DEM are depicted in figure 4.
Coloured rectangles with names inside represent various desired ends elements.
They capture the engineering intentions in terms of their concreteness and scope.
For example a Goal is more specific in scope, less abstract to define and commu-
nicate, and easier to measure, compared with Objective and Ideal. Specifically,
light yellow rectangles represent Ideal, whereas light green and dark green ones
represent Objective and Goal respectively. Moreover, white rectangles are used to
represent higher order Capabilities that provide contextual meaning and desired
value in support of service identification and realisation. Relationships among
various DEM elements are represented by connecting arrowed lines. For exam-
ple, an arrowed line can link a Ideal with its subordinate Objective, a Objective
with composing Goal, or a Goal with its subordinate one.

Fig. 4: Graphic notations of DEM

Every OASEF activities produce either domain-specific or general-purpose
models that all conform to a unified meta-meta-models. Therefore, activities in
OASEF can be conducted and inter-connected in a coherent fashion by manip-
ulating and utilising every model in the same way. For example, UML models
based on Eclipse Modelling Framework (EMF) are used to capture information
and knowledge in Sensation and Abstraction, in the same way PSM and DEM
are manipulated. UML activity diagram, soaML, State Machine, and BPMN
are used in Realisation similarly. Some models transformation techniques on
Eclipse modelling platform are also integrated in OASEF to transform various
OASEF models into different forms and generate desired system in an automatic
or semi-automatic fashion.

Moreover, OASEF provides a mechanism called Epitome to reuse engineer-
ing capacities to conduct OAP activities. It is a typical and justified means, or
capability to achieve some engineering purposes. It is generalised from proven
examples that tightly link two OAP activities together, such as a specific Re-
alisation that is able to achieve predictable and optimised results in reality to
improve identified problematic situations. Applying an existing Epitome directly
produce a previously proven outcome without having to go through the particu-
lar activities. For instance, it generate specific Realisation models that are able
to improve the typical problems.

A number of supporting tools are integrated within an integrated supporting
tools environment, called IPEOAP. It is developed using Java programming lan-
guage on top of Eclipse IDE, EMF and modelling platform. A range of graphical
model editors are developed to view, create and modify models for various OAP
activities, such as PSM and DEM.

3 Case studies

Two controlled case studies were conducted as proof-of-concept, as oppose to
proof-of-performance, which aim to assess whether, in general, its objectives are
meet in real world settings. The first case study is in the context of online travel
booking business, a typical scenario used in service community. While the second
one is based on Australian First Home Saver Accounts (FHSA) scheme that was
introduced by the federal government in 2008 to help residents to purchase their
first homes. This section briefly presents some outcomes of these two case studies
to illustrate the main feature, concepts and application of OASEF.

A PSM in the context of online travel booking exemplifies the high level
analysis of Problem Situation in Rationalisation. It contains many higher level
Purposes for online booking, such as “Ease of use”, “Quick Responsiveness”,
“Reliable booking”, ”Economic price”, and “Secure and trust”. These PSM el-
ements are generated systematically in accordance with general knowledge cap-
tured in general abstraction models within world images. It also contains a range
of higher level Problems such as “The booking process takes too long”, which
violates the “Quick Responsiveness” Purpose. This Problem is also caused by
other Problems such as “Too many service providers involved”, “Some providers
are less efficient than others”, “Insufficient network bandwidth”, ”Diversity in
interface and interaction mechanisms”, and ”The ordering process is too com-
plex” that is caused by “sequential correspondence”. Exploration of problems
and purposes reveal their nature and relationships and help to identify, under-
stand, and capture important problematic situations.

The PSM also help to systematically generate other models during successive
engineering activities. As an example, since the problem “Online travel booking
takes too long time” is identified as a major problem that affects a higher pri-
ority purpose “Quick Responsiveness”, a DEM, depicted by figure 5, is created
to reveal the best desired improvements to address the problem. The construc-
tion process of DEM is guided by, and makes referenced to, elements in the
above PSM. For example, The desired improvement of efficiency during travel
booking process includes a higher level ideal, called “Fast booking”, which is
achieved via a number of more specific Objectives, such as “Service provider
filtering”, “Caching”, ”Simplify booking process”, and “Parallel processing”,
which, respectively, filters out slow service providers, provides cache to provide
repeated information locally, simplifies the booking processes, and interacts with
service providers in a parallel and asynchronous fashion. The last Objective con-
tains some lower-level specific Goals, such as “Parallel booking” and “Parallel
queries”. The identification of these improvement and desired ends at different

level of details helps to discover the “right” and achievable goals and desired
capabilities to address the important problems.

Fig. 5: An example of DEM in an online travel booking scenario

In OASEF, higher level models such as System Abstraction, PSM, and DEM
are used to derive and capture intellectual achievement as crucial engineering
resources. In the meantime, more concrete design is also captured by models. For
example, UML Activity diagrams are used to describe the internal structure and
behaviour of subordinate business processes in Capability Design, with the aim to
achieve desired ends in DEM. A design of a process to “Close an existing FHSA
account” is systematically derived in accordance with the identified problem of
“Cannot manage FSHS account in current bank system” in its PSM. It contains
interconnected required capabilities within an orchestrated structure, such as
“Check Eligibility”, “Acquire state information”, “Validate Customer Closure
Form”, “Fund processing”, and “Notify Customer Result”. When conducting
Service Composition during Implementation, the above Capability Design model
is automatically transformed into more concrete formalism, such as Business
Process Execution Language(BPEL) models, which can be directly executed in
a run-time environment, such as Apache ODE BPEL engine used in the case
studies. The transformation process from UML Activity Diagrams to BPEL can
utilise various BPEL transformation tools such as the MDD4SOA tools set [8].

4 Evaluation and analysis

Some observation and assessment of OASEF are made during the design and
implementation of proof-of-concept systems in real world settings. Due to a fo-
cus on, and methodological support for, higher-level intellectual efforts, OASEF
helps to analyse and understand a complex situation, and to systematically de-
rive sensible and rational business decisions, for example, in one of the case

study, whether or not provide support for a bank business under specific leg-
islation environment. The modelling mechanism and tool environment enables
developers to concentrate on exploring and understanding higher order business
issues including complex situations and desired business ends to be achieve, us-
ing models such as PSM and DEM. The graphical tools provided in IPEOAP
facilitate the manipulation of these higher-level intellectual efforts, such as design
and manipulation of Abstraction, Problem Situation, and Desired End. The use
of unified EMF modelling meta-model enables interactions and cross-references
among various OASEF activities, using either general purpose UML models or
specially designed models such as DEM.

In the meantime, “accidental complexity” of underlying implementation tech-
nologies is largely hidden during the case study due to capturing and exploitation
of engineering capacities by using Epitomes and automatic model transforma-
tion techniques. For example, the processes to create database persistence logic,
web service provision and invocation, and web user interface are completely cap-
tured in various epitomes. Consequently, given a System Abstraction model such
as information model for a flight or bank account, OASEF enables 100 percent
automatic code generation, which produces systems capable of collecting infor-
mation from users, persisting data, and providing relevant information service.
Experience from the case studies shows that, based on well captured higher or-
der models and technological capacities, generation of concrete systems at the
implementation level is relatively fast, and requires little human manipulation.

Some issues and limitations are also revealed by the case studies. Although
the proof-of-concept case studies were based on real world settings, the imple-
mented systems are not assessed in real business environment. In fact, since the
controlled case studies were designed to demonstrate and evaluate the objec-
tives of OASEF, by the same person who designed the framework, the results
are hence less convincing compared with empirical practice by third parties.
Moreover, various OASEF activities are neither monitored nor validated in the
engineering process, which makes it hard to identify problems when things go
wrong. Furthermore, due to its proof-of-concept purpose, these case studies did
not cover all aspects of the framework such as sensation and control. It hence
requires further work to improve the prototype and conduct thorough empirical
evaluation in practice, such as applying evaluation metrics to quantitatively as-
sess the effectiveness in real world projects, ideally on a benchmark system, and
in comparison with other approaches.

Based on the empirical experience from the case studies, OASEF is also com-
pared with a range of other approaches, which have varying focus, objectives,
and realisation methods. Kohlborn et. al. proposed a consolidated approach that
aims to provide a good business and IT alignment by layering them separately
with certain linkage in between [9]. For each layer, four stages, namely Prepara-
tion, Identification, Detailing, and Prioritisation, are used to progressively iden-
tify, elaborate, and provide desired services that, collectively, form the systems.
However, the nature and content of its higher order activities such as “Conduct-
ing interviews”, “Conducting capability analysis”, and “Defining domains” are

vaguely defined and lack practical guidance. Moreover, this work provides insuf-
ficient supports for capturing and managing both higher level business and lower
level technologies in a flexible fashion within its predefined layers. Its strength is
weakened in practice due to the lack of concrete formalism and modelling tech-
niques. In comparison, OASEF, founded on sounds theoretical base, defines the
scope, purpose, and relationship of its activities, and more importantly, provides
specific modelling mechanism to manage them.

Lamparter and Sure also proposed an interdisciplinary methodology that
combines a Web Service engineering method with market engineering and on-
tology that aims to coordinate services and customer in a collaborative environ-
ment [10]. Although it covers a full range of system analysis and design activities,
no specific means is provided to manage uncertainty and volatility in a dynamic
environment, which makes it less effective when changes are required in a timely
fashion. Whereas OASEF attacks this issue by allowing flexible aggregations
of previously-proven engineering capacities and process automation in a unified
environment, in accordance with captured higher order rational justifications.

There are also a number of other model-driven approaches to service engi-
neering [11, 8] that provides various modelling facilities and tools to map busi-
ness processes into executable SOS. For example, a model driven technique is
applied to build SOS by converting higher level business processes, captured in
UML activity diagrams, into executable BPEL files [8]. Some tools are devel-
oped to facilitate reasonably smooth transition from business design captured
in BPMN and activity diagrams, into system implementation [11, 8]. However,
unlike OASEF, these approaches do not focus on, and provides no support for,
some higher level intellectual efforts such as identification of problems and im-
provement. Although our previous work [7] also applied a model-driven approach
to facilitate higher level modelling through conceptual orientation and decision,
it does not realise our vision of service engineering due to some great difficul-
ties, such as a lack of clear definitions and concrete formalisms for problem-level
abstraction, and inadequate separation of various engineering concerns during
each phase.

5 Conclusion

In this paper, we propose a synthetic approach to service engineering. It incorpo-
rates some inter-related elements including a conceptual foundation and guiding
principles, a novel process model, a model-driven method, and an integrated
supporting environment.

Two proof-of-concept case studies were conducted in real world settings, and
are briefly presented in this paper to illustrate some important concepts and
techniques. The results show that this approach can be applied in real-world
settings to facilitate service engineering and achieve its design goals in gen-
eral. More specifically, the following positive results are observed. Firstly, by
using higher order models such as PSM and DEM, OASEF enables and pro-
motes coherent higher order intellectual activities, by which effective services

and systems are presupposed. Models in Abstraction, Rationalisation, and Re-
alisation, are captured as important engineering resources that can be located
and aggregated together. They hence form important human intellectual assets
that provide creative and valuable essence to achieve the “right” and optimised
systems. Secondly, activities involving implementation technologies in Action,
are also captured as reusable engineering capacities, and are used to automat-
ically realise identified desired ends in a relatively easy way. Thirdly, using a
model-driven method, OASEF creates an effective linkage between higher order
intellectual efforts and lower level implementation processes, since both type of
resources are organised in a unified, identifiable, reusable fashion. The coherently
aggregation of resources and capacities are used altogether to systemically and
automatically drive the engineering process to produce desired SOS.

Some important issues and limitations are also revealed during the prototyp-
ing and evaluation processing. Corresponding improvements and more thorough
evaluation of its practical effectiveness in real world projects are essential to
consider in future research.

References

1. Papazoglou, M., Traverso, P., Dustdar, S., Leymann, F., Kramer, B.: Service-
oriented computing: A research roadmap. Service Oriented Computing (SOC)
(2006)

2. Chang, S.H., Kim, S.D.: A service-oriented analysis and design approach to devel-
oping adaptable services. Services Computing, 2007. SCC 2007. IEEE International
Conference on (2007) 204–211

3. Dijkstra, E.: The humble programmer, acm turing lecture 1972. Communications
of the ACM 15 (1972) 859–66

4. Cardoso, J., Voigt, K., Winkler, M.: Service engineering for the internet of services.
Enterprise Information Systems (2008) 15–27

5. Ackoff, R.L.: Ackoff’s best, his classic writings on management. John Wiley &
Sons, New York (1999)

6. Checkland, P.: Systems thinking, systems practice. J. Wiley, New York (1981)
7. Wang, Y., Taylor, K.: A model-driven approach to service composition. In: Service-

Oriented System Engineering, 2008. SOSE ’08. IEEE International Symposium on.
(2008) 8–13

8. Mayer, P., Schroeder, A., Koch, N.: A model-driven approach to service orches-
tration. In: IEEE International Conference on Services Computing, 2008. SCC’08.
Volume 2. (2008)

9. Kohlborn, T., Korthaus, A., Chan, T., Rosemann, M.: Identification and Analysis
of Business and Software ServicesA Consolidated Approach. IEEE Transactions
on Services Computing (2009) 50–64

10. Lamparter, S., Sure, Y.: An interdisciplinary methodology for building service-
oriented systems on the web. In: Services Computing, 2008. SCC ’08. IEEE Inter-
national Conference on. Volume 2. (2008) 475–478

11. Brambilla, M., Dosmi, M., Fraternali, P.: Model-Driven Engineering of Service
Orchestrations. In: Proceedings of the 2009 Congress on Services-I-Volume 00,
IEEE Computer Society (2009) 562–569

Inference of performance annotations in Web
Service composition models

Antonio García-Domínguez1, Inmaculada Medina-Bulo1, and Mariano
Marcos-Bárcena2

1Department of Computer Languages and Systems, University of Cádiz,
C/Chile 1, CP 11003, Cádiz

{antonio.garciadominguez,inmaculada.medina}@uca.es
2Department of Mechanical Engineering and Industrial Design, University of Cádiz,

C/Chile 1, CP 11003, Cádiz
mariano.marcos@uca.es

Abstract. High-quality services must keep working reliably and effi-
ciently, and service compositions are no exception. As they integrate
several internal and external services over the network, they need to be
carefully designed to meet their performance requirements. Current ap-
proaches assist developers in estimating whether the selected services can
fulfill those requirements. However, they do not help developers define
requirements for services lacking performance constraints and historical
data. Manually estimating these constraints is a time-consuming process
which might underestimate or overestimate the required performance,
incurring in additional costs. This work presents the first version of two
algorithms which infer the missing performance constraints from a service
composition model. The algorithms are designed to spread equally the
load across the composition according to the probability and frequency
each service is invoked, and to check the consistency of the performance
constraints of each service with those of the composition.

Keywords: service level agreement, load testing, UML activity diagrams, ser-
vice oriented architecture, service compositions.

1 Introduction

Service-oriented architectures have been identified as an effective method to
reduce costs and increase flexibility in IT [1]. Information is shared across the
entire organization and beyond it as a collection of services, managed according
to business needs and usually implemented as Web Services (WS).

It is often required to join several WS into a single WS with more function-
ality, known as a service composition. Workflow languages such as WS-BPEL
2.0 [2] or BPMN [3] have been specifically designed for this, letting the user
specify the composition as a graph of activities.

Just as any other software, service compositions need to produce the required
results in a reasonable time. This is complicated by the fact that service com-
positions depend on both externally and internally developed services and the

network. For this reason, there has been considerable work in estimating the
quality of service (QoS) of a service composition from its tasks’ QoS [4,5] and
selecting the combination of services to be used [6].

However, these approaches assume that the services already exist and in-
clude annotations with their expected performance. For this reason, they are
well suited with bottom-up approaches to developing service compositions. On
the other hand, they do not fit well in a top-down approach, where the user
defines the composition and its target QoS before that of the services: some of
them might not even be implemented yet. Historical data and formal service
level agreements will not be available for these, and for new problem domains,
the designer might not have enough experience to accurately estimate their QoS.

Inaccurate QoS estimates for workflow tasks incur in increased costs. If the
estimated QoS is set too low, the workflow QoS might not be fulfilled, violating
existing service level agreements. If it is set too high, service level agreements
will be stricter than required, resulting in higher fees for external services and
higher development costs for internal services.

In absence of other information, the user could derive initial values for these
missing estimates according to a set of assumptions. For instance, the user might
want to meet the workflow QoS by splitting the load equally over all tasks
according to the probability and frequency they are invoked, requiring as little
performance as possible. Nevertheless, it might be difficult to calculate these
values by hand for complex compositions where some services are annotated.

In this work we propose two algorithms designed to assist the user in this
process, following the assumptions above. The algorithms derive initial values for
the response time under a certain load of all elements in a service composition
model inspired on UML activity graphs. The algorithms have been successfully
integrated into the models of an existing model-driven SOA methodology.

The structure of the rest of this text is as follows: in section 2 we describe the
generic graph metamodel both inference algorithms work with. The algorithms
are described in detail in sections 3 and 4. Section 5 discusses the adaptations
required to integrate them into an existing model-driven SOA methodology.
Section 6 evaluates the algorithms and the tools. Finally, related works are listed
and some conclusions are offered, along with an outline of our future work.

2 Graph metamodel

The inference algorithms are defined for a generic graph metamodel. The meta-
model is a simplification of UML activity diagrams, and uses mostly the same
notation. The new global and local performance constraints are represented as
stereotyped annotations.

A simplified UML class diagram for the ECore [7] graph metamodel is shown
in figure 1. Graphs contain a set of FlowNodes and FlowEdges and have
a manual global PerformanceAnnotation, which indicates all paths in the
graph should finish in less than secsTimeLimit seconds while handling concur-
rentRequests requests concurrently. There are several kinds of FlowNodes:

Activities encapsulate some behavior, described textually in the attribute name.
Activities can have manual or automatic performance annotations.

Initial nodes are the starting execution points of the graphs. One per graph.
Final nodes end the current execution branch. There can be more than one.
Decision nodes select one execution branch among several, depending on whether

the condition for their outgoing edge holds or not. Only the outgoing FlowEdges
from a DecisionNode may have a non-empty condition and a probability
less than 1.

Fork nodes split the current execution branch into several parallel branches.
Join nodes integrate several branches back into one, whether they started off

from a decision node or a fork node. This is a simplification from UML,
which uses different elements to integrate each kind of branch: join nodes
and merge nodes, respectively.

Gra ph

Pe rform a nce Annota t ion

concu rre n tRe que s t s : EDoub le Ob je ct
s e cs Tim e Lim it : EDoub le Ob je ct Flow Node

FlowEdge

con d it ion : ESt ring
p roba b ility : EDoub le Ob je ct

Act ivity

na m e : ESt ring

In it ia lNode Fina lNode ForkNode

JoinNode De cis ionNode

0 ..*

0 ..1

0 ..1

incom ing0 ..*

ou tgoing

0 ..*

t a rge t0 ..1

s ou rce

0 ..1

0 ..*

m a nua l : EBoole a n

Fig. 1. Graph metamodel used in both algorithms

A sample model using this metamodel is shown in figure 2, which describes
a process for handling an order. Execution starts from the initial node, and
proceeds as follows:

1. The order is evaluated and is either accepted or rejected.
2. If rejected, close the order: we are done.
3. Otherwise, fork into 2 execution branches:

(a) Create the shipping order and send it to the shipping partner.
(b) Create the invoice, send it to the customer and receive its payment.

4. Once these 2 branches complete their execution, close the order.

There are two manual performance annotations: a global one (using the
<<gpc>> stereotype) and a local one (using <<pc>>). The whole process must
be able to serve 5 concurrent requests in less than 1 second, and evaluating an
order should be done in 0.4 seconds at most with 5 concurrent requests.

Evaluate
Order

< < gpc> >

concurrentRequests = 5

t im eLim it = 1

< < pc> >

concurrentRequests = 5

t im eLim it = 0.4

m anual = t rue

< < pc> >

concurrentRequests = 5

t im eLim it = 0.2

m anual = false

< < pc> >

concurrentRequests = 4

t im eLim it = 0.2

m anual = false

< < pc> >

concurrentRequests = 4

t im eLim it = 0.2

m anual = false

< < pc> >

concurrentRequests = 4

t im eLim it = 0.4

m anual = false

[e lse] (p = 0 .8)

[re ject ed] (p = 0 .2) Close
Order

Create
Shipping Order

Create
Invoice

Perform
Paym ent

m anual = t rue

Fig. 2. Sample graph model

3 Inference of concurrent requests

The first algorithm infers the number of concurrent requests that must be han-
dled at each activity in the graph before its time limit in order to meet the
performance requirements of the whole graph. It performs a pre-order breadth-
first traversal of every node and edge in the graph, starting from the initial node
and caching intermediate results. The algorithm annotates each activity with its
expected number of concurrent requests C(x). The definition of C(x) depends
on the element type:

– InitialNode: C(x) is the value of the attribute concurrentRequests of the
global performance annotation of the graph.

– FlowEdge: C(x) = P (x)C(s), where x is the edge, s is the source node of
x, P (x) is the value of the attribute probability of x and C(s) is the computed
number of concurrent requests for s. Most edges have P (x) = 1, except those
which start from a decision node.

– JoinNode: the least common ancestor LCA(P) of all the parent nodes
P is computed. This least common ancestor is the point from which the
conditional or parallel branches started off. If LCA(P) is a decision node,
C(x) =

∑
p∈P C(p), as requests can only visit one of the branches. Other-

wise, it is a fork node, and C(x) = maxp∈P C(p), as requests can visit all
the branches at the same time.
To compute the LCA of several nodes, the naive method described by Ben-
der et al. [8] works best for the sparse graphs which usually result from
modeling service compositions. For a graph with n vertexes and e edges, its

preprocessing step requires O(n + e) operations and each query performed
may require up to O(n2) operations. This only needs to be done once for
each join node.

– Otherwise, C(x) = C(i), where i is its only incoming edge. If the node is an
activity with a manual performance annotation, the inferred value should
match its value. Otherwise, the user will need to confirm if the annotation
should be updated.

Using these formulas, computing C(Create Invoice) for the example shown
in figure 2 would require walking back to the initial node, finding an edge with
a probability of p = 0.8, no merge nodes and a global performance annotation
for G = 5 concurrent requests. Therefore, C(Create Invoice) = pG = 4.

4 Inference of time limits

The algorithm required to infer the time limits for each activity in the graph is
more complicated than the previous one. It adds time limits to the activities in
each path from the initial node to any of the final nodes, ensuring the inferred
time limits meet several assumptions.

This section starts with the requirements imposed on the results of the al-
gorithm and lists the required definitions. The rest of the section describes the
algorithm and shows an example of its application.

4.1 Design requirements

The inferred time limits must meet the following requirements:

1. The sum of the time limits of the activities in each path from the initial node
to any of the final nodes must be less than or equal to the global time limit.

2. Available time should be split equally over the activities without any manual
performance annotations. We cannot blindly assume that one activity will
need to be more efficient than another. Ideally, we would like to split evenly
the load over all activities.

3. Time limits should not be lower than strictly required: better performing
systems tend to be more expensive to build and maintain.

4.2 Definitions

To describe the algorithm, several definitions are needed. These definitions con-
sider paths as sets of activities, rather than sequences of nodes.

– M(a) is true if the activity a has a manual time limit.
– A(a) is true if the activity a has an automatic time limit.
– U(p) = {a|a ∈ p ∧ ¬(A(a) ∨M(a))} is the set of all activities in the path p

which do not have time limits. These are said to be unrestricted.

– F (p) = {a|a ∈ p ∧ ¬M(a)} is the set of all activities in the path p which do
not have manual time limits. These are said to be free.

– TL(G) is the manual time limit for every path in the graph G.
– TL(a) is the current time limit for the activity a.
– TL(p) =

∑
a∈P∧(M(a)∨A(a)) TL(a) is the sum of the time limits in the path

p.
– TM (p) =

∑
a∈(p−F (p)) TL(a) is defined as the sum of the manual time limits

in the path p.
– SA(p, G) = TL(G) − TM (p) is the slack which can be split among the free

activities in path p of the graph G.
– TE(p, G) = SA(p, G)/(1 + |F (p)|) is an estimate of the automatic time limit

each free activity in path p would obtain using only the information in that
path. More restrictive paths will have lower values of TE(p, G).

4.3 Description of the algorithm

The algorithm follows these steps:

1. All automatic time limits are removed.
2. The set P of all paths from the initial node to each final node is calculated.
3. For each path p ∈ P in ascending order of TE(p, G), so the more restrictive

paths are visited first:
(a) If SA(p, G) = 0, the condition |F (p)| > 0 is evaluated. If it is true,

there is at least one free activity in p for which no time limit can be set.
The user is notified of the situation and execution is aborted. Otherwise,
processing will continue with the next path.

(b) If SA(p, G) < 0, then TM (p) > TL(G) holds, by definition. This means
that the sum of the manual time limits in p exceeds the global time limit.
The user is notified of the situation and execution is aborted.

(c) Otherwise, SA(p, G) > 0. If |F (p)| > 0∧|U(p)| > 0, all activities in U(p)
will be updated to the time limit (TL(G)− TL(p))/|U(p)|.

4.4 Example

To infer the automatic time limits of the running example shown in figure 2, we
first need to list all existing paths:

– p1 = {Evaluate Order,Close Order}.
TE(p1, G) = (1− 0.4)/(1 + 1) = 0.3.

– p2 = {Evaluate Order,Create Shipping Order,Close Order}.
TE(p2, G) = (1− 0.4)/(1 + 2) = 0.2.

– p3 = {Evaluate Order,Create Invoice,Receive Payment,Close Order}.
TE(p3, G) = (1− 0.4)/(1 + 3) = 0.15.

p3 has the lowest value for TE , so it is visited first. “Create Invoice”, “Perform
Payment” and “Close Order” are in U(p3), so they are updated to l = (1 −
0.4)/3 = 0.2.

p2 is visited next. Only “Create Shipping Order” is in U(p2), so it is updated
to l = (1− 0.6)/1 = 0.4.

p1 is visited last. U(p1) = ∅, so nothing is updated, and we are done.

5 Integration in a SOA methodology

The algorithms described above work on a generic graph metamodel which needs
to be adapted to the metamodels used in specific technologies and methodologies.
In this section we show how the metamodel and the algorithms were adapted
and integrated into a SOA methodology: SODM+Testing.

Existing methodologies reduce the development cost of SOAs, but do not
take testing aspects into account [9]. SODM+Testing is a new methodology that
extends SODM [10] with testing tasks, techniques and models.

5.1 Metamodel adaptation

The original SODM service process and service composition metamodels were
a close match to the generic graph metamodel described in section 2, as they
were also based on UML activity graphs. Service process models described how
a request for a service offered by the system should be handled, and service
compositions provided details on how the tasks were split among the partners
and what messages were exchanged between them.

SODM+Testing refactors these models using the generic graph metamodel
as their core. Each class in the SODM process and composition metamodels can
now be upcasted to the matching class of the generic graph metamodel both
inference algorithms are based on. For instance, ProcessFlowEdge (class of
all flow edges in the SODM service process metamodel) has become a subclass
of FlowEdge (class of all flow edges in the generic graph metamodel).

The generic core differs slightly from that in figure 1. FlowEdges are split
into ControlFlows and ObjectFlows, and performance annotations have
also been split into several types according to their scope. In addition, the
SODM+Testing service composition metamodel has been extended so activi-
ties can contain action sub-graphs with their own local and global performance
annotations.

5.2 Tool implementation

SODM+T is a collection of Eclipse plug-ins that assists the SODM+Testing
methodology with graphical editors for the SODM+Testing service process and
composition models. It is available under the Eclipse Public License v1.0 [11].

To ensure the inference algorithms can be applied, models are validated au-
tomatically upon saving, showing the usual error and warning markers and
Quick Fixes. Validation has been implemented using Epsilon Validation Lan-
guage (EVL) scripts [12] and OCL constraints.

The algorithms are implemented in the Epsilon Object Language (EOL) and
can be launched from the contextual menu of the graphical editor. The EOL
scripts include two supporting algorithms for detecting cycles in graphs and
computing the least common ancestor of two nodes [8].

6 Evaluation

In this section we will evaluate each algorithm, pointing out their current lim-
itations and how we plan to overcome them. Later on, we will evaluate their
theoretical performance. Finally, we will discuss the current state of SODM+T.

6.1 Inference of concurrent requests

This algorithm performs a breadth-first traversal on the graph, and assumes the
number of concurrent requests has already been computed for all parent nodes.
For this reason, it is currently limited to acyclic graphs. We intend to extend the
model to allow loops, limiting their maximum expected number of iterations.

The algorithm requires edges to be manually annotated with probabilities.
These could be simply initialized to assume each branch in each decision node
has the same probability of being activated, in absence of other information.

The algorithm assumes only the current workflow is being run, thereby pro-
viding a best-case scenario. More realistic estimations would be obtained if re-
strictions from all workflows in the system were aggregated.

Assuming the naive LCA algorithm has been used, this algorithm completes
its execution for a graph with n nodes after O(n3) operations, as its outer loop
visits each node in the graph to perform O(n2) operations for JoinNodes and
O(1) operations for the rest. This is a conservative upper bound, as the O(n2)
time for the naive LCA algorithm is for dense graphs, which are uncommon in
service compositions.

6.2 Inference of time limits

As there must be a finite number of paths in the graph, the current version
requires the graph to be acyclic, just as the previous algorithm. The algorithm
could reduce paths with loops to regular sequences, where the activities in the
loop would be weighted to take into account the maximum expected number of
iterations.

The algorithm only estimates maximum deterministic time limits. Probabil-
ity distributions are not computed, as it does not matter which path is actually
executed: all paths should finish in the required time.

In addition, the user cannot adjust the way in which the available slack
is distributed to each task. For instance, the user might know that a certain
task would usually take twice as much time as some other task. Weighting the
activities as suggested above would also solve this problem.

Finally, like the previous algorithm, the time limit inference algorithm is
currently limited to the best-case scenario where only the current workflow is
being run.

A formal proof of the correctness of the time limit inference algorithm is out-
side the scope of this paper. Nevertheless, we can show that the results produced
by the algorithm meet the three design requirements listed in § 4.1. We assume

the model is valid (acyclic and weakly connected, among other restrictions) and
that the algorithm completes its execution successfully:

1. The first requirement is met by sorting the paths from most to least restric-
tive. For the i-th path pi, only the nodes for which pi provides the strictest
constraints (that is, U(pi)) are updated so TL(pi) < TL(G).
Since the activities from the previous (and stricter) paths were not changed,
TL(pj) < TL(G), j ≤ i. Once all paths have been processed, TL(p) < TL(G)
holds for all p ∈ P .

2. The second requirement is met by simply distributing equally the available
slack using a regular division.

3. The third requirement is met by visiting the most restrictive paths first, so
activities obtain the strictest time limits as soon as possible, leaving more
slack for those who can use it.

The running time of the algorithm is highly dependent on the number of
unique paths in the graph. With no loss of generality, we assume all forks and
decision nodes are binary. If there are b decision and fork nodes in total among
the n nodes, there will be 2b unique paths to be considered.

Enumerating the existing paths requires a depth-first traversal of the graph,
which may have to consider the O(n2) edges in the graph. Each path in the
graph will have to be traversed a constant number of times to compute TE(p, G),
SA(p, G), |F (p)| and other formulas which require O(n) operations.

Therefore, the algorithm requires O(n2 + n2b) time. We can see that the
number of forks and decisions has a large impact on the running time of the
algorithm. This could be alleviated by culling paths subsumed in other paths.
We are also looking into alternative formulations which do not require all paths
to be enumerated.

6.3 SODM+T

SODM+T has been successfully used to model the abstract logic required to
handle a business process from a medium-sized company, generating performance
annotations for graphs with over 60 actions nested in several activities.

However, SODM+T could be improved: future versions will address some of
the issues found during this first experience. WSDL descriptions and test cases
(for tools such as soapUI [13] or JUnitPerf [14]) need to be generated from the
models. Performance annotations should be more fine-grained, letting the user
specify only one of the attributes so the other is automatically inferred.

Finally, the tools could be adapted to other metamodels more amenable to
code generation. Business Process Modeling Notation [3] models are a good can-
didate, as partial automated translations to executable forms already exist [15].

7 Related work

Several UML profiles for modeling the expected performance of a system have
been approved by the Object Management Group: SPTP [16], QFTP [17] and

MARTE [18]. To study the feasibility of our approach, we have kept our con-
straints much simpler, but we intend to adapt them to either SPTP or QFTP
in the future.

Existing works on performance estimation in workflows focus on aggregating
workflow QoS from task QoS, unlike our approach, which estimates task QoS
from workflow QoS. Silver et al. [19] annotated each task in a workflow with
probability distributions for their running times, and collected data from 100
simulation runs to estimate the probability distribution of the running time of
the workflow and validate it using a Kolmogorov-Smirnov goodness-of-fit test.
Simulating the workflow allows for flexibly modeling the stochastic behavior of
each service, but it has a high computational overhead due to the number of
simulation runs that are required. Our work operates directly on the graph, im-
posing less computational overhead, but only modeling deterministic maximum
values.

Other authors convert workflows to an existing formalism and solve it us-
ing an external tool. The most common formalisms are layered queuing net-
works [20], stochastic Petri networks [21] and process algebra specifications [22].
These formalisms are backed by in-depth research and the last two have solid
mathematical foundations in Markov chain theory. However, they introduce an
additional layer of complexity which might discourage some users from apply-
ing these techniques. Our work operates on the models as-is, with no need for
conversions. This makes them easier to understand.

Finally, some authors operate directly on the workflow models, as our ap-
proach does. The SWR algorithm proposed by Cardoso et al. [4] computes
workflow QoS by iteratively reducing its graph model to a single task. SWR
only works with deterministic values, like our algorithms, but its QoS model is
more detailed than ours, describing the cost, reliability and minimum, average
and maximum times for each service. We argue that though average and mini-
mum times might be useful for obtaining detailed estimations, they provide little
value for top-down development, which is only interested in establishing a set
of constraints which can be used for conducting load testing and monitoring for
each service. However, cost and reliability could be interesting in this context as
well.

It is interesting to note that Cardoso et al. combine several data sources to
estimate the QoS of each task [4]: designer experience, previous times in the
current instance, previous times in all instances of this workflow, and previous
times in all workflows. The designer is responsible for specifying the relative
importance of each data source. Results from our algorithms could be used as
yet another data source.

Our metamodels have been integrated into SODM+Testing, a SOA model-
driven methodology which extends the SODM methodology [10] with testing
aspects. Many other SOA methodologies exist: for instance, Erl proposes a high-
level methodology focused on governance aspects in his book [1] and IBM has
defined the comprehensive (but proprietary) SOMA methodology [23]. SODM
was selected as it is model-driven and strikes a balance between scope and cost.

8 Conclusions and future work

Service compositions allow several WS to be integrated as a single WS which
can be flexibly reconfigured as business needs change. However, setting initial
performance requirements for the integrated services in a top-down methodology
so the entire composition works as expected without incurring additional costs
is difficult. At an early stage of development, there is not enough information to
use more comprehensive techniques.

This work has presented the first version of two algorithms which infer miss-
ing information about response times under certain loads from models inspired
in UML activity graphs. Though a formal proof was outside the scope of this
paper, we have found them to meet their design requirements: they infer local
constraints which meet the global constraints, distribute the load equally over
the composition and allow for as much slack as possible.

These algorithms and their underlying metamodel have been successfully
integrated into a model-driven SOA methodology, continuing the previous work
shown in [9]. The tools [11] implement a graphical editor which allows the user to
define performance requirements at several levels and offers automated validation
and transformation.

Nevertheless, the algorithms and tools could be improved. The underlying
metamodel should allow for partially automatic annotations and use weights
for distributing the available slack between the activities. In the future, the
annotations could be adapted to the OMG SPTP [16], QFTP [17] or MARTE [18]
UML profiles.

The algorithms will be revised to handle cyclic graphs and aggregate con-
straints for a service from several models. The performance of the time limit
inference algorithm depends on the number of unique graphs from the initial
node to each final node in the tree. We are looking into ways to reduce the
number of paths which need to be checked.

Finally, it is planned to adapt the tools to service composition models more
amenable to executable code generation, such as BPMN [3], and to generate test
cases for existing testing tools such as soapUI [13] or JUnitPerf [14].

References

1. Erl, T.: SOA: Principles of Service Design. Prentice Hall, Indiana, EEUU (2008)
2. OASIS: Web Service Business Process Execution Language (WS-BPEL) 2.0. http:

//docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.html (April 2007)
3. Object Management Group: Business Process Modeling Notation (BPMN) 1.2.

http://www.omg.org/spec/BPMN/1.2/ (January 2009)
4. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for

workflows and web service processes. Web Semantics: Science, Services and Agents
on the World Wide Web 1(3) (April 2004) 281–308

5. Hwang, S., Wang, H., Tang, J., Srivastava, J.: A probabilistic approach to modeling
and estimating the QoS of web-services-based workflows. Information Sciences
177(23) (2007) 5484–5503

6. Yu, T., Zhang, Y., Lin, K.: Efficient algorithms for web services selection with
end-to-end QoS constraints. ACM Transactions on the Web 1(1) (2007)

7. Eclipse Foundation: Eclipse Modeling Framework. http://eclipse.org/
modeling/emf/ (2010)

8. Bender, M.A., Pemmasani, G., Skiena, S., Sumazin, P.: Finding least common
ancestors in directed acyclic graphs. Proceedings of the 12th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA’01) (2001) 845–853

9. García-Domínguez, A., Medina-Bulo, I., Marcos-Bárcena, M.: Hacia la integración
de técnicas de pruebas en metodologías dirigidas por modelos para SOA. In: Actas
de las V Jornadas Científico-Técnicas en Servicios Web y SOA, Madrid, España
(October 2009)

10. de Castro, M.V.: Aproximación MDA para el desarrollo orientado a servicios de
sistemas de información web: del modelo de negocio al modelo de composición de
servicios web. PhD thesis, Universidad Rey Juan Carlos (March 2007)

11. García-Domínguez, A.: Homepage of the SODM+T project. https://neptuno.
uca.es/redmine/projects/sodmt (March 2010)

12. Kolovos, D., Paige, R., Rose, L., Polack, F.: The Epsilon Book. http://www.
eclipse.org/gmt/epsilon (2010)

13. eviware.com: Homepage of soapUI. http://www.soapui.org/ (2009)
14. Clark, M.: JUnitPerf. http://clarkware.com/software/JUnitPerf.html (Octo-

ber 2009)
15. Küster, T., Heßler, A.: Towards transformations from BPMN to heterogeneous

systems. In Mecella, M., Yang, J., eds.: BPM2008 Workshop Proceedings, Milan,
Italy (September 2008)

16. Object Management Group: UML Profile for Schedulability, Performance, and
Time (SPTP) 1.1. http://www.omg.org/spec/SPTP/1.1/ (January 2002)

17. Object Management Group: UML Profile for Modeling Quality of Service and
Fault Tolerance Characteristics and Mechanisms (QFTP) 1.1. http://www.omg.
org/spec/QFTP/1.1/ (April 2008)

18. Object Management Group: UML Profile for Modeling and Analysis of Real-
Time Embedded systems (MARTE) 1.0. http://www.omg.org/spec/MARTE/1.0/
(November 2009)

19. Silver, G.A., Maduko, A., Rabia, J., Miller, J., Sheth, A.: Modeling and simulation
of quality of service for composite web services. In: Proceedings of 7th World
Multiconference on Systemics, Cybernetics and Informatics, International Institute
of Informatics and Systems (November 2003)

20. Petriu, D.C., Shen, H.: Applying the UML Performance Profile: Graph Grammar-
based Derivation of LQN Models from UML Specifications. In: Proceedings of the
12th International Conference on Computer Performance Evaluation: Modelling
Techniques and Tools (TOOLS 2002). Volume 2324 of Lecture Notes in Computer
Science. Springer Berlin, London, UK (2002) 159—177

21. López-Grao, J.P., Merseguer, J., Campos, J.: From UML activity diagrams to
Stochastic Petri nets: application to software performance engineering. SIGSOFT
Softw. Eng. Notes 29(1) (2004) 25–36

22. Tribastone, M., Gilmore, S.: Automatic extraction of PEPA performance models
from UML activity diagrams annotated with the MARTE profile. In: Proceedings
of the 7th International Workshop on Software and Performance, Princeton, NJ,
USA, ACM (2008) 67–78

23. Ghosh, S., Arsanjani, A., Allam, A.: SOMA: a method for developing service-
oriented solutions. IBM Systems Journal 47(3) (2008) 377–396

	Modelling Self-Management in Service-Oriented systems using SelfMML
	On the Design of a Domain Specific Language for Enterprise Application Integration Solutions
	Tool support for Service Oriented development from Business Processes
	Organic Aggregation Service Engineering Framework (OASEF): A New Model-driven Approach to Service Engineering
	Inference of performance annotations in Web Service composition models

