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Foreword

Large amounts of data increasingly becoming available and described using real-
life ontologies represented in Semantic Web languages, recently opened up the
possibility for interesting real-world data mining applications on the Semantic
Web. However, exploiting this global resource of data requires new kinds of ap-
proaches for data mining and data analysis that would be able to deal at the
same time with its scale and with the complexity, expressiveness, and hetero-
geneity of the representation languages, leverage on availability of ontologies
and explicit semantics of the resources, and account for novel assumptions (e.g.,
”open world”) that underlie reasoning services within the Semantic Web.

The workshop tried to address the above issues, in particular focusing on
the problems of how machine learning techniques, such as statistical learning
methods and inductive forms of reasoning, can work directly on the richly struc-
tured Semantic Web data and exploit the Semantic Web technologies, what is
the value added of machine learning methods for the Semantic Web, and what
are the challenges for developers of machine learning techniques for the Semantic
Web data, for example in the area of ontology mining.

The workshop was meant to bring together researchers and practitioners
interested in the interdisciplinary research on the intersection of the Semantic
Web with Knowledge Discovery and Machine Learning, and provide a meeting
point for the related communities to stimulate collaboration and enable cross-
fertilization of ideas.

Specifically, the review phase produced a selection of 5 full papers, 1 position
paper, and 2 late breaking news abstracts. IRMLeS 2010 program was further
enriched by two invited talks from prominent researchers. Dr Melanie Hilario
presented in her talk an ongoing research on optimizing the knowledge discov-
ery process through the semantic meta-mining, involving background ontology
representing the domain of data mining. Professor Steffen Staab demonstrated
in his talk how the enrichment of Web 2.0 data by automatically discovered se-
mantic relationships may improve the user experience. The workshop was also
successful in terms of registrations and attendance.

The topics covered by IRMLeS 2010 included: ontology learning, and semantic
tagging to expose the semantics of unstructured or semi-structured data as text,
or Web 2.0 tags; management, and retrieval of Semantic Web resources, e.g.
RDF data; probabilistic approaches; similarity measures for ontological data;
inductive reasoning with ontologies; finally using ontologies, and other formal
representations as background knowledge to steer whole knowledge discovery
process.

In the final wrap-up discussion, a number of open problems and promising
directions were elicited. Similarly as the last year, the topic of integration of
induction and deduction has been recognized as essential for the Semantic Web,
to deal with real, noisy data. Related to this topic, the topics of probabilistic
approaches, and uncertain inference over semantic resources were discussed. The
need for new metrics for evaluating the output of machine learning methods in
the Semantic Web setting was recognized, especially in the context of the open
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world assumption. The novel topic of semantic data mining also gained attention
during discussion, and a call for gathering the community of people working on
ontologies/another KR formats for representing data mining domain has been
issued. Some other new tasks have also been identified as an interesting future
direction of research on machine learning for the Semantic Web that include:
ontology repair, and instance matching (especially in the context of a lack of
unique name assumption on the Semantic Web).

Given such open issues and the success of the two first editions, we plan to
organize next edition in the near future.
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Optimizing the Knowledge Discovery Process
through Semantic Meta-Mining

Melanie Hilario

Computer Science Department
University of Geneva
Geneva, Switzerland

Abstract. I will describe a novel meta-learning approach to optimizing
the knowledge discovery or data mining (DM) process. This approach has
three features that distinguish it from its predecessors. First, previous
meta-learning research has focused exclusively on improving the learning
phase of the DM process. More specifically, the goal of meta-learning has
typically been to select the most appropriate algorithm and/or parame-
ter settings for a given learning task. We adopt a more process-oriented
approach whereby meta-learning is applied to design choices at different
stages of the complete data mining process or workflow (hence the term
meta-mining). Second, meta-learning for algorithm or model selection
has consisted mainly in mapping dataset properties to the observed per-
formance of algorithms viewed as black boxes. While several generations
of researchers have worked intensively on characterizing datasets, little
has been done to understand the internal mechanisms of the algorithms
used. At best, a few have considered perceptible features of algorithms
like their ease of implementation or their robustness to noise, or the in-
terpretability of the models they produce. In contrast, our meta-learning
approach complements dataset descriptions with an in-depth analysis
and characterization of algorithms - their underlying assumptions, opti-
mization goals and strategies, together with the structure and complexity
of the models and patterns they generate. Third, previous meta-learning
approaches have been strictly (meta) data-driven. To make sense of the
intricate relationships between tasks, data and algorithms at different
stages of the data mining process, our meta-miner relies on extensive
background knowledge concerning knowledge discovery itself. For this
reason we have developed a data mining ontology, which defines the es-
sential concepts and relations needed to represent and analyse data min-
ing objects and processes. In addition, a DM knowledge base gathers as-
sertions concerning data preprocessing and machine learning algorithms
as well as their implementations in several open-source software pack-
ages. The DM ontology and knowledge base are domain-independent;
they can be exploited in any application area to build databases de-
scribing domain-specific data analysis tasks, datasets and experiments.
Aside from their direct utility in their respective target domains, such
databases are the indispensable source of training and evaluation data
for the meta-miner. These three features together lay the groundwork for
semantic meta-mining, the process of mining DM meta-data on the basis
of data mining expertise distilled in an ontology and knowledge base.
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From Web 2.0 to Web 3.0 using Data Mining

Steffen Staab

Institute WeST - Web Science and Technologies &
Institute for Computer Science
University of Koblenz-Landau

Koblenz, Germany

Abstract. Web 2.0 applications such as Flickr offer a rich set of data
with a huge potential for exploitation by the human users. Unfortunately,
the sifting through such data is far from easy and rewarding due to a
lack of semantics on the one side and a lack of rich data description
on the other side. For instance, most photos on Flickr have very little
description attached that could be used for retrieving or exploring the
photos. In this talk, we demonstrate how the enrichment of Web 2.0
data by automatically discovered (more or less) semantic relationships
improves the user experience.
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Structural Similarity in Expressive Description
Logics: An Extended Family of Kernels for OWL

Nicola Fanizzi, Claudia d’Amato, and Floriana Esposito

LACAM – Dipartimento di Informatica, Università degli studi di Bari
{fanizzi|claudia.damato|esposito}@di.uniba.it

Abstract. In the context of the Semantic Web many applications of in-
ductive inference ultimately rely on a notion of similarity for the standard
knowledge representations of the ontologies. We have tackled the problem
of statistical learning with ontologies proposing a family of structural ker-
nels for ALCN that has been integrated with support vector machines.
Here we extend the definition of the kernels to more expressive languages
of the family, namely those backing OWL.

1 Concept Similarity in Ontologies

Although machine learning techniques may have a great potential for the Se-
mantic Web (SW) applications, ontology learning tasks have focused mainly
on methods for text [4]. Much less effort has been devoted to the application
of machine learning methods to knowledge bases described in formal concept
representations of the SW (formal ontologies) ultimately based on Description
Logics (DL) [1].

In order to apply statistical learning some notion of similarity for the specific
representation is needed [8]. It is particularly appealing to work with kernel
methods that allow for decoupling the final learning algorithm (e.g. perceptrons,
support vector machines, etc.) from the notion of similarity which depends on the
particular instance space which is encoded in the kernel function. We have been
investigating on the definition of kernel functions for instance spaces represented
in relational languages such as those based on clauses and lately also on DLs.
One of the first works concerns kernels for the Feature Description Logic [6]
which proved particularly effective for relational structures elicited from text.
More recently further proposals for working with more complex DL and ontology
languages have been made [10, 2, 13].

In this work, we propose a family of declarative kernel functions that can
be applied to DLs representations with different degrees of expressiveness. The
kernels encode a notion of similarity of individuals in this representation, based
on structural and semantic aspects of the reference representation. Specifically,
we extend the definition of a family of kernels for the ALCN logic [12]. These
kernel functions are based on both structural and also semantic aspects, namely
a normal form and the extension of the concepts involved in the description, as
elicited from the knowledge base.
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As such the kernels are designed for comparing concept descriptions. In order
to apply them to instance comparison w.r.t. real ontologies, that likely exploit
the full extent of the most expressive DL languages, (upper) approximations of
the most specific concepts that cover the single individuals had to be computed
[5]. This exposes the method to a number of problems. Firstly, a (partially) struc-
tural normal form may fail to fully capture the semantic similarity between the
individuals. Scaling up to more complex languages wold require specific normal
forms. Moreover, the existence of a most specific concept is not guaranteed [1].

Coupling valid kernels with efficient algorithms such as the support vector
machines, many tasks based on inductive classification can be tackled. Particu-
larly, we demonstrate how to perform important inferences on semantic knowl-
edge bases, namely concept retrieval and query answering. These tasks are gen-
erally grounded on merely deductive procedures which easily fail in case of (par-
tially) inconsistent or incomplete knowledge. The methods has been shown to
work comparably well w.r.t. standard reasoners [12, 13], allowing the suggestion
of new knowledge that was not previously logically derivable.

Moreover, these kernels naturally induce distance measures which allow for
extensions to further metric-based learning methods such as nearest-neighbor
classification [7] and conceptual clustering [11]. However these extensions are
beyond the scope of this work.

2 Preliminaries on Representation and Inference

The basics of the DLs will be briefly recalled. The reader may refer to the DL
handbook [1] for a thorough reference. Such representations provide the basic
constructors adopted by the standard ontology languages employed in the SW,
such as the Ontology Markup Language OWL. We will focus on the ALCQ logic
which may represent a tradeoff between expressiveness and reasoning efficiency.

2.1 Knowledge Bases in Description Logics

Let us consider a triple 〈NC , NR, NI〉 made up. respectively, by a set of primitive
concept names NC , to be interpreted as sets of objects in a certain domain, a set
of primitive role names NR, to be interpreted as binary relationships between the
mentioned objects, and a set of individual names NI for the objects themselves.

The semantics of the descriptions is defined by an interpretation I = (∆I , ·I),
where ∆I is a non-empty set, the domain of the interpretation, and ·I is the
interpretation function that maps each individual a ∈ NI to a domain object
aI ∈ ∆I , each primitive concept name A ∈ NC to its extension AI ⊆ ∆I and
for each R ∈ NR the extension is a binary relation RI ⊆ ∆I ×∆I .

Complex descriptions can be built in ALCQ using the language constructors
listed in Table 1, along with their semantics derived from the interpretation of
atomic concepts and roles [1]. The top concept > is interpreted as the whole
domain ∆I , while the bottom concept ⊥ corresponds to ∅. Complex descriptions
can be built in ALCQ using the following constructors. The language supports

7



Table 1. Syntax and semantics of concepts in the ALCQ logic.

Name Syntax Semantics

top concept > ∆I

bottom concept ⊥ ∅
full concept negation ¬C ∆I \ CI
concept conjunction C1 u C2 CI1 ∩ CI2
concept disjunction C1 t C2 CI1 ∪ CI2

existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I((x, y) ∈ RI ∧ y ∈ CI)}
universal restriction ∀R.C {x ∈ ∆I | ∀y ∈ ∆I((x, y) ∈ RI → y ∈ CI)}

qual. at least restriction ≥ nR.C {x ∈ ∆I | |{y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI |} ≥ n}
qual. at most restriction ≤ nR.C {x ∈ ∆I | |{y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI |} ≤ n}

full negation: a concept negation ¬C has an extension that amounts to the
complement of CI w.r.t. the domain. The conjunction and disjunction of two
concepts are simply interpreted as the intersection and union of their extensions.
Concepts can be also defined as restrictions on the roles. The existential restric-
tion constrains the elements of its extension to be related via a certain role R to
some instances of concept C while the value (or universal) restriction comprises
those elements who are related through R only to instances of concept C (if
any). Finally, qualified numeric restrictions define concepts by constraining its
instances with the minimal or maximal number of instances of concept C related
through R.

OWL offers further constructors that extend the expressiveness of this lan-
guage. Its DL equivalent is SHOIQ(D) [1], that extends ALCQ with individual
classes, role hierarchies, transitive and inverse roles (I). Besides concrete do-
mains (D), i.e. well-founded external data types (such as numerical types, tuples
of the relational calculus, spatial regions, or time intervals), can be dealt with.

The main inference employed with these representations is assessing whether
a concept subsumes another concept based on their semantics:

Definition 2.1 (subsumption). Given two descriptions C and D, C is sub-
sumed by D, denoted by C v D, iff for every interpretation I it holds that
CI ⊆ DI . When C v D and D v C then they are equivalent, denoted with
C ≡ D.

Note that this naturally induces a generality relationship on the space of con-
cepts.

Generally subsumption is not assessed in isolation but rather related to the
models of a system of axioms representing the background knowledge and the
world state:

Definition 2.2 (knowledge base). A knowledge base K = 〈T ,A〉 contains
a TBox T and an ABox A. T is the set of terminological axioms of concept
descriptions C ≡ D, where C is the concept name and D is its description. A
contains assertions on individuals C(a) and R(a, b).

An interpretation that satisfies all its axioms is a model of the knowledge base.
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Note that defined concepts should have a unique definition. However defin-
ing concepts through inclusions axioms (C v D) is also generally admitted.
Moreover, such definitions are assumed to be unfoldable.

Example 2.1 (royal family). This example shows a knowledge base modeling
concepts and roles related to the British royal family:

T = { Male ≡ ¬Female,
Woman ≡ Human u Female,
Man ≡ Human u Male,
Mother ≡ Woman u ∃hasChild.Human,
Father ≡ Man u ∃hasChild.Human,
Parent ≡ Father t Mother,
Grandmother ≡ Mother u ∃hasChild.Parent,
Mother-w/o-daughter ≡ Mother u ∀hasChild.¬Female,
Super-mother ≡ Mother u ≥3 hasChild.Human }

A = { Woman(elisabeth), Woman(diana), Man(charles), Man(edward),
Man(andrew), Mother-w/o-daughter(diana),
hasChild(elisabeth, charles), hasChild(elisabeth,edward),
hasChild(elisabeth, andrew), hasChild(diana, william),
hasChild(charles, william) }

Note that the Open World Assumption (OWA) is made in the underlying
semantics, since normally knowledge representation systems are applied in sit-
uations where one cannot assume that the knowledge in the base is complete.
Although this is quite different from the standard settings considered in machine
learning and knowledge discovery, it is convenient for the Semantic Web context
where new resources (e.g. Web pages, Web services) may be continuously made
available.

2.2 Inference Services

The basic inference services for DL knowledge bases can be viewed as entail-
ments as they amount to verifying whether a generic relationship is a logical
consequence of the knowledge bases axioms.

Typical reasoning tasks for TBoxes regards the satisfiability of a concept,
subsumption, equivalence or disjointness between two concepts. For example
in the knowledge base reported in Ex. 2.1, Father is subsumed by Man and is
disjoint with Woman. These inferences can be reduced to each of them, hence
normally reasoners support only one of them. Reasoning is performed though
tableau algorithms [9, 1].

Inference problems concerning ABoxes are mainly related to checking its
consistency, that is, whether it has a model, especially w.r.t. those of the TBox.
For example, an ABox like the one in Ex. 2.1 containing also the assertion
Father(elisabeth) is not consistent.

9



Since we aim at crafting inductive methods that manipulate individuals, a
prototypical inference is instance checking [1], that amounts to checking whether
an assertion α is entailed by the knowledge base (K |= α). If α is a role assertion
then it is quite easy to perform the inference as normally roles do not have a
definition in the TBox. However, we will focus on deciding whether an individual
is an instance of a given concept. This can be easily reduced to a consistency
problem: K |= C(a) iff K ∪ {¬C(a)} is inconsistent.

The adopted open world semantics has important consequences on the way
queries are answered. While the closed-world semantics identifies a database
with a single model an ABox represents possibly infinitely many interpretations.
Hence a reasoner might be unable to answer certain queries because it may be
actually able to build models for both a positive (K ∪ {C(a)}) and a negative
(K ∪ {¬C(a)}) answer.

Example 2.2 (open world semantics).
Given the ABox is Ex. 2.1, while it is explicitly stated that diana is a Mother-w/o-
daughter, it cannot be proven for elisabeth because she may have daughters that
are simply not known in the knowledge base. Analogously, elisabeth is an instance
of Super-mother while this cannot be concluded for diana as only two children
are known in the current knowledge base. Although these instance checks fail
because of the inherent incompleteness of the knowledge state, this does not
imply that the individuals belong to the negated concepts, as could be inferred
in case the CWA were made.

Another related inference is retrieval which consists in querying the knowl-
edge base to know the individuals that belong to a given concept:

Definition 2.3 (retrieval). Given an knowledge base K and a concept C, find
all individuals a such that K |= C(a).

A straightforward algorithm for a retrieval query can be realized via instance
checking on each individual occurring in the ABox, testing whether it is an
instance of the concept.

Dually, it may be necessary to find the (most specific) concepts which an
individual belongs to. This is called a realization problem. One especially seeks
for the most specific one (up to equivalence):

Definition 2.4 (most specific concept). Given an ABox A and an individual
a, the most specific concept of a w.r.t. A is the concept C, denoted MSCA(a),
such that A |= C(a) and for any other concept D such that A |= D(a), it holds
that C v D.

This is a typical way to lift individuals to the conceptual level [5].
For some languages, the MSC may not be expressed by a finite description [1],

yet it may be approximated by a more general concept [17]. Generally approxi-
mations up to a certain depth k of nested levels are considered, denoted MSCk.
We will generically indicate a maximal depth approximation with MSC∗. For
further details see also [12].
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2.3 A Normal Form for ALCQ

Many semantically equivalent (yet syntactically different) descriptions can be
given for the same concept. Equivalent concepts can be reduced to a normal
form by means of rewriting rules that preserve their equivalence [1]. We will
adopt a normal form extending one given for ALC descriptions [3], for concepts
that are already in negation normal normal form.

Preliminarily, some notation is necessary for naming the various nested sub-
parts (levels) of a concept description D:

– prim(D) is the set of all the primitive concepts (or their negations) at the
top-level of D;

– valR(D) is the1 concept in ALCQ normal form in the scope of the value
restriction (if any) at the top-level of D (otherwise valR(D) = >);

– exR(D) is the set of the descriptions C ′ appearing in existential restrictions
∃R.C ′ at the top-level conjunction of D;

– minR.C(D) = max{n ∈ IN | D v ≥nR.C} (always a finite number);
– maxR.C(D) = min{n ∈ IN | D v ≤nR.C} (if unlimited, maxR.C(D) =∞).

A normal form may be recursively defined as follows:

Definition 2.5 (ALCQ normal form). A concept description C is in ALCQ
normal form iff C = ⊥ or C = > or if C = C1 t · · · t Cn with

Ci =
l

P∈prim(Ci)

P u
l

R∈NR

8<:∀R.valR(Ci) u
l

E∈exR(Ci)

∃R.E u
l

C∈NC

h
≥mi

R.CR.C u ≤M i
R.CR.C

i9=;
where mi

R.C = minR.C(Ci), M
i
R.C = maxR.C(Ci) and, for all R ∈ NR, valR.C(Ci)

and every sub-description in exR.C(Ci) are, in their turn, in ALCQ normal
form.

Example 2.3 (ALCQ normal form). The concept description
C ≡ (¬A1 uA2) t (∃R1.B1 u ∀R2.(∃R3.(¬A3 uB2)))
is in normal form, whereas the following is not:
D ≡ A1 tB2 u ¬(A3 u ∃R3.B2) t ∀R2.B3 u ∀R2.(A1 uB3)
where Ai’s and Bj ’s are primitive concept names and the Rk’s are role names.

This normal form can be obtained by means of repeated applications of
equivalence preserving operations, namely replacing defined concepts with their
definition as in the TBox and pushing the negation into the nested levels (nega-
tion normal form). This normal form induces an AND-OR tree structure for the
concept descriptions in this language. This structure can be used for comparing
different concepts and asses their similarity.

1 A single one because multiple value restrictions can be gathered using the equivalence
∀R.C u · · · u ∀R.Cn ≡ ∀R.(C1 u · · · u Cn). Then the nested descriptions can be
transposed in normal form using further rewriting rules (distributiveness, etc.. . . )
[1].
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3 Structural Kernels for ALCQ
A simple way to define a kernel function for concept descriptions in normal form
would require to adapt a tree kernel [18] where similarity between trees depends
on the number of similar subtrees (or paths unraveled from such trees) which
does not fully capture the semantic nature of expressive DLs languages.

The kernel function definition should not be based only on structural ele-
ments but also (partly) on their semantics, since different descriptions may have
similar extensions and vice-versa, especially with expressive DL languages such
as ALCQ.

Normal form descriptions can be decomposed level-wise into sub-descriptions.
For each level, there are three possibilities: the upper level is dominated by the
disjunction (1) of concepts that, in turn, are made up of a conjunction (2) of
complex or primitive (3) concepts. In the following the definition of the ALCQ
kernel is reported.

Definition 3.1 (family of ALCQ kernels). Given an interpretation I of K,
the ALCQ kernel based on I is the function2 kI : X×X 7→ R structurally defined
as follows: given two disjunctive descriptions D1 =

⊔n
i=1 C

1
i and D2 =

⊔m
j=1 C

2
j

in ALCQ normal form:
disjunctive descriptions:

kdI(D1, D2) = λ
n∑

i=1

m∑

j=1

kcI(C1
i , C

2
j )

with λ ∈]0, 1]
conjunctive descriptions:

kcI(C1, C2) =
∏

P1 ∈ prim(C1)
P2 ∈ prim(C2)

kpI(P1, P2) ·

·
∏

R∈NR

kdI(valR(C1), valR(C2)) ·

·
∏

R∈NR

∑

C1
i ∈ exR(C1)

C2
j ∈ exR(C2)

kdI(C1
i , C

2
j ) ·

·
∏

R∈NR

∏

C∈NC

knI ((minR.C(C1),maxR.C(C1)), (minR.C(C2),maxR.C(C2)))

numeric restrictions:
if min(MC ,MD) > max(mC ,mD)

knI ((mC ,MC), (mD,MD)) =
min(MC ,MD)−max(mC ,mD) + 1

max(MC ,MD)−min(mC ,mD) + 1

2 We use the superscripts k· for more clarity.
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otherwise knI ((mC ,MC), (mD,MD)) = 0.

primitive concepts:

kpI(P1, P2) = kset(P
I
1 , P

I
2 ) = |P I1 ∩ P I2 |

where kset is the kernel for set structures defined in [14]. This case includes also
the negation of primitive concepts: (¬P )I = ∆I \ P I

Preliminarily, the extension of the concepts can be approximated by the cardi-
nality of their retrieval. Note also that this is a family of kernels parameterized
on an interpretation and on a real number λ.

The first kernel function (kd) computes the similarity between disjunctive
descriptions as the sum of the cross-similarities between all couples of disjuncts
from the top-level of either description. The term λ is employed to lessen the
contribution coming from the similarity of the sub-descriptions (i.e. amount of
indirect similarity between concepts that are related to those at this level) on
the grounds of the level where they occur.

The conjunctive kernel (kc) computes the similarity between two input de-
scriptions, distinguishing primitive concepts, those referred in value restrictions
and those referred in existential restrictions. These values are multiplied reflect-
ing the fact that all the restrictions have to be satisfied at a conjunctive level.

The similarity of the qualified numeric restrictions is simply computed (by
kn) as a measure of the overlap between the two intervals. Namely it is the ratio
of the amounts of individuals in the overlapping interval and those the larger
one, whose extremes are minimum and maximum. Note that some intervals may
be unlimited above: max =∞. In this case we may approximate with an upper
limit N greater than |∆I |+ 1.

The similarity between primitive concepts is measured (by kp) in terms of
the intersection of their extension. Since the extension is in principle unknown,
we will epistemically approximate it recurring to the notion of retrieval (see
Def. 2.3). Making the unique names assumption on the names of the individual
occurring in the ABox A, one can consider the canonical interpretation [1] I,
using Ind(A) as its domain (∆I := Ind(A)). Note that the ABox may be thought
of as a (partially complete) graph structure where multiple instances are located
accounting for a number of possible worlds.

Besides, the kernel can be normalized as follows: since the kernel for primitive
concepts is essentially a set kernel it may be multiplied by a constant λp =
1/∆I so that the cardinality of the intersection is weighted by the number of
individuals occurring in the overall ABox. Alternatively, another choice could be
parameterized on the primitive concepts of the kernel definition λP = 1/|P I1 ∪P I2 |
which would weight the rate of similarity (the extension intersection) measured
by the kernel with the size of the concepts measured in terms of the individuals
belonging to their extensions.

Discussion. Being partially based on the concept structure and only ultimately
on the extensions of the concepts at the leaves of the tree, it may be objected that
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the proposed kernel functions may only roughly capture the semantic similarity
of the concepts. This may be well revealed by the case of input concepts that
are semantically almost equivalent yet structurally different. However, it must
be also pointed out that the rewriting process for putting the concepts in normal
form tends to eliminate these differences. More importantly, the ultimate goal
for defining a kernel is comparing individuals rather than concepts. This will
be performed recurring to the most specific concepts of the individuals w.r.t.
the same ABox (see Sect. 4). Hence, it was observed that semantically similar
individuals tend to share the same structures as elicited from the same source.

The validity of a kernel depends on the fact that the function is definite pos-
itive. Yet validity can be also proven exploiting some closure properties of the
class of kernel functions w.r.t. several operations [15]. Namely, the multiplication
of a kernel by a constant, the addition or multiplication of kernels yields valid ker-
nels. Thus one can demonstrate that the functions introduced above are indeed
valid kernels for the given space of hypotheses. Then, exploiting these closure
properties it can be proven that:

Proposition 3.1. Given an interpretation I, the function kI is a valid kernel
for the space X of ALCQ descriptions in normal form.

Observe that the core function is the one on primitive concept extensions. It is
essentially a set kernel [14]. The kernel functions for top-level conjunctive and
disjunctive descriptions are also positive definite being essentially based on the
primitive kernel. Descending through the levels there is an interleaving of the
employment of these function up the the basic case of the function for primitive
descriptions.

As regards the computational complexity, it is possible to show that the
kernel function can be computed in time O(|N1||N2|) where |Ni|, i = 1, 2, is
the number of nodes of the concept AND-OR trees. It can computed by means
of dynamic programming. It is also worthwhile to note that Knowledge Base
Management Systems, especially those dedicated to storing instances [16], gen-
erally maintain information regarding concepts and instances which may further
speed-up the computation.

4 Extensions

It has been objected that the kernels in this familty would not work for concepts
that are equivalent yet syntactically different. However, they are not intended for
assessing a concept similarity: ultimately kernel machines employed in inductive
tasks need to be applied to instances described in this representation, therefore
the most important extension is towards the case of individuals.

Indeed, the kernel function can be extended to the case of individuals a, b ∈
Ind(A) by taking into account the approximations of their MSCs (see Sect. 2.2).
In this way, we move from a graph representation like the ABox portion con-
taining an individual to an intensional tree-structured representation:

kI(a, b) = kI(MSC∗(a),MSC∗(b))

14



Note that before applying the kernel functions a sort of completion of the in-
put descriptions is necessary, substituting the defined concepts with the concept
descriptions corresponding to their definitions, so to make explicit the relevant
knowledge concerning either individual (example).

The extension of the kernel function to more expressive DL is not trivial.
DLs allowing normal form concept definitions can only be considered. Moreover,
for each constructor not included in the ALCQ logic, a kernel definition has to
be provided.

Another extension for the kernel function could be made taking into ac-
count the similarity between different relationships in a more selective way. This
would amount to considering each couple of existential and value restrictions
with one element from each description (or equivalently from each related AND-
OR tree) and the computing the convolution of the sub-descriptions in the re-
striction. As previous suggested for λ, this should be weighted by a measure of
similarity between the roles measured on the grounds of the available seman-
tics. We propose therefore the following weight: given two roles R,S ∈ NR:
λRS = |RI ∩ SI |/|∆I ×∆I |.

All of these weighting factors need not to be mere constants. Another pos-
sible extension is considering them as functions of the depth of the nodes to
be compared: λ : N 7→ ]0, 1] (e.g. λ(n) = 1/n). In this way one may control the
decay of impact of the similarity of related individuals/concepts located ad more
deeply nested levels.

As suggested before, the intersection could be measured on the grounds of
the relative role extensions with respect to the whole domain of individuals, as
follows:

λRS =
|RI ∩ SI |
|RI ∪ SI |

It is also worthwhile to recall that some DLs knowledge bases contain also an
R-box [1] with axioms concerning the roles, one knows beforehand that, for
instance, R v S and compute their similarity consequently.

In order to increase the applicability of precision of the structural kernels and
tackle the DL languages supporting the OWL versions, they should be able to
work with inverse roles and nominals. The former may be easily accommodated
by considering, in the normal form and kernels, a larger set of role names N∗R =
NR ∪ {S | ∃R ∈ NR : S = R−}. The latter can be dealt with with a set kernel,
as in the sub-kernel for primitive concepts. Given the set of individual names O1

and O2: koI(O1, O2) = kset(O
I
1 , O

I
2 ) = |OI1 ∩OI2 |.

Finally, as discussed in [10], related distance measures can also be derived
from kernel functions which essentially encode a notion of similarity between
concepts and between individuals. This can enable the definition of various
distance-based methods for these complex representations spanning from rela-
tional clustering [11] to instance-based methods [7].
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5 Conclusions and Outlook

Kernel functions have been defined for OWL descriptions which was integrated
with a SVM for inducing a statistical classifier working with the complex rep-
resentations. The resulting classifier could be tested on inductive retrieval and
classification problems.

The induced classifier can be exploited for predicting or suggesting missing
information about individuals, thus completing large ontologies. Specifically, it
can be used to semi-automatize the population of an ABox. Indeed, the new
assertions can be suggested to the knowledge engineer that has only to validate
their inclusion. This constitutes a new approach in the SW context, since the
efficiency of the statistical and numerical approaches and the effectiveness of a
symbolic representation have been combined.

The derivation of distance measures from the kernel function may enable a
series of further distance-based data mining techniques such as clustering and
instance-based classification. Conversely, new kernel functions can be defined
transforming newly proposed distance functions for these representations, which
are not language dependent and allow the related data mining methods to better
scale w.r.t. the number of individuals in the ABox.
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Abstract. Under the umbrella of the Semantic Web, Linked Data projects have
the potential to discover links between datasets and make available a large number
of semantically inter-connected data. Particularly, Health Care and Life Sciences
have taken advantage of this research area, and publicly hyper-connected data
about disorders and disease genes, drugs and clinical trials, are accessible on the
Web. In addition, existing health care domain ontologies are usually comprised
of large sets of facts, which have been used to annotate scientific data. For in-
stance, annotations of controlled vocabularies such as MeSH or UMLS, describe
the topics treated in PubMed publications, and these annotations have been suc-
cessfully used to discover associations between drugs and diseases in the context
of the Literature-Based Discovery area. However, given the size of the linked
datasets, users have to spend uncountable hours or days, to traverse the links be-
fore identifying a new discovery. In this paper we provide an authority-flow based
ranking technique that is able to assign high scores to terms that correspond to
potential novel discoveries, and to efficiently identify these highly scored terms.
We propose a graph-sampling method that models linked data as a Bayesian net-
work and implements a Direct Sampling reasoning algorithm to approximate the
ranking scores of the network. An initial experimental study reveals that our rank-
ing techniques are able to reproduce state-of-the-art discoveries; additionally, the
sampling-based approach is able to reduce the exact solution evaluation time.

1 Introduction

During the last decade, emerging technologies such as the Semantic Web, the Seman-
tic Grid, Linked Data projects, and affordable computation and network access, have
made available a great number of publicly inter-connected data sources. Life science
is a good example of this phenomenon. This domain constantly evolves, and has gen-
erated publicly available information resources and services whose number and size,
have dramatically increased during the last years. For example, the amount of gene ex-
pression data has grown exponentially, and most of the biomedical sources that publish
this information have been gaining data at a rate of 300 % per year. The same trend
is observed in biomedical literature where the two largest interconnected bibliographic
databases in biomedicine, PubMed and BIOISIS, illustrate the extremely large size of
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the scientific literature today. PubMed publishes at least 16 million references to journal
articles, while BIOSIS makes available more than 18 million abstracts.

On the other hand, a great number of ontologies and controlled vocabularies have
become available under the umbrella of the Semantic Web. Ontologies are specified in
different standard languages, such as XML, OWL or RDF, and regular requirements are
expressed using query languages such as SPARQL. Ontologies play an important role
and provide the basis for the definition of concepts and relationships that make global
interoperability among available Web resources possible. In the Health Care and Life
Sciences domains, large ontologies have been defined; for example, we can mention
MesH [15], Disease [1], Galen [16], EHR RM [2], RxNorm [20], and GO [5]. On-
tologies are commonly applied in these domains to annotate publications, documents,
and images; also ontologies can be used to distinguish similar concepts, to generalize
and specialize concepts, and to derive new properties. To fully take advantage from the
linked data sources and their ontology annotations, and to be able to recognize novel
discoveries, scientists have to navigate through the inter-connected sources, and com-
pare, correlate and mine some of these annotated data. Nevertheless, because the size
and number of available sources and the set of possible annotations are very large, users
may have to spend countless hours or days before recognizing relevant findings.

In order to facilitate the specification of scientist’s semantic connection needs, we
present a ranking technique able to assign high scores to potential novel associations.
Furthermore, given the size of the search space and to reduce the effect of the num-
ber of available linked data sources and ontology annotations on the performance, we
also propose an approximate solution named graph-sampling. This approximate rank-
ing technique samples events in a Bayesian network that models the topology of the
data connections; it also estimates ranking scores that measure how important and rel-
evant are the associations between two terms. In addition, the approximate technique
exploits information about the topology of the hyperlinks and their ontology annota-
tions, to guide the ranking process into the space of relevant and important terms.

In this paper we describe our ranking techniques and show their effectiveness and
efficiency. The paper is composed of five additional sections. In Section 2, we compare
existing approaches. Section 3 illustrates techniques proposed in the area of Literature
Based Discovery (LBD) by showing the discovery reported in [21] where curcumin
longa was associated with retinal diseases. Section 4 describes our proposed sampling
technique. Section 5 reports our experimental results. Finally, we give our conclusions
and future work in Section 6.

2 Related Work

Under the umbrella of the Semantic Web, Linked Data projects have proposed algo-
rithms to discover links between datasets. Particularly, the Linking Open Drug Data
(LODD) task has connected a list of datasets that includes disorders and disease genes [6],
clinical trials [9] and drug banks [26]. Some of these link discovery or generation tools
apply similarity metrics to detect potential similar concepts and their relationships [25].
However, none of the existing link discovery techniques make use of information about
the link structure to identify potential novel associations. Also, the ontology voID [24]
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has been proposed to describe interlinked datasets and enable their discovery and usage,
and provides the basis for our proposed approach.

The discovery of associations between data entries implies descriptive and predic-
tive inference tasks based on the link structure [4] and on semantics suggested by
relevant ontologies. In general the idea is to perform random walks in the space of pos-
sible associations and discover those that satisfy a particular pattern; correspondences
between the discovered patterns are measured in terms of similarity functions. In [7],
heuristics are used to discover relevant subgraphs within RDF graphs; relationships
among the metadata describing nodes is used to discover relevant relationships among
entities. To decide if two objects are semantically similar, Jeh et. al. [11] propose a
measure that reflects when two objects are similar based on the relationships that they
hold with similar objects. Yan et al. [8] propose strategies to efficiently search sub-
graphs that are similar to a given query graph. Finally, Hu et al. [10] and Kuramochi
and Karypis [12] describe efficient algorithms to discover subgraphs (patterns) that
occur in graphs and to aggregate them.

Sampling techniques have been successfully applied to a variety of approximation
techniques. For example, in the context of query optimization, different sampling-based
algorithms have been proposed to estimate the cardinality of a query efficiently [13,
14, 18]. The challenge of these methods is to reach estimates that satisfy the required
confidence levels while the size of the sample remains small. A key decision involves
when to stop sampling the population and this is determined by the mean and variance of
the sample in comparison to the target population. In this paper we propose a technique
that samples paths in an acyclic directed graph that models a dataset of linked data.
Paths are sampled based on the joint probability which is computed as the multiplication
of the authority transfer flow value of the edges that comprise the path. Similarly, we
define the stop condition of the sampling, based on an estimate of the metric score
mean. Related to the problem of estimating authority flow metrics, Fogaras et. al. [3]
implement a Monte-Carlo based method to approximate personalized PageRank scores.
They sample paths whose length is determined by a geometric distribution. Paths are
sampled from a Web graph based on a probability that represents whether objects in
the paths can be visited by a random surfer. This approach may provide a solution to
PageRank; however, it is not applicable to our proposed approach because the length
of the paths is determined by the number of layers in the results graph and cannot be
randomly chosen. In contrast, graph-sampling samples objects layer by layer, until the
last layer in the result graph is visited. Objects with higher probability to be visited
by a random surfer and links between these objects, will have greater chance to be
chosen during the sampling process. Thus, graph-sampling may be able to only traverse
relevant paths that correspond to relevant discoveries.

3 Motivating Example

Consider the area of Literature-Based Discovery (LBD) where by traversing scientific
literature annotated with the controlled vocabularies like MesH, drugs have been as-
sociated with diseases [21, 22]. LBD can perform Open or Closed discoveries, where
a scientific problem is represented by a set of articles that discuss an input problem
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(Topic A), and the goal is to prove the significance of the associations between A and
some other C topics discussed in the set of publications reachable from the initial set
of publications relevant to A. Srinivasan et al. [21] followed this idea and improved the
Open and Closed techniques by recognizing that articles in PubMed have been curated
and heavily annotated with controlled vocabulary terms from the MeSH (Medical Sub-
ject Heading) ontology. Relationships between publications and terms are annotated
with weights or scores that represent the relevance of the term in the document. MeSH
term weights are a slight modification of the commonly used T F/IDF scores. Figure 1
illustrates a directed graph that represents the terms and publications visited during the
evaluation of an Open discovery. Topic A is used to search on the PubMed site and re-
trieve relevant publications, named PubA. Then, MeSH term annotations are extracted
from publications in PubA, and filtered by using a given set of semantic types of the
ontology Unified Medical Language System (UMLS) 3; this new set of MeSH terms is
named B and is used to repeat the search on the PubMed site. Similarly, sets PubB, C
and PubC are built.
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Fig. 1. Open Discovery Graph LBD

The Srinivasan’s algorithm considerably reduces the space of intermediate results
while identifying novel relationships; however, it still requires human intervention to
create the intermediate datasets as well as to rank the terms that may not conduce to
potential novel discoveries. We propose a sampling-based ranking technique that is able
to estimate which are the nodes that will conduce to novel discoveries, and thus, reduce
the discovery evaluation time. We illustrate the usage of this technique in the context of
Literature-based Discovery. However, we hypothesize that this technique can be used
to efficiently discover associations between the data published in the Cloud of Linked
Data.

3 http://www.nlm.nih.gov/research/umls/
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4 A Ranking-based Solution to Discover Semantic Associations

We propose ranking-based solutions to the problem of the semantic association discov-
ery. The proposed techniques take advantage of existing links between data published
on the Cloud of Linked Data, or make use of annotations with controlled vocabularies
such as MeSH, GO, PO, etc. We present an exact solution, and an approximate tech-
nique; both methods have been implemented in BioNav [23].

4.1 An Exact Ranking Technique

The exact ranking technique extends existing authority-flow based metrics like PageR-
ank, ObjectRank or any of their extensions [17]. This ranking approach assumes that
the linked data comprise a layered graph, named layered Discovery Graph, where nodes
represent published data and edges correspond to hyperlinks.

Formally, a layered Discovery Graph, lgDG=(Vlg, Elg) is a layered directed acyclic
graph, comprised of k layers, L1, . . . , Lk. Layers are composed of data entries which
point to data entries in the next layer of the graph. Data entries in the k-th layer or last
layer of the graph, are called target objects. Authority-flow based metrics are used to
rank the target objects, and we use these scores to identify relevant associations between
objects in the first layer and target objects.

Figure 2 illustrates an example of a layered Discovery Graph that models the Open
Discovery Graph in Figure 1. In this example, odd layers are composed of MeSH terms
while even layers are sets of publications. Also, an edge from a term b to a publication
p indicates that p is retrieved by the PubMed search engine when b is the search term.
Finally, an edge from a publication p to a term b represents that p is annotated with b.
Each edge e = (b, p)(resp., e = (p, b)) between the layers li and li+1 is annotated with
the T F/IDF score; this value either represents how relevant is a term b in the collection
of documents in li+1, or a document relevance regarding to a set of terms. The path of
thick edges connects Topic A with C3; the value 0.729 corresponds to the authority-flow
score and represents the relevance of the association between Topic A and C3.
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Fig. 2. A Layered Discovery Graph
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Given a layered Discovery Graph lgDG=(Vlg, Elg) of k layers, the authority-flow
scores of the target objects are formally defined as a ranking vector R:

R = Mk−1Rini = (
k−1∏

l=1

Ml) Rini

where, M is a transition matrix and Rini is a vector with the scores of the objects in
the first layer of the graph. An entry M[u, v] in the transition matrix M, where u and
v are two data objects in lgDG, corresponds to α(u, v) or is 0.0. The value α(u, v) is
calculated according to the metric used to compute the ranking score of the data.

M[u, v] =
{
α(u, v) if (u, v) ∈ Elg,
0.0 otherwise.

For instance, the layered graph Weighted Path Count (lgWP) is an extension of
ObjectRank and Path Count and the value of α(u, v) corresponds to the T F/IDF score
that denotes how relevant is the object u with respect to the object v. Nodes with high
lgWP scores are linked by many nodes or linked by highly scored nodes; for example,
in Figure 2, C3 is pointed by relevant nodes. In the context of LBD, we use this metric
to discover novel associations between a topic A and MeSH terms in the last layer of
the lgDG, and we have been able to discover the associations identified by Srinivasan
et al. [21].

4.2 A Sampling-based Ranking Solution

Although the ranking induced by an authority-flow based metric is able to distinguish
relevant associations, the computation of this ranking may be costly. Thus, to speed
up this task, we propose a sampling-based technique that traverses only nodes in the
layered graph that may conduce to highly ranked target objects.

Given a layered Discovery Graph lgDG = (Vlg, Elg), the computation of highly
ranked target objects is reduced to estimating a subgraph lgDG′ of lgDG, so that with
high confidence (at least δ), the relative error of the distance between the approximate
highly ranked target objects in lgDG′ and the exact highly ranked target objects, is at
least ε.

A set S S={lgDG1, ..., lgDGm} of independent and identically distributed (i.i.d.) sub-
graphs of lgDG is generated. Then, lgDG′ is computed as the union of the m subgraphs.
Each subgraph lgDGi is generated using a graph-sampling technique. This sampling
approach is based on a Direct Sampling method for a Bayesian network [19]. This net-
work represents all the navigational information encoded in lgDG and in the transition
matrix M of the authority-flow metric. The Direct Sampling technique generates events
from a Bayesian network [19].

A Bayesian network BN = (VB, EB) for a layered Discovery Graph lgDG, is built
as follows:

– BN and lgDG are homomorphically equivalent, i.e., there is a mapping f : VB →
Vlg, such that, ( f (u), f (v)) ∈ Elg iff (u, v) ∈ EB.
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– Nodes in VB correspond to discrete random variables that represent if a node is
visited or not during the discovery process, i.e., VB = {X | X takes the value 1
(true) if the node X is visited and 0 (false), otherwise}.

– Each node X in VB has a conditional probability distribution:

Pr(X | Parents(X)) =
n∑

j=1

α( f (Y j), f (X))

where, Y j is the value of the random variable that represents the j-th parent of the
node X in the previous layer of the Bayesian network and n corresponds to the number
of parents of X. The value α( f (Y j), f (X)) represents the weight or score of the edge
( f (Y j), f (X)) in the layered Discovery Graph and corresponds to an entry in the tran-
sition matrix M; it is seen as the probability to move from Y j to X in the Bayesian
network. Furthermore, the conditional probability distribution of a node X represents
the collective probability that X is visited by a random surfer starting from the objects
in the first layer of the layered Discovery Graph. Finally, the probability of the nodes in
the first layer of the Bayesian network corresponds to a score that indicates the relevance
of these objects with respect to the discovery process; these values are represented in
the Rini vector of the ranking metric.

Given a Bayesian network generated from the layered Discovery Graph lgDG, the
Direct Sampling generates each subgraph lgDGi. Direct Sampling selects nodes in
lgDGi by sampling the variables from the Bayesian network based on the conditional
probability of each random variable or node. Algorithm 1 describes the Direct Sam-
pling algorithm.

Algorithm 1 The Direct Sampling Algorithm
Input: BN = (VB, EB) A Bayesian network f or a layered discovery graph
Output: A subgraph lgDGi

T P⇐ topologicalOrder(BN);
for X ∈ T P do

Pr(X | Parents(X))⇐ ∑n
j=1 α( f (Y j), f (X));

if (randomNumber >= Pr(X | Parents(X))) then
Xi ⇐ 1;

else
Xi ⇐ 0;

end if
end for

Variables are sampled in turn following a topological order starting from the vari-
ables in the first layer of the Bayesian network; this process is repeated until variables
in the last layer are reached. The values assigned to the parents of a variable define the
probability distribution from which the variable is sampled. The conditional probability
of each node in the last layer of lgDGi corresponds to the approximate value of the
implemented metric.
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Figure 3 illustrates the behavior of the graph-sampling technique; unmarked nodes
correspond to visited notes and comprise a subgraph lgDGi. Direct Sampling is per-
formed as follows: initially, all the nodes in the first layer have the same probability
to be visited and all of them are considered. All their children or nodes in the second
layer are also visited and the conditional probability is computed; nodes with the high-
est scores survive, i.e., n5 and n7. Then, the children of these selected nodes are also
visited, and the process is repeated until nodes in the last layer are reached. Note that
nodes n9 and n11 are the target objects with the highest values of the lgWP metric and
with the highest conditional probability. These nodes are pointed by nodes with high
lgWP scores or pointed by many nodes; thus, they are very likely to be visited when the
Direct Sampling algorithm is performed.
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Fig. 3. Graph Sampling

Once an iteration i of the Direct Sampling is finalized, the sampled layered Discov-
ery Graph lgDGi = (Vi, Ei) is created. Nodes in Vi correspond to the variables sampled
during the Direct Sampling process that are connected to a visited variable in the last
layer of the Bayesian network. Additionally, for each edge (u, v) in the Bayesian net-
work that connects nodes f (u) and f (v) in Vi, an edge ( f (u), f (v)) is added to Ei. The
conditional probabilities of the target objects of each subgraph lgDGi correspond to the
approximate values of the ranking metric. After all the subgraphs lgDG1, . . . , lgDGm are
computed, an estimate lgDG′ is obtained as the union of these m subgraphs. The approx-
imation of the ranking metric in the graph lgDG′ is computed as the average of the ap-
proximate ranking metric values of target objects in the subgraphs lgDG1, . . . , lgDGm.
A bound of the number of iterations or sampled subgraphs is defined in terms of the
Chernoff-Hoeffdings bound.

Theorem: Let lgDG be an exact layered Discovery Graph and lgDGi be one of
the m sampled subgraphs. Let T be a list of the target objects in lgDG ranked with
respect to exact values of the ranking metric RM. Let Ti be a list of the target objects
in lgDGi ranked with respect to the approximation of RM. Let J(lgDG1, lgDG, β),. . . ,
J(lgDGm, lgDG, β) be independent identically distributed (i.i.d.) random variables with
values in the set {0,1}. Each random variable J(lgDGi, lgDG, β) has value=1 if a dis-
tance metric value between the ranking list Ti and the list T is at least β; otherwise,
value=0. Let S denote the average of these variables, i.e., X = 1

m
∑m

i=1 J(lgDGi, lgDG, β)
and E(S ) the expectation of S . Then, the size m of the sample has to satisfy the fol-
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lowing formula to ensure that the relative error of E(S ) is greater than ε with some
probability:

P(|S − E(S )| ≥ ε) ≤ 2 exp(−2mε2) .

5 Experimental Results

In this section we show the quality of our proposed discovery techniques. First, we
compare the results obtained by our ranking technique with respect to the results ob-
tained by the Manjal system [21]. Then, we show the behavior of this technique in
the DBLP dataset. Experiments were executed on a Sun Fire V440 equipped with two
UltraSPARC IIIi processors running at 1.593 GHZ with 16 GB RAM. The ranking and
sampling techniques were implemented in Java 1.6.1.

To conduct the first experiment, we have created a catalog populated with the PubMed
publications from the NCBI source4, all the MeSH terms, and all the links between
Mesh terms and PubMed publications. We stored the downloaded data in two tables,
Pub-MeSH and MeSH-Pub. Table Pub-MeSH relates a publication p with all the MeSH
terms that correspond to annotations of p in PubMed; these annotations are manually
done by experts at the National Library of Medicine site. Table MeSH-Pub relates a
MeSH term m with all publications that are retrieved when the term m is used to search
on PubMed. Both tables have an attribute score that represents the relevance of the rela-
tionships represented in the table. Suppose there is a tuple (p,m, s) in table Pub-MeSH,
then the score s = A × T ×C, where:

– A: is the augmented document frequency of the publication p, i.e., A = 0.5 + 0.5 +
t f

t fmax
, where, t f is the frequency of p in table Pub-MeSH, and t fmax is the maximum

document frequency of any publication in Pub-MeSH.
– T: inverse term frequency log2( N

N p ), where N is the number of collected MeSH
terms, i.e., 20,652, and Np corresponds to the number of MeSH terms associated
with the publication p in the table Pub-MeSH.

– C: is a cosine normalization factor.

Similarly, scores in table MeSH-Pub were computed. To reproduce the results re-
ported by Srinivasan et al. in [21], we ran the metric lgWP on a layered Discovery
Graph lgDG comprised of 5 layers, 3,107,901 nodes and 10,261,791 edges. Sets PubA,
B, PubB and C and were built following the criteria proposed by Srinivasan et al., and
by selecting data from tables Pub-MeSH and MeSH-Pub. We ranked the target objects
in the graph, and we could observe that our ranking technique was able to produce 4 of
the top-5 semantic associations identified by Srinivasan et al. [21]. Table 1 compares
the top-5 target objects discovered by [21] and the ones discovered by our ranking
technique, i.e., our ranking technique exhibits a precision and recall of 80%.

We have also studied the benefits of performing the graph-sampling technique, and
we ran the sampling process for 5 iterations, i.e., 5 sampled subgraphs were computed.
Table 2 reports on the top-10 MeSH terms identified by graph-sampling. We can ob-
serve that 4 of the top-5 MeSH terms identified by the Srinivasan’s algorithm [21],

4 http://www.ncbi.nlm.nih.gov/
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k Srinivasan’s Ranking [21] lgWP
1 Retina Testis
2 Spinal Cord Retina
3 Testis Spinal Cord
4 Pituitary Gland Obesity
5 Sciatic Nerve Pituitary Gland

Table 1. Top-5 MeSH terms

are also identified. We note that iterations do not improve the quality of the discovery
process.

k i=1 i=2 i=3 i=4 i=5
1 Spinal Cord Spinal Cord Spinal Cord Spinal Cord Spinal Cord
2 Pituitary Gland Pituitary Gland Pituitary Gland Pituitary Gland Pituitary Gland
3 Celiac Disease Celiac Disease Celiac Disease Celiac Disease Disease
4 Hepatic Encepha. Hepatic Encepha. Hepatic Encepha. Hepatic Encepha. Hepatic Encepha.
5 Uremia Uremia Uremia Uremia Uremia
6 Retina Anemia Anemia Anemia Anemia
7 Obesity Retina Retina Retina Retina
8 Testis Obesity Phenylketonurias Phenylketonurias Phenylketonurias
9 Hypothalamus Testis Obesity Obesity Obesity

10 Osteoporosis Hypothalamus Testis Testis Testis

Table 2. Effectiveness of Graph Sampling Techniques

Finally, we report on the number of target MeSH terms produced by the Srinivasan’s
algorithm and the ones produced during each iteration of graph-sampling (Table 3). We
can observe that graph-sampling is able to discover 80% of the top novel MeSH terms,
while the number of target terms is reduced by up to one order of magnitude.

# Srinivasan’s target MeSH Terms [21] i=1 i=2 i=3 i=4 i=5
570 24 38 49 61 71

Table 3. Performance of Graph-Sampling Techniques

In the second experiment, we downloaded the DBLP file in a relational database.
We ran the graph-sampling technique to discover associations between a given author
and the most relevant conferences where this author has published at least one paper.
We ran 3 sets of 30 queries and compared the ranking produced by the exact solution
and the one produced by graph-sampling; layered Discovery Graphs were comprised
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of 5 layers and at most 876,110 nodes and 4,166,626 edges. Author’s names with high,
medium and low selectivity were considered, where high selectivity means that the
author has few publications while low selectivity represents that the author is very pro-
ductive. The top-5 conferences associated with each author were computed by using the
exact ranking and the approximation produced by graph-sampling during 6 iterations.
Table 4 reports the average precision of the approximate top-5 conferences with respect
to the exact top-5. We can observe that graph-sampling is able to identify almost 65% of
the top-5 conferences after iteration 3. The time required to execute the graph-sampling
technique was reduced at least by half. These results suggest that the proposed discov-
ery techniques provide an effective and efficient solution to the problem of identifying
associations between terms.

Author’s Name Selectivity i=1 i=2 i=3 i=4 i=5 i=6
high 0.390 0.4874 0.635 0.813 0.823 0.871

medium 0.341 0.562 0.681 0.724 0.872 0.890
low 0.64 0.660 0.749 0.803 0.806 0.815

Table 4. Effectiveness of Graph Sampling Techniques DBLP- Average Precision

6 Conclusions and Future Work

In this paper we have presented a sampling-based technique that supports the discovery
of semantic associations between linked data. We have reported the results of an empir-
ical study where we have observed that our proposed techniques are able to efficiently
reproduce the behavior of existing LBD techniques. This observed property of our dis-
covery technique may be particularly important in the context of large datasets as the
ones published in the Cloud of Linked Data. In the future we plan to extend this study
to identify potential associations between other sources of the Cloud of Linked Data.

References

1. Disease Ontology. http://diseaseontology.sourceforge.net.
2. EHR Ontology. http://trajano.us.es./ isabel/EHR/EHRRM.owl.
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Abstract. In real-world RDF documents, property subject and object values are
often correlated. The identification of these relationships is of significant rele-
vance to many applications, e.g., query evaluation planning and linking analy-
sis. In this paper we present the BAY-HIST Prediction Model, a combination of
Bayesian networks and multidimensional histograms which is able to identify the
probability of these dependencies. In general, Bayesian networks assume a small
number of discrete values for each of the variables considered in the network.
However, in the context of the Semantic Web, variables that represent the con-
cepts in large-sized RDF documents may contain a very large number of values;
thus, BAY-HIST implements multidimensional histograms in order to aggregate
the data associated with each node in the network. We illustrate the benefits of
applying BAY-HIST to the problem of query selectivity estimation as part of cost-
based query optimization. We report initial experimental results on the predic-
tive capability of this model and the effectiveness of our optimization techniques
when used together with BAY-HIST. The results suggest that the quality of the
optimal evaluation plan has improved over the plan identified by existing cost
models that assume independence and uniform distribution of the data values.

1 Introduction

The number of controlled vocabularies and annotated data sources in the Web has ex-
ploded in the last few years. Individually, many of these documents contain a large
number of concepts and instances, and additionally their growth rate is very high. Thus,
in order to be capable of scaling up, Web architectures have to be tailored for query
processing on large number of resources and instances. We apply BAY-HIST to the
problem of query selectivity estimation as part of cost-based query optimization.

The Prediction Model BAY-HIST is a framework that combines Bayesian networks
and multidimensional histograms with the purpose of determining dependencies be-
tween properties in RDF documents and the distribution of their values. Bayesian Net-
works are probabilistic models that allow a compact representation of the joint distri-
bution of the concepts defined in an RDF document. In general, Bayesian networks
assume a small number of discrete values for each of the variables considered in the
network. However, in the context of RDF documents in the Semantic Web, variables
that represent the concepts in large-sized RDF documents may contain a very large
number of values; thus, BAY-HIST implements multidimensional histograms in order
to aggregate the data associated with each node in the Bayesian network that represents
the RDF document.
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BAY-HIST has been included as a component of the OneQL System, an Ontol-
ogy System that provides optimization and query evaluation techniques that scale up
to large RDF/RDF(S) documents [4, 10]. We report initial experimental results on the
predictive capability of this model and the effectiveness of our optimization techniques
when used together with BAY-HIST. The results suggest that the quality of the optimal
evaluation plan has improved compared to the plan identified by existing cost models
that assume independence and uniform distribution of the data values, by up to two
orders of magnitude.

The structure of this paper is as follows: first, we will give a motivating example.
Following this, we will present the syntax and semantics of BAY-HIST. Next, we will
explain the architecture of the BAY-HIST Prediction Model and its application to cost-
based query optimization. Then, the experimental study will be described, and finally,
the conclusions and future work will be presented.

2 A Motivating Example

The example that follows shows a query to the RDF repository published at
http://www.govtrack.us/. In this example, besides information concerning the U.S.
congress bills voting process, we consider information of the census such as religion
and gender, and political information such as the party and the state that is represented
by each representative that participates in the voting process. Consider the relationships
between party, gender, religion, state and the way a representative votes. To discover if
there is any correlation among the values of these five properties, we will try to deter-
mine if for different instantiations of the following query, different number of tuples are
obtained: Names of all the representatives of state ?S , that belong to party ?P, are of gender ?G,
are of religion ?R and have voted for the winning option in the voting process of Bill ?B. The
SPARQL representation of this query is illustrated in Figure 1.

PREFIX pol:<tag:http://www.rdfabout.com/rdf/schema/politico/>
PREFIX vote:<tag:http://www.rdfabout.com/rdf/schema/vote/>
PREFIX foaf:<tag:http://xmlns.com/foaf/0.1/>
SELECT ?X
FROM <tag:http://www.examples.org/votesdataset/>
WHERE

{?X pol:forOffice ?S . ?X pol:party ?P . ?Z pol:hasRole ?X . ?Z foaf:gender ?G .
?Z foaf:religion ?R . ?O vote:votedBy ?X . ?B vote:winner ?O}

Fig. 1. A SPARQL query

This query may have different subject and object instantiations (constants). For in-
stance, we may want to explore for a certain Bill, the different combinations of instan-
tations for party, religion, gender and state. While for a certain set of instantiations the
query has 18 answers, for another one it has no answers. This behavior is due to the lack
of uniformity in the property value distribution and the dependency between properties.
For example, the probability that a representative has voted for the winning option in
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the voting process of Bill 1998-173 if he is Catholic, male, belongs to the Democratic
party and represents the state of Massachussets is much higher than the probability that
a representative has voted for the winning option in the voting process of Bill 1998-173
if he is Jewish, male, Republican and represents Oklahoma. The identification of these
relationships is of significant relevance to many applications. For instance, in query
evaluation planning, this information may provide the basis for the optimizer to dis-
criminate between bad or good query plans.

3 The BAY-HIST Prediction Model

Consider the RDF repository presented in the previous example. Let us assume that
there are certain causal relationships between the subjects and objects of properties that
are represented as an RDF Bayesian Network (RBN), as shown in Figure 2. In this

o-foroffice o-party o-gender o-religion

o-s-hasrole-
foroffice

o-s-hasrole-
party

s-s-gender-
religion

s-s-hasrole-
gender s-s-hasrole-

religion
s-s-foroffice-

party

Fig. 2. RBN Votes

RBN, there are nodes that represent property subjects or objects. For example, node
o-religion represents the values (objects) of property religion. We also represent the
event of a combination between subjects or objects of related properties. Such is the
case of node s-s-foroffice-party that represents the event that a subject that is rep-
resenting a certain state, belongs to a certain party. The arcs in this network represent
dependencies between nodes. In this network we model that the combination of voter
and gender is conditioned not only by the gender itself, but also by the state he repre-
sents and the party to which he belongs to; thus, the probability that a person’s gender is
‘male’, the state is ‘Oklahoma’ and that he belongs to the ‘Republican’ party is 0.033.
This probability is related to the probabilities of all the rest of combinations of gender,
state and party. Tables 1(a) and 1(b) show a portion of the conditional probability tables
(CPT) of this RBN. An RBN represents all the conditional dependencies among prop-
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Table 1. CPT’s Votes

(a) CPT o-party
o-party prob(o-party)
Democratic 0.51
Independent 0.007
Republican 0.47

(b) CPT s-s-foroffice-party
s-s-foroffice-party o-foroffice o-party prob(s-s-foroffice-party)
true Democratic ak 0
false Democratic ak 1
true Independent ak 0
false Independent ak 1
true Republican ak 0.03
false Republican ak 0.97
true Democratic ma 0.038
false Democratic ma 0.962
. . . . . . . . . . . .

erty subjects and objects in an RDF document. Next, we will formally define an RDF
Bayesian Network:

Definition 1 (RDF Bayesian Network) Given an RDF directed graph
OR = (VR, ER) where VR and ER are the nodes and arcs in the RDF graph. An RDF
Bayesian Network RB for OR, is a pair RB = 〈OB,CPTB〉, where OB = (VB, EB) is a
DAG. VB are the nodes in OB and EB are the arcs in OB. CPTB are the Conditional
Probability Tables for each node. The homomorphism f : P(ER) → P(VB) establishes
mappings between OR and OB:

f ({(sub, pro, ob j)}) = {s-pro, o-pro} (Mapping 1)
f ({(sub1, pro1, ob j), (sub2, pro2, ob j)}) = {o-o-pro1-pro2, o-o-pro2-pro1} (Mapping 2)
f ({(sub, pro1, ob j1), (sub, pro2, ob j2)}) = {s-s-pro1-pro2, s-s-pro2-pro1} (Mapping 3)
f ({(sub, pro1, ob j1), (sub2, pro2, sub)}) = {s-o-pro1-pro2, o-s-pro2-pro1} (Mapping 4)

VC ⊆ VB, where VC is the union of the sets of nodes established by mappings 2 to
4, and it is comprised of all the nodes that represent property combinations.

EB ⊆ VB ×VC is the set of arcs. An arc (v1, v2) ∈ EB iff there exist two sets of nodes
in the RBN, V1 ⊆ VB and V2 ⊆ VC such that, v1 ∈ V1 and v2 ∈ V2 and when f −1 is
applied to these sets, a subset of arcs in the RDF graph is obtained.

CPTB is the probability Pr(v/predecessors(v)) for each node v ∈ VB, i.e., the dis-
tribution on the values of v for each possible value assignment of its predecessors. The
CPTB are multidimensional histograms ordered by value. If a node v is a source node,
the histogram will be one-dimensional, because in this case the CPTB only represents
the distribution of values taken up by the variable represented by the node. For each
node v, according to the properties of the distribution of the values of v, CPTB can be
represented as an equi-width histogram or as an equi-height histogram.

Example 1 Next, we illustrate the use of the homomorphism f . Figure 3 shows a por-
tion of an RDF graph (OR) and its corresponding RBN graph (OB). Mapping 1 is ap-
plied to the sets of RDF arcs {(rep1,foroffice,va)} and {(rep2,party,democratic)}:

f ({(rep1,foroffice,va)})={s-foroffice,o-foroffice}
f ({(rep2,party,democratic)})={s-party,o-party}
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politico:rep1 va
politico:foroffice

politico:rep2 ma
politico:foroffice

Democrat
politico:party

s-foroffice o-foroffice

s-s-foroffice-party s-s-party-foroffice

s-party o-party

OBOR

Fig. 3. Example Mapping RDF Graph - RBN Graph

Then, Mapping 3 is applied to the set of RDF arcs {(rep2,foroffice,ma),
(rep2,party,democratic)}

f ({(rep2,foroffice,ma),(rep2,party,democratic)})={s-s-foroffice-party,s-s-party-foroffice}

The arc (o-foroffice,s-s-foroffice-party) belongs to EB because the arcs ob-
tained by applying the inverse of f are subsets of ER:

f −1
({s-foroffice,o-foroffice})∪ f −1({s-s-foroffice-party,s-s-party-foroffice})=
{(rep1,foroffice,va),(rep2,foroffice,ma),(rep2,party,democratic)}

Intuitively, an RBN is semantically valid if its arcs have been established between nodes
that map to properties whose subjects and objects are of the same type, i.e., have some
type of matching instantiations, subject-subject, subject-object or object-object. For ex-
ample, an arc from node o-s-hasrole-party to node s-s-gender-religion is seman-
tically valid because there are matching subject-subject instantiations between triples
of property hasrole and triples of religion, i.e., both are “persons”.

Given the symmetry property of the combinations between triple patterns, the set
VB may contain only one of the nodes in the sets defined with mappings 2, 3 and 4 in
Definition 1; thus, the resulting RBN is minimal:

Definition 2 (Minimal RBN) Given an RBN RB = 〈OB,CPTB〉. RB is a Minimal RBN
if the set VB contains exactly one node in sets {s-s-pro1-pro2, s-s-pro2-pro1}, {s-o-pro1-
pro2, o-s-pro2-pro1} and {o-o-pro1-pro2, o-o-pro2-pro1}.

4 Architecture

Figure 4 shows the architecture of the BAY-HIST Prediction Model System. BAY-HIST
has two main components that generate and query the RBN: the RBN Analyzer and the
RBN Inference Engine. Both components make use of the SamIam Bayesian Inference
Tool [1].

The analyzer receives an RDF document and creates the RBN structure using the
mappings presented in Definition 1 to establish the correspondence between the RDF
graph and the nodes and arcs of the RBN structure. Once the RBN structure has been de-
fined, the RDF data is loaded into relational tables, and a multi-dimensional histogram
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is generated for each node in the RBN structure through the stored procedures and the
histogram option implemented by the DBMS Oracle [8]. Both, the RBN structure and
CPT’s are fed to the SamIam network editor, and a Bayesian network is generated in
one of the internal formats recognized by the SamIam tool.

When a query is received, the RBN Inference Engine constructs the corresponding
probability query (e.g., marginal probability and posterior marginal probability) and
passes this query on to the SamIam inference engine which then returns an answer.

RDF
Relational
Database

RDF
Documents

Bayesian 
Network 
Editor

Bayesian
Inference 
Engine

SAMIAM 
Bayesian

Inference Tool

RDF Graph RBN Structure

DBMS Multi
Dimensional
Histogram

CPT

RDF Bayesian 
Network

Query

Answer

RBN Analyzer

RBN Query Engine

Fig. 4. Architecture of the BAY-HIST System

5 Application of BAY-HIST to Query Optimization

The BAY-HIST Prediction Model is applied to query selectivity estimation. These es-
timates are used within the cost model of a cost-based query optimizer as part of the
formulas that compute the cost and cardinality of query sub-plans. We have developed
a randomized optimization strategy based on the Simulated Annealing algorithm [7].
This algorithm explores execution plans of any shape (bushy trees) in contrast to other
optimization algorithms that explore a smaller portion, e.g., left-linear plans. Random
walks are performed in stages that consist of an initial random plan generation step fol-
lowed by one or more plan transformation steps. An equilibrium condition or a number
of iterations determines the number of transformation steps in each stage.

The probability of transforming a current plan p into a new plan p′ is specified by
an acceptance probability function P(p, p′,T ) that depends on a global time-varying
parameter T called the temperature which reflects the number of stages to be executed.
Function P may be nonzero when cost(p′) > cost(p), meaning that the optimizer can
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produce a new plan even when it has a higher cost than the current one. This feature
prevents the optimizer from becoming stuck in a local minimum. Temperature T is de-
creased during each stage, and the optimizer concludes when T = 0. Transformations
applied to the plan during the random walks correspond to SPARQL axioms, e.g., com-
mutativity and associativity of the ‘.’ operator. The optimizer is able to identify near
optimal solutions because of the precision of estimates that take into account correla-
tions of values and non uniform distribution.

Using BAY-HIST, the selectivity of an RDF query execution plan that joins A and
B over join arguments J (A onJB) is expressed in terms of a probability query against
the corresponding RBN:

fs(AonJB) =
∏

J∈J
Pr(JoinEventJ/(JoinEvidJ A ∧ JoinEvidJ B ∧ instEvidIA ∧ instEvidIB))

This is a posterior marginal probability query, i.e., the probability that two pattern in-
stantiations are combined, given the evidence of the instantiations and the joins in its
left and right sub-trees.

The probability queries associated with an RDF pattern (the base case) correspond
to marginal probabilities, i.e., to the probability that the value of subjects or objects
of the property in the pattern is equal to the instantiation in the pattern: Pr(o-pro=obj),
Pr(s-pro=sub) or Pr(s-pro=sub ∧ o-pro=obj).

An estimate of the selectivity of an RDF pattern A, carried out by using a probability
query on the RBN is more precise than an estimate carried out by using the traditional
cost model. The traditional cost model defines the following selectivity formula:

fs(A,J) =
∏

J∈J
1/nKeys(A, J) (1)

where nKeys(A, J) is the number of different values taken up by J in pattern A. Like-
wise, an estimate of the selectivity of a sub-plan A onJ B carried out through a probabil-
ity query on the RBN is more precise than an estimate carried out through the traditional
cost model. The selectivity formula in the traditional cost model is as follows:

fs(A, B,J) =
∏

J∈J
1/max(nKeys(A, J), nKeys(B, J)) (2)

These traditional formulas do not compute a precise estimate of the query evaluation
costs because they are based on the following assumptions: (a) the values of the subjects
and objects in a triple pattern are uniformly distributed, (b) the values of the subjects
and objects in a pattern are independent, and (c) the values of the subjects and objects
in properties of the patterns that are combined in a query, are independent.

The example that follows shows the motivating example query with two different
sets of instantiations:

– Names of all the male representatives of the state of Massachussets that belong to the Demo-
cratic party, are Catholic and have voted for the winning option in the voting process of Bill
1998-173.

– Names of all the male representatives of the state of Oklahoma that belong to the Republican
party, are Jewish and have voted for the winning option in the voting process of Bill 1998-
173.
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PREFIX pol:<tag:http://www.rdfabout.com/politico/>
PREFIX vote:<tag:http://www.rdfabout.com/vote/>
PREFIX foaf:<tag:http://xmlns.com/foaf/0.1/>
SELECT ?X
FROM <tag:http://www.examples.org/votesdataset/>
WHERE

{?X pol:forOffice senate:ma .
?X pol:party ’Democratic’ .
?Z foaf:gender ’male’ .
?Z pol:hasRole ?X .
?Z foaf:religion ’Catholic’ .
?O vote:votedBy ?X .
’1998-173’ vote:winner ?O}

(a) SPARQL Query 1

PREFIX pol:<tag:http://www.rdfabout.com/politico/>
PREFIX vote:<tag:http://www.rdfabout.com/vote/>
PREFIX foaf:<tag:http://xmlns.com/foaf/0.1/>
SELECT ?X
FROM <tag:http://www.examples.org/votesdataset/>
WHERE

{?X pol:forOffice senate:ok .
?X pol:party ’Republican’ .
?Z foaf:gender ’male’ .
?Z pol:hasRole ?X .
?Z foaf:religion ’Jewish’ .
?O vote:votedBy ?X .
’1998-173’ vote:winner ?O}

(b) SPARQL Query 2

Fig. 5. Two Queries with Different Instantiations

The SPARQL representation of these two queries is illustrated in Figure 5. Query 1 and
Query 2 differ in their subject and object instantiations (constants), and their answers
are different: while the first query has 18 answers, the second one has no answers.
This behavior is due to the lack of uniformity in the property value distribution and
the dependencies between properties. Based on this observation, we use an RBN to
differentiate the selectivity of the sub-plans of each query execution plan taking into
account the existing correlation between the various RDF properties. To estimate the
selectivity of the sub-plan shown in Figure 6(a), a posterior marginal probability query
is carried out in the RBN and the result of this probability query is 0.0275.

{?X pol:forOffice senate:ma .
?X pol:party ’Democratic’ .
?Z foaf:gender ’male’ .
?Z pol:hasRole ?X .
?Z foaf:religion ’Catholic’}

(a) Query Sub-Plan

foroffice party

gender

hasrole

religion

_Z

Pr(o-party="Democratic")

Pr(o-gender="male")

Pr(o-religion="Catholic")

Pr(o-foroffice="ma")

Pr(s-s-foroffice-party=true /
           o-foroffice="ma" /\
           o-party="Democratic")

Pr(s-s-hasrole-gender=true /\
     o-s-hasrole-foroffice=true /\
     o-s-hasrole-party=true /
              o-gender="male" /\
               s-s-for-office-party=true /\
               o-for-office="ma"       
               o-party="Democratic")

    _Z,X

Pr(s-s-hasrole-religion=true  /
           s-s-hasrole-gender=true /\
           o-s-hasrole-foroffice=true /\
           o-s-hasrole-party=true /\ 
           s-s-for-office-party=true /\
           o-gender="male" /\
           o-for-office="ma" /\
           o-party="Democratic" /\
           o-religion="Catholic")

_X

62 854

2.059 80

1.104

2

164.720

3.182.941

175.061

(b) Sub-Plan Tree

Fig. 6. Probability Queries on an Execution Sub-plan (http://www.govtrack.us/)

For the corresponding sub-plan in the second query, i.e., the same sub-plan with
different instantiations, the result of the inference on the RBN is 0, which is consistent
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with the expectation that the cardinality of the first query is higher than the cardinality
of the second query. Figure 6(b) shows the tree representation of the sub-plan in Figure
6(a). Each node is annotated with the probability query corresponding to the sub-plan
(sub-tree) selectivity estimate, and with its cardinality. The cost estimate of the sub-
plan, is equivalent to the total number of intermediate results that must be estimated to
obtain the answer:
cost(P) = 62 + 854 + 2.059 + 80 + 164.720 + 1.104 + 3.182.941 + 2 = 3.351.822

6 Related Work

In [6], Bayesian networks are applied to the problem of imprecise estimates of the se-
lectivity of a relational query; this framework is known as the Probabilistic Relational
Model (PRM). This imprecision stems from the assumption of uniform distribution of
values for attributes in a table, attribute independence in one table, and attribute inde-
pendence in tables that are semantically related. The proposed solution uses a proba-
bilistic model to represent the distribution of values of each attribute and the correla-
tions between attributes. Thus, instead of computing the query selectivity in terms of
the number of different values of each attribute in the select condition of the query,
the selectivity is computed using the result of a probability query to the model. In [5],
Statistical Relational Models (SRM) were developed. They are different from PRM
because they represent a statistical model of a particular database state instead of rep-
resenting any state. Thus, Conditional Probability Table (CPT) construction in SRMs
is done through queries to the database whereas the structure and CPT construction in
PRMs is conducted by using machine-learning techniques.

The difference between the solution proposed by Getoor, et. al. [5, 6] and the solu-
tion presented in our paper, is the scalability to large-sized RDF repositories by means
of multidimensional histograms. The SRM, developed in [5] assume a low number of
values for each variable in the model. On the other hand, although in our work, an
RDF document is modeled similarly to an SRM, its nodes and arcs have a particular
semantics based on the RDF graph semantics, i.e., subject, property and object triples.
Besides this, in our proposed RBN model, there are also Join variables, but restricted
to the possible combinations between subjects and objects. Additionally, the purpose of
the Bayesian network proposed by Getoor, et. al., is the estimation of query selectivity.
In our work, Bayesian networks are applied to RDF documents in order to estimate the
selectivity of query evaluation plans and sub-plans.

The work described in [9, 11, 12] extends the Ontology Web Language (OWL) with
constructs that allow the annotation of an ontology with probabilities and causal rela-
tionships. These annotations are done with the purpose of reasoning on uncertainty in
ontologies. Once an ontology is annotated, it is translated to a Bayesian network, and
Bayesian inference queries may be answered. The main difference between these mod-
els and our research is that since the information on subject an object values are kept
in an aggregated form, our combinated approach of Bayesian networks and multidi-
mensional histograms scales up to large RDF documents. Besides this, in our work we
define random variables that represent the event that a property may be combined (Join)
with another property; these type of variables are not considered in these approaches.
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7 Experimental Study

The goal of the experimental study was to analyze the benefits of the proposed pre-
dictive model when applied to the problem of query optimization. First, the predic-
tive capacity of the model was studied and then, the quality of the optimal query was
compared to the original query and to the optimal plan identified by a cost model that
assumes independence between properties and uniform distribution of values.

We used the real-world dataset on the US Congress bills voting process for the years
1998, 1999 and 2000 published at http://www.govtrack.us/. Besides the election re-
sults, we also consider census information about representatives such as religion and
gender, and political information such as the party and their state. The number of triples
in the dataset for years 1998, 1998-1999 and 1998-1999-2000 is 50, 860, 94, 590 and
128, 852, respectively.

The query benchmark is comprised of 112 queries with five instantiated patterns.
The properties in the patterns and their ordering are the same for all queries, but the in-
stantiations are different. Previously, we determined that these properties are correlated
and thus, queries with different instantiations will have different selectivity.

We use the Bayesian inference tool, SamIam [1], to build the RBN based on the
graph structure, and the CPT which is represented as a multidimensional histogram.
Currently, the graph structure is built by hand, but this could be done semi-automatically.
The graph in the RBN was built according to the properties represented in the ontol-
ogy. Then, the CPT were developed using multidimensional histograms to aggregate
the node values. The structure of this RBN was illustrated before as Figure 2. Each
CPT for a target node is a multidimensional histogram, where the first dimension cor-
responds to a node itself, and the rest of the dimensions correspond to the predecessors
of the node. The algorithm for multidimensional histogram generation constructs a his-
togram for the first dimension, and then for each bucket, it generates a histogram for
the second dimension, and so on, until all dimensions are completed. These histograms
were generated through the histogram options provided by the Oracle DBMS [8]. The
default histogram option generates equal-width or equal-height histograms according
to the number of different values of an attribute and its distribution.

In order to exploit the DBMS histogram mechanisms, we loaded a relational table
for each property in the ontology. For each target node, we created a relational table
that is a combination of the subject or object of the property that is represented by
the node, with the subjects or objects of all its predecessors. We used methods in the
Oracle package DBMS STATS to generate an histogram on the column that represents
the target node in the “combination” table. Then, for each bucket we created a table and
again used DBMS STATS to generate an histogram on the second dimension, and so
on until all the dimensions had been covered. The histogram was completed with the
computation of the frequency of each value of the target node given the different sets of
values of its predecessors.

Bayesian inference queries are posed to the network through the SamIam tool in
order to estimate the selectivity of each query based on the instantiations of its pat-
terns. We use one of the algorithms implemented by SamIam, the Shenoy-Shafer exact
inference algorithm [2]. Each query was also evaluated and we obtained the number
of results. Thus, we compared the estimate of the selectivity with the actual number
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of answers. The correlation value is 0.95. This result indicates that there exists a lin-
ear relationship between the estimates and the actual values, so we may assert that the
BAY-HIST model is capable of predicting the selectivity of a query plan or sub-plan,
and therefore, we can have a precise estimate of this plan’s evaluation cost.

The purpose of our next experiment was to study the effectiveness of our opti-
mization techniques when used with the BAY-HIST prediction model. Given that the
BAY-HIST model is capable of considering dependencies between properties and its
distribution of values, the quality of the optimal plan identified by the optimizer using
BAY-HIST should be better than the quality of a plan identified by an optimizer that
uses a cost model that does not consider dependencies between properties and non-
uniform distribution of values. We report on runtime performance, which corresponds
to the user time produced by the time command of the Unix operation system.

We used the same dataset and RBN as the previous experiment. We also used the
same query benchmark, but we shuffled the queries, evaluated them and chose the 21
queries that had the worst evaluation time. The experiment was performed using these
21 queries. The Simulated Annealing optimization algorithm was configured with an
initial temperature of 700, and 20 iterations in the initial stage.

We compared the performance of the original query, the optimal plan identified by
the optimizer with the model that assumes property independence and uniform distribu-
tion, and the optimal plan identified by the optimizer with the BAY-HIST model. These
plans were evaluated with and without index structures1.

The average evaluation time is reported in Figure 7. We can observe that the per-
formance of the optimal plans without index structures exceeds the performance of the
original queries by up to one order of magnitude. The improvement with the use of the
index strucures with respect to the original plans is up to two orders of magnitude, but
the improvement is even greater when the optimizer uses the BAY-HIST model. We
also observed that this difference is proportional to the incremental size of the datasets.

These results indicate that the quality of the plan identified by the optimizer and
the BAY-HIST model, is better than the quality of the optimal plan identified by the
optimizer with the traditional prediction model and the benefits are even greater when
index structures are used.

8 Conclusions and Future Work

We present the BAY-HIST Prediction Model, a combination of Bayesian networks and
multidimensional histograms, which is able to estimate correlations between data values
in an RDF document as well as their distribution. We study the benefits of applying
BAY-HIST to the problem of query selectivity estimation as part of cost-based query
optimization; also, we report initial experimental results that suggest that the quality of
the optimal evaluation plans can be improved when selectivity is estimated using the
BAY-HIST Prediction Model.

In the future we plan to use BAY-HIST on the RDF(S) and OWL formalisms; also,
we will study the benefits of this prediction model when it is used to discover links be-

1 Denoted as Bhyper according to the hypergraph RDF model that these index structures imple-
ment [3].
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Fig. 7. Quality of the Optimal Plan

tween data terms. Currently, the optimization algorithm queries the RBN for the selec-
tivity of all the sub-plans in each execution plan. Future work will also include keeping
track of probability queries posed against an RBN in each execution plan, in order to
improve the efficiency of the cost model.
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1 Introduction

The goal of inductive learning classification is to form generalizations from a set
of training examples such that the classification accuracy on previously unob-
served examples is maximized. Given a specific learning algorithm, it is obvi-
ous that its classification accuracy depends on the quality of training data. In
learning from examples, noise is anything which obscures correlations between
attributes and the class [1]. There are many possible solutions to deal with the
existence of noise. Data cleaning or detection and elimination of noisy examples
constitutes the first approach. Due to the risk of data cleaning, when noisy ex-
amples are retained while good examples are removed, efforts have been taken
to construct noise tolerant classifiers. Although both these approaches seem very
different, they try to somehow ’clean’ this noisy training data.

In this paper, we propose an approach to ’admit and utilize’ noisy data
by enabling to model different levels of knowledge granularity both in training
and testing examples. The proposed knowledge representation use hierarchies
of sets of attribute values, derived from subsumption hierarchies of concepts
from an ontology represented in description logic. The main contributions of the
paper are: (i) we propose a novel extension of the näıve Bayesian classifier by
hierarchical, ontology based attributes (ontological attributes), (ii) we propose
an inference scheme that handles ontological attributes.

2 Description-noise and Levels of Knowledge Granularity

There are three major sources of noise: (i) insufficiency of the description for
attributes or the class (or both), (ii) corruption of attribute values in the train-
ing examples, (iii) erroneous classification of training examples [1]. The second
and third source of noise can lead to so-called attribute-noise and class-noise re-
spectively. Attribute-noise is represented by: (i) erroneous attribute values, (ii)
missing or ”don’t care” attribute values, (iii) incomplete attributes or ”don’t
care” values. The class-noise is represented by: (i) contradictory examples, or
(ii) misclassification [2]. However, the first major source of noise, although not
easily quantifiable, is important. This insufficiency of the description can lead to
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both erroneous attribute values and erroneous classification. Let us call this re-
sulting noise as description-noise. Following for example [3] the main reason for
description-noise may be in a language used to represent attribute values, which
is not expressive enough to model different levels of knowledge granularity. In
such a case, erroneous or missing attribute values may be introduced by users of
a system that are required to provide very specific values, but the level of their
knowledge of the domain is too general to precisely describe the observation by
the appropriate value of an attribute. Even if the person is an expert of the
domain, erroneous or missing attribute values can be observed as a consequence
of lack of time, or other resources to make detailed observations (ie. a more com-
plete description). However, if the language enabled modeling different levels of
knowledge granularity (very precise or more general descriptions), we would be
able to decrease a level of this description-noise.

In order to model different levels of knowledge granularity, each testing and
training example would be described by a set of values for any attribute. These
sets of values should reflect the domain knowledge and could not be constructed
arbitrarily. Let us notice, that in some domains, hierarchical or taxonomical
relationships between sets of values, represented by so called concepts, may be
observed and this knowledge could be explored. Such knowledge is currently
often available in the form of ontologies. The most widely used language to
represent ontologies, suitable in particular to model taxonomical knowledge, is
Web Ontology Language (OWL) 1. The theoretical counterpart of OWL, from
which its semantics is drawn, is constituted by a family of languages called
description logics (DLs) [4]. A description logic knowledge base, KB, is typically
divided into intensional part (terminological one, a TBox ), and extensional part
(assertional one, an ABox ).

3 An Ontological Attribute

Given is an attribute A and the set V = {V1, V2, ..., Vn}, where n > 1, of nomi-
nal values of this attribute. Let us assume that given is a TBox, which specifies
domain knowledge relevant to a given classification task. In particular, it ex-
presses a multilevel subsumption (”is-a”) hierarchy of concepts. Each concept is
described by a subset of the set V for every attribute A. Then we can formulate
a definition of an ontological attribute as follows.

Ontological attribute An ontological attribute A is defined by a tuple 〈H, V 〉,
where:

– by H is denoted a multilevel subsumption hierarchy of concepts, derived
from a DL knowledge base. This hierarchy of concepts consists of the set of
nodes NH = {root,NC , NT }. This hierarchy defines a root-node, denoted by
root, a set NC of complex-nodes and a set NT of terminal-nodes.

1 www.w3.org/TR/owl-features/
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– by V is denoted a finite set V = {V1, V2, ..., Vn}, where n > 1 of nominal
values of A.

– each node Nk ∈ NT ∪NC represents a subset of the set V , denoted as
val(Nk); the root-node represents the set V

To model actual training examples, an ABox would be used.

3.1 Using Ontological Attributes in the Näıve Bayesian Classifier

In order to apply the proposed ontological attributes in the näıve Bayesian clas-
sifier, we further specify the general definition of an ontological attribute given
in the former section. Please note, that by making the assumptions presented
in the following paragraphs, we will implicitly switch from the usual open world
assumption used to reason with a DL knowledge base to produce a concept hier-
archy, to the closed world assumption, more appropriate to the case of inference
with näıve Bayesian classifier. In particular we will assume that a hierarchy of
concepts would represent such hierarchical partitioning of the set V of attribute
values, such that each concept would correspond to a non-empty subset of V .

Properties of nodes Each complex-node represents a concept from the KB, de-
scribed by a proper, non-empty subset of V . Each terminal-node represents a
concept from the KB, described by a unique value Vi from the set V .

Relations between nodes For a given ontological attribute A, the hierarchy H is a
tree, i.e. each node Nk ∈ {NC ∪NT } has exactly one parent, denoted as pa(Nk),
such that val(Nk) ⊂ val(pa(Nk)). Moreover, each node Nk ∈ {root ∪NC} spec-
ifies a set ch(Nk) of his children. To model different levels of knowledge gran-
ularity, we assume that for each Nk ∈ {root ∪NC} all his children are pair-
wise disjoint and this node Nk is a union of his children. Finally, for each node
Nk ∈ {root ∪NC} we define a set de(Nk) of descendants of this node, as a set
of its children or children of his descendants.

The role of complex-nodes In the setting of learning with description-noise, each
training and testing example can be described in general by a set Zl of values for
each attribute A, where Zl ⊆ V . We can divide training examples into no-noisy
examples (|Zl| = 1) and noisy examples (|Zl| > 1). In order to represent noisy
(training and testing) examples, the ontological attribute A uses complex-nodes.
We will call such a hierarchy a complex-hierarchy.

Algorithm 1 (Populating a complex-hierarchy). For each ontological attribute A
we proceed as follows:
We associate each training example t described by a set Zl of values of A and
a class label Cj (t : A = Zl ∧ C = Cj) to a node Nk. When |Zl| = 1, Zl

is associated to a terminal-node Nk, such that Zl = val(Nk). Otherwise, we
associate the training example to a complex-node Nk, such that Zl ⊆ val(Nk),
at the lowest possible level of the complex-hierarchy.
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Root : V

N1 : {V1} N2 : {V2} N6 : Z1 = {V3, V4, V5}

N3 : {V3} N7 : Z2 = {V4, V5}

N4 : {V4} N5 : {V5}

Fig. 1: A complex-hierarchy in setting with description-noise

Example Given is an attribute A such that V={V1,V2,V3,V4,V5} and given is
a class variable C such that it takes values from the set {C1, C2}. Let us
assume, that the description-noise is modeled by sets Z1 = {V3, V4, V5} and
Z2 = {V4, V5}. Let us assume a sample scenario in which the single values of the
attribute A are determined by conducting three medical tests. The first test is
able to partition the set V into the following disjoint subsets: {V1}, {V2} and
Z1 = {V3, V4, V5}. If the result of the first test is Z1, then in some cases it is
conducted a second test, that partitions the set Z1 into the following disjoint
subsets: {V3} and Z2 = {V4, V5}. Only in critical cases it is conducted the last
test, that can partition the set Z2 into disjoint subsets: {V4} and {V5}. Fol-
lowing this domain-knowledge, we have introduced two complex-nodes N6 and
N7, such that they represent the sets Z1 and Z2 respectively. Terminal-nodes
N1, N2, N3, N4, N5 represent single values from the set V . The root-node rep-
resents the set V . The resulting complex-hierarchy is presented in Figure 1.

3.2 Inference with Ontological Attributes

We can approximate the required probability distribution for a noisy testing
example described by a set Zl = val(Nk), following principles of the probabilistic
theory, by collecting frequencies of training examples T , described by sets Zm ⊆
Zl, as follows:

P (Zl|Cj) =

∑
Zm⊆Zl

|T : A = Zm ∧ C = Cj |
|T : C = Cj |

(1)

Let us remind, that a set Zl is assigned to the node Nk, such that Zl =
val(Nk). The key property of an ontological attribute A, is that for the node Nk

all its children are pairwise disjoint. Since then, all training examples described
by sets Zm ⊆ Zl, are represented by the node Nk or its descendants, and the
probability distribution for a noisy testing example described by a set Zl we can
define as follows:

P (Zl|Cj) =
|T : A ⊆ val(Nk) ∧ C = Cj |+

∑
Nd∈de(Nk)

|T : A ⊆ val(Nd) ∧ C = Cj |
|T : C = Cj |

(2)
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In this way we are able to classify a new noisy example using other less
noisy and no-noisy training examples. For example, we can classify a testing
example, described by the set Z1, and associated to the nodeN6 using all training
examples described by all subsets of the set Z1. These training examples would
be associated to the complex-node N6 or his descendants.

4 Conclusions

The topic of learning with ontologies is relatively new, and so far there are few
approaches in this line of research, for the classification task see for example [5].
The simple use of ontology (Attribute Value Taxonomies) in the näıve Bayesian
classifier (AVT-NBL) is presented in [6]. This approach, to the best of our knowl-
edge, is the only one existing approach for learning the näıve Bayesian classifier
from noisy (partially specified) data. Both in our approach and in AVT-NBL,
noisy (partially specified) data is represented using hierarchical structures and
similar aggregation procedures are used. Let us notice, that AVT-NBL requires a
static, predefined, taxonomy of attribute values. In our approach, the hierarchy
of sets of attribute values can be constructed dynamically driven by observa-
tions and hypotheses to prove. Moreover, our aggregation procedure allows to
construct the complex-hierarchy from all possible subsets of attribute values.
In this way we would be able to model any noisy training and testing example
in order to achieve the highest classification accuracy, that is not possible us-
ing an Attribute Value Taxonomy. Due to limitations of the presentation, this
generalization is not discussed in the paper. Let us point out, that AVT-NBL
uses a propagation procedure, that does not follow principles of the probabilistic
theory. Moreover, to the best of our knowldge, AVT-NBL does not classify noisy
instances, which is the main goal of our approach.

In the future, we will concentrate on the problem of the optimality of the
complex-hierarchy, derived from a knowledge domain of the form of subsumption
hierarchies of concepts.
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Abstract. There exists a wide gap between the information that people and 
computers respectively can operate with online. Because most of the web is in 
plain text and the Semantic Web requires structured information (RDF), 
bridging the two worlds is an important current research topic. Here we propose 
a web service that uses a Random Indexing (RI) semantic space trained on the 
plain text of the one million most central Wikipedia concepts. The space 
provides us with vectors for each of the equivalent DBpedia concepts and 
vectors for any text or webpage. It can also provide a hashed version of the RI 
vector that works as unique handler like URIs do, but with the additional 
advantage that it represents text meaning. As a result, any page (previously 
readable only for humans) is now integrated with the Semantic Web graph 
using links to one of its most central parts, DBpedia.

Keywords: text mining, statistical semantics, structured information, 
identifiers, resources, literals, RDF

1 Introduction

Most of the existing knowledge on the Web is in plain, unstructured text1. That is, 
most web pages contain data expressed in a way that is easily understandable for 
humans but hard to interpret for machines. The Semantic Web promises large 
interoperability gains, but it all depends on how well we can integrate two separate 
worlds. On the one hand we have rich structured datasets following linked data 
principles [1] with the ultimate goal of being able to use the Web like a single global 

                                                          
1 Governments, enterprises and almost any dynamic website all have large bodies of knowledge 

already in structured form (relational databases) but not following linked data principles. 
Converting it into RDF is an interesting problem, but not directly related to the problem we 
discuss here (how to find the closest DBpedia concepts to any text passage) so we will not 
elaborate further. 
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database. But while the Semantic Web graph is growing at a very healthy rate2, it is 
still a marginal part of the entire Web. On the other hand we have the flat, messy (but 
abundant) plain text Web pages. Traditional information retrieval and machine 
learning techniques that work on plain text have been making steady progress for 
some time now. Some of these techniques use structured data too [2].

The problem we aim to solve in this paper is simply converting literals into 
resources. This problem is trivial if the only requirement is a unique ID (a random one 
would suffice). But giving unique IDs is not a solution; to integrate the new resource 
we need to generate outwards links to the rest of the Semantic Web graph. That is, we 
enhance the meaning of the new node by generating new connections. We achieve 
this thanks to statistical semantics on a corpus that has parallel representations of both 
worlds: Wikipedia/DBpedia [3]. Random indexing (RI) [4] offers a highly scalable 
way of assigning semantic vectors to Wikipedia concepts. We then compress the 
vectors using MD5 hashing and use these hashes as meaningful identifiers that 
become part of the RDF graph.

For clarity, we will refer to the Semantic Web and linked data initiative as the data 
Web. The human Web is simply the current Web made of pages and unnamed links.

1.1 An overview of URIs, Resources and literals

We build on three basic notions: URI, resources, and literals. In summary, URIs 
are unique identifiers, and resources differ from literals in that they have URIs and 
can link to other nodes in the graph. We will describe these three concepts next.

1.1.1 Uniform Resource Identifier (URI)

A Uniform Resource Identifier (URI), according to the specification [5], is a 
compact sequence of characters that identifies an abstract or physical resource. Valid 
URIs take the following form: 

Scheme ":" ["//" authority "/"] [path] [ "?" query ] [ "#" fragment]
Uniform Resource Locators (URLs) are a subclass of URI, subject to the same 

grammar. The main difference is that a URL must point to specific information, 
usually a file that can be displayed on a browser or downloaded, whereas URIs do not 
need to3. People who have been on the internet for years now are completely used to 
this grammar. Note that none of the parts are particularly informative to describe the 
resource they point to. Authority is perhaps informative because it could carry the 
name of the entity (company, person, association, etc) that hosts the page. In recent 
years RESTful services [6] make Paths describe the actions they perform (e.g. read, 
delete, etc). The title of the page can also be part of Path, and some popular software 
such as WordPress implements this policy by default. However, these are all usage 

                                                          
2 New datasets are added constantly to the W3C site ‘Linking Open Data’ 

http://esw.w3.org/TaskForces/CommunityProjects/LinkingOpenData/DataSets and the 
existing ones keep growing.

3 But it is a good practice to make URIs point at some description of what they are.
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conventions, but not enforced by the URI design. There is nothing in the scheme that 
says URIs should be meaningful for humans or machines4. 

The main role of a URI (and only requirement) is to provide a unique identifier for 
a resource. In this paper we will propose that it is desirable to make identifiers 
meaningful for machines, in a way that uses human similarity judgments.

1.1.2 Resource  

The first explicit definition of resource is found in RFC 2396 [7] and states that A 
resource can be anything that has identity. Familiar examples include an electronic 
document, an image, a service (e.g., "today's weather report for Los Angeles"), and a 
collection of other resources. Not all resources are network "retrievable"; e.g., 
human beings, corporations, and bound books in a library can also be considered 
resources.

The concept of resource is primitive in the Web architecture, and is used in the 
definition of its fundamental elements. The term was first introduced to refer to 
targets of URLs, but its definition has been further extended to include the referent of 
any Uniform Resource Identifier in RFC 3986 [5]. That is, the concept started in the 
human Web, and grew to be used in the data Web. A resource is simply anything that 
can be identified with a URI. Note that the concept of URI contains the URL as a 
special case. 

Resources can have properties. For example, the resource ‘FidoTheDog’ may have
the Name property ‘Fido’. That is, resources can link to other resources and to literals. 

1.1.3 Literals

Literals are values that do not have a unique identifier. They are usually a string 
that contains some human-readable text, for example names, dates and other types of 
values about a subject. In the previous example, the string ‘Fido’ is a literal. They 
optionally have a language (e.g., English, Japanese) or a type (e.g., integer, Boolean, 
string), but this is about all that can be said about literals. They cannot have properties 
like resources. Unlike resources, literals cannot link to the rest of the graph. They are 
second-class citizens on the Semantic Web. In terms of graphs, literals are one-way 
streets: since they cannot be the subject of a triple, there can be no outgoing links to 
other nodes. 

                                                          
4 In practice, URLs do have some meaning for humans, but mostly due to cues acquired 

after years of using them. Short, meaningful names are better, and of course more expensive, so 
they hint that the owner must have made a serious investment and thus be committed to the 
content.
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1.2 Why turning literals into resources is useful

Consider that human Web nodes (pages) are literals once they merge with the data 
Web. The number of literals in the joint graph will be enormous, considering that the 
human Web is several orders of magnitude larger than the current data Web. But the 
number of new nodes is not necessarily just the number of webpages: a selection of 
text, say a paragraph, can also become a literal.

We offer a method to transform literals into resources. This solution we propose 
here is one of many possible: for example, there are efficient tools, such as 
openCalais, that link entities to semantic Web concepts using named-entity 
recognition.  The key difference is that named-entity recognition links individual 
words to existing resources, where as we create a URI for larger chunks of text, such 
as a sentence, a paragraph or entire webpage. Like openCalais, we link the resulting 
URI’s to DBpedia [3], one of the most central datasets in the Semantic Web.

In the next subsections, we show advantages to turning literals into resources from 
a graph machine learning point of view.

1.2.1 Increased integration of the human and data Webs

The current state is that even though the two Webs are essentially separated, there 
is some integration in at least two fronts. First, semantic Web URIs resolve into 
something a human with a browser can see (e.g., plain text description of an object). 
This is a good practice, but not enforced. Second, recently more and more parts of the 
human Web carry snippets of structured information (RDFa). Only recently have 
webmasters started using RDFa. Search engines such as Yahoo and Google are 
indexing RDFa too.

Integration is challenging because the two webs are structurally very different. The 
semantic Web is a directed labeled graph, whereas the ‘human’ Web is a directed 
unlabeled graph5. To merge them, we would need to produce labels for unlabeled 
links. But this is a problem because links in the human Web, by design, do not have 
labels. We could use a homogeneous label name (something like ‘links-to’) but then 
‘links-to’ would become the most frequent label, eclipsing every other one and 
making the resulting graph harder to do reasoning with. An example of this generalist 
label is the ‘wikilink’ predicate in DBpedia. Wikilinks are the simplest links from one 
Wikipedia article to another. They are parsed from Wikipedia articles bodies for 
DBpedia as simple “source page” and “destination page” pairs. Compared to the other 
kinds of RDF triples in DBpedia, they are the most general, in the sense that they 
cover the most kind of relations, yet are the least precise, because they don’t have a 
relation property, only using a generic “wikilink” relation type. There are 70 millions 
Wikilink triples, compared to 30 million Infobox dataset triples or only 7 millions 
Wikipedia Categories dataset triples. In such a large proportion, unnamed links would 

                                                          
5 Directed labeled graphs are a lot harder to work with than unlabeled graphs, and the
algorithms that work on directed labeled graphs are but a portion of all graph algorithms.
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overpower the named ones for some tasks (e. g. [8]) and their addition would be 
detrimental.

1.2.2 Dangling nodes

One important feature of RDF is that a literal may be the object of an RDF 
statement, but not the subject or the predicate. Because a resource offers richer 
possibilities to Semantic Web practitioners compared to a literal, the joint graph 
would be better served having as many resource nodes as possible. From the point of 
view of graph theory, literals are ‘one-way street’ nodes that can be problematic. A 
node that receives connections but never links outwards is called a ‘dangling node’. 
So literals are dangling nodes. Operating on a graph with a high proportion of 
dangling nodes makes some useful algorithms slower (e.g., finding shortest paths), 
and some other harder to use or impractical. For example, straight pagerank has 
problems with dangling nodes, even though in practice they can be solved [9], but 
other algorithms such as singular value decomposition require a matrix with no all-
zero rows (a dangling node produces an all-zero row). 

One alternative is to remove dangling nodes. Some studies that look for shortest 
paths remove literals because dangling nodes would add one-way-streets and search 
would take longer [10]. But this has unintended secondary effects. Removing the 
dangling nodes somewhat skews the results on the non-dangling nodes since the 
outdegrees from the non-dangling nodes are adjusted to reflect the lack of links to 
dangling nodes.

The Semantic Web graph has a large proportion of dangling nodes. According to 
data reported in the landing page of the Linked-Data Semantic Repository (LDSR, 
[11] including DBpedia, Freebase, Geonames, UMBEL, Wordnet, CIA World 
Factbook, Lingvoj, MusicBrainz and others), 39% of the nodes are literals (see table 
1). This is the proportion of literals over the total number of entities. LDSR is not the 
Semantic Web’s entire graph, but we would expect to find a similar distribution of 
URIs vs. literals if we could access equivalent statistics for every subcomponent. 

Table 1. Statistics from the linked-data semantic repository (LDSR, [11], retrieved 3-4-2010) 

Number of URI: 126,875,974
Number of Literals: 227,758,535
Total number of entities: 354,635,159

Reducing the proportion of literals compared to resources on the Semantic Web 
graph may open the door to better machine learning algorithms. We will explore this 
idea in the next section.
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2 How to create Identifiers that are not only unique, but 
meaningful 

Here we use statistical semantics to create meaningful identifiers for literals. We 
term these meaningful unique identifier (MUID, pronounced “mood”). We propose 
that algorithm for generating MUID’s should have the following properties:
1. A MUID should have some (primitive) form of compositionality.  If we generate a 

MUID for part of a page, the part’s MUID should be similar to that of the full 
page.  

2. If two pages get similar MUIDs, they should be perceived as similar by human 
observers.

3. Changes that are perceived as incremental by people (e.g., a blog post getting 
comments), should result in incremental changes to the corresponding MUID’s 
corresponding to before and after the changes. 

To understand how our proposal implements these requirements, we next describe
statistical semantics, focusing on Random Indexing (RI) [15].

2.1 Statistical semantics

Statistical semantics is a general category of machine learning algorithms that 
exploits statistical patterns of human word usage to figure out word meaning. These 
algorithms come from cognitive science and information retrieval. A typical task for 
statistical semantics is to measure the semantic similarity of two passages. The answer 
is given as a number, usually the cosine between the vectors that represent the 
passages in some high dimensional space. The vector for a passage is usually the 
average of the vectors for all the words in it. The vectors for each passage, when 
averaged together, form the document vector. This implements compositionality 
(property 1 above) and addresses incremental changes (property 3), because 
recomputing a vector when the text is only slightly different will produce only a 
slightly different vector.  

Most statistical semantics methods start with a frequency matrix of word by 
documents [12], and many apply different transformations to these matrix (example, 
truncated singular value decomposition). The vector space model [12] was the first of 
these methods. It improves over Boolean information retrieval (IR) in that it allows 
computing a continuous degree of similarity between queries and documents, and this 
makes ranking possible. It also moved IR from set theory to linear algebra, which 
facilitated the explosion of newer models. These newer models such as LSA and 
random indexing extend the approach by adding generalization, that is, these models 
are able to tell when two words are synonyms. Table 2 shows an example. For an 
exact matching algorithm based on a Boolean vector space, the similarity between 
pairs of words is all-or-nothing. In contrast, newer models such as LSA and RI 
capture the similarity of doctor to physician and surgeon.
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Table 2. Generalization. How LSA solves synonymy. Cosine values from lsa.colorado.edu

Boolean/vector space LSA
doctor – doctor 1 1

doctor – physician 0 .8
doctor – surgeon 0 .7

Statistical semantic models are trained on a large corpus of text that is 
representative of the domain of interest. Once this space has been created, it can be 
used to compare not only passages from the training corpus, but novel passages as 
well. For general knowledge, the corpus used to be an encyclopedia or a sample of 
textbooks representative of what a college student would have read [13]. A corpus 
composed of  traditional encyclopedias or textbooks have significant limitations. First 
many recently-coined terms common on the web, such as iPad, are not in those 
datasets. And second, there’s no direct mapping between these corpora and resources 
in the semantic web. These limitations lead us to use Wikipedia as a training corpus.
In the combination of Wikipedia and DBpedia we have exactly what we need, a 
parallel corpus that exists in both the human and data Webs. 

Starting with the full text of a recent (March 2008) Wikipedia dump, we selected 
the most central concepts by dropping those with fewer than five in links or fewer 
than five out links.  We applied other basic preprocessing steps described in [14]. The 
initial parsing produced close to a million types; as expected from natural, unedited 
text, most of these were typos. We then dropped types that occurred less than 10 
times, and those that appeared in less than 10 documents. Approximately half of the 
types went away. After parsing the Wikipedia XML dump, we obtained 2.7 Gb of text 
in 1,279,989 articles.

3 Random indexing

Our application of Random Indexing [4] starts with the same words by documents
matrix described above, taking a document to be a Wikipedia article. Then each word 
and each context is first assigned a random high-dimensional sparse vector: they are 
seeded with a small proportion of ones and negative ones with all other elements set 
to zero. 

Once the sparse binary index vectors are constructed, a word’s vector becomes the 
sum of the vectors for the contexts in which it appears throughout the text corpus. 
Conversely, a document space can also be constructed as the sum of the index vectors 
for words appearing in each document. Random Indexing depends on the term-
document matrix computed from a corpus being sufficiently sparse that vector 
representations can be projected onto a basis comprising a smaller number of 
randomly allocated vectors. Due to the sparseness condition, the basis of random 
vectors has, in general, a high probability of being orthonormal. That is, every random 
vector will be orthogonal to any other random vector. The most exhaustive 
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description of RI is [15]. The main advantage of RI compared to LSA [16]  is its 
scalability. The SVD is a computationally expensive operation. It needs to place large 
matrices in memory, and it may take days to compute for a dataset the size of LDSR, 
if at all possible. RI does not have large memory requirements and the linear algebra 
operations are simpler and faster. 

We used the semantic vectors library [17]. This library has been proved to scale well: 
Cohen et al. [18] use it in an experiment with 15M documents from MedLine.

We manipulated the following parameters (see first two rows in table 3): (1) Number 
of dimensions. This is simply the size of the random vector that represents a word. It 
has the largest influence on how long it takes to compile a space, and how much 
storage it needs. Surprisingly, there is little published on how to select the optimal 
dimensionality. We manipulated dimensions from 800 to 1200. (2) Nonzero seed 
values. This parameter is not commonly reported in the literature. However, we found 
that it does change results, so we manipulate it here systematically. 

Our assumption is that the parameters that work best on traditional psychological 
tasks will also work well for our current task of getting the most meaningful 
neighbors on a Wikipedia space. In the next section we try to obtain the best 
parameters for our web service using four well-known human similarity datasets.

3.1 Results

We used the following datasets for word pair similarity judgments: Rubenstein and 
Goodenough (1965) [19], Miller and Charles (1991) [20], Resnik [21] (1995; this is a 
replication of Miller and Charles) and Finkelstein et al. (2002) [22]. An example of 
the materials on these tasks would be ‘How similar are gem and jewel?’ Participants 
produce ratings going from zero (not related at all) to four (perfect synonymy).

Table 3 shows how models, based on different parameterizations of RI, correlate 
with the human judgments in these four datasets for word-word comparisons.

Since average human agreement in tasks like these is around .6, our results are 
acceptable, even though they are below some other published results [23]. For the 
web service, we kept the space with 1000 dimensions and 700 seed values, which 
seems to do well across datasets.

4 The Web service

The interface to the Web service is described using WSDL [24]. The Web service 
takes either a URL or plain text. When taking a URL, it parses the page and extracts 
the plain text. The text is then transformed into a RI vector by retrieving vectors for 
all its terms and averaging these together. What we provide here is a prototype that 

54



Random indexing spaces for bridging the Human and Data Webs 9

takes about 2 min to process a request. Fortunately, the algorithm is parallelizable. An 
interface for testing can be reached at: http://mpi-ldsr.ontotext.com/webservice6.

Table 3. RI correlation to the human gold standard in four datasets for word-word 
comparisons. The average human agreement is around .6. Best results are bold.

dims seed Miller Resnik Rubenstein wordsim
800 500 0.39 0.46 0.42 0.35

600 0.61 0.54 0.52 0.4
700 0.57 0.56 0.48 0.35
750 0.37 0.44 0.39 0.34

1000 300 0.5 0.46 0.42 0.4
700 0.55 0.6 0.5 0.39
800 0.42 0.47 0.46 0.36
900 0.48 0.5 0.42 0.37
950 0.6 0.55 0.53 0.37
980 0.49 0.43 0.4 0.36

1200 500 0.53 0.55 0.53 0.38
900 0.5 0.56 0.47 0.36
1000 0.47 0.51 0.46 0.36
1050 0.34 0.5 0.41 0.37
1100 0.42 0.45 0.38 0.37

1800 1500 0.43 0.43 0.5 0.37
2000 1900 0.57

The web service returns both a list of nearest neighbors in the space and a unique, 
meaningful ID (MUID). Table 4 shows an example of the concepts that the Web 
service produces for an interview with Shane Simonsen8, a UK computer science 
professor who abandoned the University system. The ten closest neighbors are related 
to education in different parts of the world, which reflects the gist of the text.

What follows is the N3-formatted RDF that this text would return for the first item 
in the example. The kind of links we generate are essentially unlabeled (as discussed 
in the introduction), but right now we use skos:related to express the fact that 
the input text is related to the DBpedia concept listed. 

@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix mpib <http://mpi-ldsr.ontotext.com/mpib#'> .
@prefix skos: <http://www.w3.org/2004/02/skos/core#> .
@prefix DBpedia: <http://en.wikipedia.org/wiki#> .
mpib:39f2ea57cf982d7eedccf28f92ebf13f skos:related 

dbpebia:Education_in_the_People's_Republic_of_China> .

                                                          
6 Alternatively http://93.123.21.85:8087/ri-webservice/
8 http://www.lambdassociates.org/blog/interview.htm
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Since 1000-dimensional vectors are too long to be used as metadata, we return a
hashed version of the vector compacted with the hashing function MD5 digest. 

Table 4.  A sample paragraph from submitted text (left) and top 10 DBpedia concepts that the 
web service produced.

Your article "Why I am not a Professor", outlining 

your departure from academia in 1999 over declining 

standards and conditions, was written in 2007. Can 

you shed light on any further changes of the state of 

the tertiary education system since then?

There is a recognition at government level that the 

standards have dropped at university and that degree 

inflation is rife.   The UK government has abandoned 

its target of 50% of the population in higher education.   

The public sector deficit has caused the university 

budget to be cut by £500 million in 2010 and we shall 

see further cuts.  However all the mechanisms of 

assessment discussed in that essay are still in place.   

Education in the People's 
Republic of China

Education in the United States

Community college

Tertiary education in Australia

Education in South Korea

Business-education partnerships

Unemployment

Secondary education in Japan

Education in Thailand

Education in England

5 Discussion and conclusions

We have presented a method, reachable as a web service, to attach meaning to a
resource that locates it in a semantic space. Using statistical semantics we integrate
any plain text literal (a paragraph or an entire page) with DBpedia, one of the central 
components of the Semantic Web. When literals are passed to our web service they 
receive a Random Indexing vector and a list of links to the 10 closest DBpedia
concepts. This Random indexing vector is taken as a meaningful, unique ID (MUID) 
that can be used to refer to this newly-created resource. These MUIDs serve not only 
as unique identifiers, but as well add functionality. In the same way that in the 
physical world coordinates enabled location-aware applications, the semantic 
annotation of literals enables new functionality, such as defining the similarity of 
pairs of objects, and finding the most similar resources. But there is a critical 
difference between semantic and physical spaces. Whereas the physical world has 3 
dimensions, the semantic world, as we have proposed here, may have thousands.
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Abstract. Background (or sometimes referred to as domain) knowl-
edge is extensively used in data mining for data pre-processing and for
nugget-oriented data mining tasks: it is essential for constraining the
search space and pruning the results. Despite the costs of eliciting back-
ground knowledge from domain experts, there has been so far little effort
to devise a common exchange standard for its representation. This pa-
per proposes the Background Knowledge Exchange Format (BKEF), a
lightweight XML Schema for storing information on features and pat-
terns, and the Background Knowledge Ontology (BKOn), as its seman-
tic abstraction. The purpose of BKOn is to allow reasoning over and
integration of analysed data with existing domain ontologies. We show
an elicitation interface producing BKEF and discuss the possibilities for
integration of such background knowledge with domain ontologies.

1 Introduction

Elicitation of knowledge from experts has long been known as a crucial research
topic in the field of expert systems, and its importance is now starting to rise
in data mining applications, too. Background (or sometimes referred to as do-
main) knowledge is extensively used in preprocessing of data for most mining
algorithms. It has special importance in association rule mining, where it is used
to separate the nuggets from rules conveying uninteresting information.

Despite the potential of expert-provided background knowledge for improv-
ing the quality of data mining results, there has been so far little research effort
onselecting pieces of information that should be collected and little standard-
ization efforts on devising a common format for representation of background
knowledge. This paper presents one of the first attempts to address these prob-
lems by introducing the Background Knowledge Exchange Format (BKEF) XML
Schema. Simultaneously, to allow reasoning and integration of analysed data with
existing domain ontologies, we propose a semantic abstraction over BKEF – the
Background Knowledge Ontology (BKOn).

This paper is organized as follows. Section 2 gives an account of the proposed
design objectives of a background knowledge specification. Section 3 introduces
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its elementary building blocks and section 4 gives account of specificalities for as-
sociation rules. The proposed BK specification consisting of BKEF XML Schema
and the BKOn ontology is described in Sections 5 and 6 respectively. The new
possibilities that BKEF and BKOn open in the areas of automating data min-
ing tasks and result postprocessing are sketched in Section 7. The conclusion
presents an outlook for future work.

2 Design Objectives

The work presented here reacts to the pressing need for an industry standard
that would provide a common way of conveying pieces of background knowledge
that express expertise related to features and patterns relevant to datasets in a
given domain. Hence, although in the common case the knowledge acquistion is
driven by the need for knowledge pertaining to a specific mining task and specific
dataset, the standard should impose such principles that would foster reuse of
the knowledge in a different task-dataset scenario. While the work presented
here has experimental character, it follows some of the design guidelines that,
we believe, should be addressed by any serious attempt on an industry standard
specification.

We will use the term background knowledge producer to denote a computer
program, such as a specialized elicitation interface, used by the domain expert
to input his/her background knowledge related to the data mining task.

The background knowledge consumer, in turn, denotes a computer program
that uses background knowledge (BK). We consider the following types of BK
consumers: data preprocessing algorithms, data mining algorithms, postprocess-
ing algorithms and semantic knowledge bases.

2.1 One size does not fit all

The standard should be constituted by an XML Schema and an ontology to
accommodate for the different needs of background knowledge producers and
consumers.

It may seem natural that the language in which the specification is defined
is selected so that its expressivity is at least such as required by the most de-
manding consumer type, which is the semantic knowledge base. The semantic
knowledge base [11] interlinks mining models, background knowledge and do-
main ontologies, and as such it would take advantage of background knowledge
comming directly in a semantic format such as RDF/OWL [2] or the Topic
Maps’ XTM [7]. However, there are reasons for not using a semantic format as
the primary standard used by data mining and knowledge elicitation software.
The main ones include:

– poor readability due to structural complexity
– verbosity
– the need for specialized, not widely available APIs
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Therefore, we propose using an XML Schema as an interchange format be-
tween background knowledge consumers and background knowledge producers.
To foster the interoperability on the semantic level, the specification should also
define a semantic version of the XML Schema (an ontology) and a transforma-
tion between the schema and the ontology. This transformation is to be executed
on the side of the BK consumer.

2.2 Background Knowledge Consumer Requirements

The primary goal of the specification is to provide pieces of information that can
be automatically processed by background knowledge consumers and doing so
can enhance their functioning.

# Consumer Type Information Utilization

1 Data Preprocessing Similar value grouping Decreasing the granularity
2 Data Mining Search space constraints Localizing the search
3 Postprocessing Known patterns Pruning
4 Semantic KBs Annotations Search

Table 1. Frequent use cases for background knowledge

An overview of requirements on the specification posed by the individual
consumers is given in Table 1. This table was constructed based on the analysis
of requirements of the LISp-Miner mining suite1 and the SEWEBAR framework2

as Semantic KB for association rules, but the authors conjecture that the table
should be, with some changes, applicable to other mining tasks and algorithms.

Requirements on storing the types of information of types 1–3 require in-
herently no semantics and can be met by the XML Schema specification. Since
indisputably one of the consumers of background knowledge is the human data
analyst, the specification should also provide the domain expert with the possi-
bility to complement the machine-readable values with a free-text annotation.

The requirements of the Semantic KB consumer type are addressed in sub-
section 2.3. While closely linked to background knowledge and essential for the
Semantic KB, machine-readable annotations fall out of the scope of the back-
ground knowledge specification.

2.3 Integration with Other Specifications

The background knowledge specification discussed here has strong links with
PMML, the widely adopted standard for data mining model interchange 3. The

1 http://lispminer.vse.cz
2 http://sewebar.vse.cz/
3 http://dmg.org
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proposed specification plays the same role for background knowledge as PMML
does for mining models. For background knowledge consumers to be able to
apply this knowledge together with knowledge gained from PMML, the need for
alignment with PMML arises.

While one of the key design objectives is independence of the BK specification
of a specific dataset/task scenario, the bond between the BK specification and a
concrete dataset or mining model should be established in a separate mapping
specification. Further, we briefly introduce an attempt for such a specification
dubbed FML (Field Mapping Language).

PMML is backed by an XML Schema, which eases the design of the mapping.
A more complex problem arises with the requirements imposed by the Seman-
tic KB consumer type. The purpose of Semantic KBs is to perform reasoning,
integration and search over the data. From this arises the necessity to annotate
the entities that emerged during the background knowledge elicitation process
(such as features, values and patterns) with an association to relevant concepts
in other ontologies or with unstructured sources. Since this annotation informa-
tion transcedes the scope of a single dataset, we suggest to support it with a
standalone specification (an XML Schema or an ontology) so that it is not a
direct part of BKEF, but is only linked with it. Since the only BKEF consumer
in our framework that has direct use for this kind of information is the Semantic
KB, a semantic format such as RDF/OWL could be more convenient for storing
the annotations than XML Schema. Additionaly, this annotation can aid the
process of automatic mapping of BKEF onto a specific dataset resulting into an
FML specification.

3 Basic Concepts

3.1 Metaattribute

The basic building block of a background knowledge specification is a metaat-
tribute [14], which is an abstraction representing the underlying property of a
data-field. There is a hierarchical structure between metaattributes. The metaat-
tribute on the finest granularity level is referred to as atomic metaattribute. Other
attributes are called group metaattributes.

Since a property can be sometimes measured in different ways, most com-
monly using different units, each metaattribute has multiple formats. Actually,
most pieces of information relating to a metaattribute are format-dependent.
Specifically, a format can contain:

– a value range,
– standard value binning(s),
– a collation.

Since the specification is intended to be used in conjunction with a dataset,
where a datafield always conforms to one metaattribute format, it is advan-
tageous to introduce a common term Meta-field for an atomic metaattribute-
format pair.

62



Similarly Meta-field Value is an abstraction of a possible ’value’ of a metafield
– value or interval falling within the scope given in the value range or one of the
groupings.

3.2 Patterns

Known relationships between metaattributes are captured using patterns. Since
often the pattern only applies to a specific format or involves a value, the notion
of meta-field and meta-field value is central for their definition.

The purpose of patterns is to be used in conjunction with the data mining
algorithm, most commonly either in the algorithm itself or in the further pro-
cessing of results. As such, it is difficult to introduce a unified framework for
pattern representation that would be equally usable for all types of data mining
tasks and algorithms. Therefore the specification should propose suitable types
of patterns for the main data mining algorithms (such as classification, clustering
or association rule mining).

4 Background Knowledge for Association Rule Mining

We introduce two types of patterns that were designed to aid the association
mining algorithms; their prospective utilization for other types of mining algo-
rithms is a matter for further research. These two types are Mutual Influences
and Background Knowledge Association Rules.

A Background Association Rule (BAR) has the form of

κ ≈[ι] λ [/χ] (1)

.
Here the Antecedent κ, Consequent λ and Condition χ are Boolean Meta-

attributes and ≈ is a type of 4ft-quantifier. The optional ι explicitly corresponds
to value(s) of Interest Measures associated with the 4ft-quantifier. The BAR is
Conditional if the Condition χ is present.

4ft-quantifier corresponds to a set of conditions (interest measures) defined
on the four-field contingency table, which is a quadruple of natural numbers 〈a,
b, c, d〉 so that: a is the number of objects(rows) from the data matrix satisfying
ϕ and ψ, b satisfying ϕ and ¬ψ, c satisfying ¬ϕ and ψ and d the number of
objects satisfying ¬ϕ and ¬ψ. A Boolean Meta-attribute is a recursive structure
comprising conjunctions, disjunctions and negations of combinations of individ-
ual items (Metafield-Value pairs). A Boolean Meta-attribute is Basic or Derived.
A Basic Boolean Meta-Attribute has the form of b(σ), where the Coefficient σ is
a subset of possible Values of Meta-Field b. A Derived Boolean Attribute is a con-
junction or disjunction of Boolean Meta-attributes, or a negation of a Boolean
Meta-attribute.

The Background Association Rule can be input independently into the Pat-
tern component of a BKEF document, or as an Atomic Consequences element
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within a Mutual Influences element. The notion of Mutual Influence comes out
of research by Rauch & Šimůnek [14], who proposed to use it as a knowledge
elicitation aid.

5 Background Knowledge Exchange Format

The Background Knowledge Exchange Format (BKEF) is defined by an XML
Schema and used for storing mining models of a particular knowledge domain.
The BKEF XML Schema consists of two main building blocks: definitions of
meta-attributes and definitions of patterns. A metaattribute is understood as
an abstraction of the ultimate property of the mining model [14] with all charac-
teristics explained so far, hence metaattributes are simultaneously comprised in
the BKEF XML Schema. Mutual influences among the metaattributes together
form a pattern. A simplified schema is shown in Fig. 1.

BKEF Schema Overview Meta-Attributes [example] Format [example]

Meta-Attributes [1..*]

Patterns [0..1]

Annotation [0..*]

Format [0..*]

Meta-Attribute [1..*]

h
as

C
h

ild
[0..*]

Association Rules

Mutual Influences [0..1]

Background A. Rules [0..1]

T
ran

sform
ed

to
[1..*]

Background A. Rule [0..*]

Mutual Influence [0..*]

Blood Pressure (Group Meta-A.)

Diastolic blood pressure

Systolic blood pressure

Formats Format: mmHg

Format: kPa

Variability: stable

Formats (...)

Risc Factors (Group Meta-A.)

Annotation: (...)

Child Meta Attribute: Smoking

Child Meta Attribute: Weight

mmHg

Author: MUDr. Plesny

Data Type: Float

Allowed Range: 50;300

Collation: numerical/ascending

Preprocessing Hints

Discretization Hint:
patient without Diabetes
Interval Enumeration
Interval Bin Name:

Interval Bin Name:

50;90

90;140

normal

increased

Fig. 1. Schema of BKEF

5.1 Metaattribute Definitions in BKEF

The XML Schema restricts meta-attributes to a two-level hierarchy. The base
level encompasses indivisible MetaAttributes4 (level = 0) - basic layer, evenly
atomic metaattribute. The upper level comprises groups of the MetaAttribute

elements (level = 1); each group contains an unlimited number of the Meta-

Attribute.

4 Typewriter text labels on particular elements of the BKEF XML Schema where it is
necessary to refer about XML elements for the proper understanding.
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Groups of meta-attributes A general collection of MetaAttribute elements. The
group should have a name, unique identification and at least one link to the
MetaAttribute of level = 0 (which is called ChildMetaAttribute from this
point of view).

Meta-Attribute The main focus of the MetaAttribute is the multiple defin-
inition of the Format as the property could be expressed in different ways of
measurement. The Annotation together with the author’s name are used for
additional information on different authors. See an example:

<Annotation>

<Text>Measured in 2009</Text>

<Author>MUDr. Plesny</Author>

</Annotation>

The Variability of the MetaAttribute is expressed either as stable or ac-
tionable whereas the unchangeable properties in the mining model are stable.
E.g. the date of birth cannot be changed, thus this metaattribute is referred to
as stable. If we for example expect that the systolic blood pressure can be influ-
enced by some other property, we refer to the Variability as actionable [17],
otherwise it can also be a stable MetaAttribute; this depends on the mining
model and its research targets. An atomic MetaAttribute element contains at
least one Format.

Format The Format is identified by a unique name (within the collection)
and encompasses the following elements: Author, Annotations (which is a col-
lection of particular annotations), DateType, ValueType, ValueAnnotations,
AllowedRange, Collation, PreprocessingHints and ValueDescriptions.

Each Annotation consists of the name of an author and the commentary
- each format could be commented through the Annotations (collection of
Annotation elements). The Author of the Format is self-explanatory, as a value
of the DataType is used some of the common data type readable by the in-
tended consumer BK (string, integer, boolean etc.). The ValueType content
distinguishes between cardinal, nominal, ordinal and a real number. Commonly
used are values as nominal and ordinal for qualitative meta-attribute and car-
dinal (which means an interval or a rational number) for quantitative metaat-
tributes [13].

The ValueAnnotations element is defined for the commentary to particular
values: each value can be commented separately more than once. The particular
annotation has the same format as the Annotation.

The AllowedRange element denotes a value boundary of the particular format
of the MetaAttribute. Thus the formats of the same values can differ. The range
can be defined by Interval for quantitative values (maximum and minimum) or
by Enumeration for qualitative values. See an example of allowed range defined
by an interval:
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<Interval>

<LeftBound type="closed" value="2"/>

<RightBound type="closed" value="15"/>

</Interval>

The Collation expresses a commonly accepted arrangement of the greater
than relation between format values, if such an arrangement exists. This is es-
sential for interpretation of the be greater than relationship between values [14].
The BKEF XML Schema differentiates between easily sortable numerical val-
ues and qualitative values whose sequence is expressed by the enumeration as
depicted on the following example:

<Collation type="Numerical" sense="Ascending" />

respectively

<Collation type="Enumeration" sense="Ascending">

<Value>elementary</Value>

<Value>secondary</Value>

<Value>university</Value>

</Collation>

The PreprocessingHints element conveys to a BK Consumer the informa-
tion on how to prepare data. The current version of the BKEF XML Schema
allows one or more DiscretizationHint elements as the only possible child
elements of the Preprocessing Hint. The values of the DiscretizationHint

are assorted into discreet counterparts. There can be more than one prepro-
cessing hint, for example depending on the desired granularity of the metaat-
tribute values. The way of discretization is set up by ExhaustiveEnumeration

or IntervalEnumeration. It reflects all intended values of the metaattribute
designated for the BK consumer and consecutive mining tasks. The element
IntervalEnumeration is used for numerical values, as seen from an example:

<IntervalEnumeration>

<IntervalBin name="normal">

<Annotation>...</Annotation>

<Interval>

<LeftBound type="closed" value="60"/>

<RightBound type="closed" value="88"/>

</Interval>

</IntervalBin>

<IntervalBin name="overweight indicator">

<Annotation>...</Annotation>

<Interval>

<LeftBound type="closed" value="88"/>

<RightBound type="closed" value="140"/>

</Interval>
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</IntervalBin>

</IntervalEnumeration>

An example of ExhaustiveEnumeration for non-numerical values is:

<ExhaustiveEnumeration>

<Bin name="yes">

<Annotation>...</Annotation>

<Value>yes</Value>

</Bin>

<Bin name="no">

<Annotation>...</Annotation>

<Value>no</Value>

</Bin>

</ExhaustiveEnumeration>

The exhaustive enumeration corresponds with the Map Values (where the values
are defined as a table) of PMML 3.2 [4].
There are another two variations of interval enumeration: Equifrequent (the
number of intervals is given and the interval boundaries are determined automat-
ically so that the frequency of values falling into each interval is roughly identical)
and Equidistant (given exact lenght of an interval). The Discretization Hint
element does not include the value sets aggregation (known from PMML[4]),
otherwise the clear and expressive discretization hint structure is one of the
strengths of the BKEF XML Schema.

The Value Descriptions element is used for characteristics of particular
values. It uses the Interval or Value elements for numerical and non-numerical
values, respectively.

<ValueDescriptions>

<ValueDescription type="Significant">

<Annotation>...</Annotation>

<Interval>

<LeftBound type="closed" value="100"/>

<RightBound type="closed" value="150"/>

</Interval>

</ValueDescription>

</ValueDescriptions>

In general, setting of the Collation, PreprocessingHints and ValueDescrip-

tions is not a question of an exact method, as their determination is fully de-
pendent on the domain expert and a particular mining task.

5.2 Patterns in BKEF

The current BKEF XML Schema allows to define MutualInfluences, which are
a base for the BAR.
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A MutualInfluences contains at least one MutualInfluence, which forms
a relation between two metaattributes A→ B.

<Influence type="Positive-bool-growth" id="20" arity="2">

<KnowledgeValidity>Unknown</KnowledgeValidity>

<MetaAttribute role="A" name="weight">

<RestrictedTo><Format name="kg"/></RestrictedTo>

</MetaAttribute>

<MetaAttribute role="B" name="Hyperlipoproteinemy">

<RestrictedTo>

<Format name="boolean value">

<Value format="boolean value">yes</Value>

</Format>

</RestrictedTo>

</MetaAttribute>

</Influence>

KnowledgeValidity can have two values – Unknown, Proven or Rejected – re-
garding the mining task result. The metaattribute appearing in the influence
might be restricted to the Format or even particular value (which should be
linked with the corresponding Format of the atomic MetaAttribute).

6 Background Knowledge Ontology

The Background Knowledge Ontology is a semantic abstraction of the BKEF
XML Schema introduced in section 5. The purpose of the BKEF XML Schema
is to rigidly enumerate what types of background knowledge are acceptable and
in what format. To this, BKOn adds information on relations between the pieces
of background knowledge by explicitly linking them through typed associations,
thus adding machine-readable semantics for background knowledge consumers.
The most prominent consumer is the Semantic KB, which utilizes these relations
for reasoning.

Adding semantics to the BKOn results in reshuffling of the BKEF content.
The design guidelines that were followed when translating BKEF nodes to BKOn
ontology topics are the same that were followed when creating the Association
Rule Mining Ontology from PMML as described in [10]. Reenumerating the
guidelines is out of the scope of this paper, nevertheless the main principle is
simple – allow for automatic transformation of BKEF XML documents into
instances of the ontology concepts while making the resulting ontology as clean
as possible.

To achieve this, the following prominent changes in BKOn compared to
BKEF were made

– some concepts that were only implicitly present in the BKEF XML Schema
are explicitly present in BKOn,
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– some BKEF XML nodes do not have a corresponding concept in the ontology
as they are contained in the newly created concepts,

– explicit superclasses for closely related topics are introduced.

Some of the concrete examples of these changes are as follows: Metafield
becomes an explicit ontology concept and a concept directly corresponding to
the Format BKEF element is no longer explicitly present in the ontology. One
instance of the Metafield concept is created from each pair of Format element
and its containing Metaattribute element.

The Metafield Binned Content is used as a superclass for EnumerationBin

and IntervalBin, and Metafield Raw Content as a superclass for Interval

and Value. Both these newly introduced concepts have the Metafield Content
superclass.

We make a reference transformation implemented as an XSLT stylesheet
available5. The gist of BKOn is depicted on Figure 2.

7 Exploiting BKEF and BKOn in the Data Mining Loop

This section demonstrates a possible use case of BKEF and BKOn, in conjunc-
tion with the academic data mining system LISp-Miner and the SEWEBAR
framework. LISp-Miner is an academic system for KDD developed at University
of Economics, Prague [1] for teaching and research in the area of KDD. It con-
sists of several procedures covering the entire process of KDD as described in
the CRISP-DM methodology.6. The SEWEBAR (for: Semantic Web – Analyti-
cal Reports) framework involves a content management system and a semantic
knowledge base for creating and sharing knowledge relating to data mining tasks.
It is based on the Joomla! CMS and the Ontopia Topic-Map-based Knowledge
Base.7

This section goes through elicitation of background knowledge within SEWEBAR-
CMS, its linking with the mined data using the FML, using it to localize search
and prune results within the LISp-Miner system, and finally through its seman-
tic postprocessing, again in SEWEBAR-SKB. The description of the workflow
is illustrated in a data mining task whose purpose is to find novel knowledge in
a cardiological dataset.

7.1 Background Knowledge Elicitation

The first implementation of background knowledge elicitation was integrated into
the LM KnowledgeSource and LM DataSource modules [19] of the LISp-Miner
system. However, it emerged later that it is more suitable for domain experts to
use a web-based system. This prompted the development of the BKEF Editor
(see [5]), as one of the modules of SEWEBAR-CMS.

5 At http://sewebar.vse.cz
6 www.crisp-dm.org
7 See ontopia.net and joomla.org for more info
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Example Starting the aforementioned data mining use case, consider a medical
expert, a cardiologist, who initiates the data mining process. The cardiologist
uses the BKEF editor to convey her knowledge of the characteristics that are
recorded about cardiological patients and indicates known and interesting rela-
tionships appearing in these characteristics.

7.2 Linking Background Knowledge with Mined Data

The main challenge faced is how to properly match data fields that are used in
the current data mining task with the semantically equivalent metaattributes.
This problem can be divided into two steps: choosing the right BKEF file for the
domain being mined and matching metaattributes and their values with data
fields and data field values. While this problem is a unique one, it bears significant
resemblance with problems that are addressed in ontology alignment and schema
mapping research [6]. Since fully automated construction of a reliable mapping
seems to be unfeasible given the state of the art in ontology matching and schema
mapping, a semi-automated mapping approach is proposed. There is an ongoing
work on a web-based system that would propose such a mapping based on a
mixture of schema mapping and ontology alignment techniques, which would
then have the user confirm the proposed mappings. The result of this mapping
is a Field Mapping Language (FML) document. The data mining system will
use a web service to locate and retrieve correct FML and BKEF files.

Example The data analyst working with the cardiological dataset searches
for BKEF files related to the dataset. Two such files are found. The first one
is a BKEF file created by the cardiologist; the second is from a different do-
main, but it contains general medical fields such as Age or Blood pressure. Once
the metaattributes are mapped to datafields though the semiautomatic process
highlighted above, the data mining software can use the Preprocessing hints
associated with mapped metaattributes to automatically perform discretization
and outlier treatment.

7.3 Background Knowledge for Localizing Search

In LISp-Miner, the first implemented use of background knowledge was to guide
users in the process of defining Local Analytical Questions (LAQs). That is to
properly define what kind of patterns in the analyzed data we are looking for.
LAQs are based on pre-defined patterns that lead to different types of questions
asked and therefore to different data mining procedures used for answering them.
LAQs were first proposed in [18].

Based on actual background knowledge the first type of LAQ pattern could
be to mine for yet unknown influences between two groups of attributes (e.g.
social status attributes and health status attributes). Or, another LAQ pattern
could be used to pinpoint some condition under which some relationship stored
into ontology does not hold (e.g. Concerning men above 50 living in Prague it IS
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NOT TRUE that...”). Solving such a LAQ could lead to updates of background
knowledge.

Example The data analyst is looking for guides to help him/her design the
parameters of the data mining task. Based on the information contained in the
BKEF pattern section, the data mining system shows that it is already known
by the experts that high waist-hip ratio is associated with hypertension. Based
on this piece of information, the data analyst instructs the system to look for
exceptions to this rule – i.e. to find subsets of data (circumstances) where the
high waist-hip ratio is NOT associated with hypertension.

7.4 Background Knowledge for Result Pruning

Another prospective use of background knowledge is pruning of the results of
data mining that are of no value for experts (e.g. of patients giving birth to
child, at least 99 % are women). If such a relationship is stored in BKEF, no
implicational8 association rule with the attribute concerning ability to give birth
to a child on the left side (antecedent) and gender on the right side (succedent)
will be placed into results.

Even more useful is pruning in case of a function-like dependency between
two attributes, e.g. Age and Height. In general, there is a clear dependency
between the age of people and their height. When described by association rules
many specific rules will emerge in results, which is undesirable. Instead, a better-
suited procedure of the KL-Miner (see e.g. [16] could be (automatically) used
and many association rules related to this dependency could be pruned from the
results and represented by a single KxL-fold contingency table to describe this
function like dependency as a single pattern.

Example The cardiologist is not interest in obvious facts in the results. So all
patterns expressing already known relationship between the high waist-hip ratio
and hypertension are automatically pruned from the results (if not explicitly
overruled by the data analyst). This covers all the derived patterns, i.e. even
pruning of extended patterns that logically follow from the simple implication
of the form waist-hip ratio(high) =¿ hypertension(true).

7.5 Background Knowledge for Postprocessing

SEWEBAR-CMS [11] accepts mining models in PMML sent through a web
service by the data mining system. The BKEF XML files are already present in
the system as they originate there. Combining these pieces of information, the
analyst conveys the results to the domain expert through a textual analytical
report using special report-authoring tools within the CMS [20]. PMML and
BKEF documents are semantized according to the Data Mining Ontology [10]

8 A subclass of association rules [12].
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and the BKOn ontology. They are interlinked and stored in the SEWEBAR-SKB,
which answers queries issued from the CMS. The queries are issued in the tolog
query language, which is a combination of Prolog and SQL. The results of the
queries are returned by the Semantic KB in XML, using an XSLT transformation
converted to HTML and returned to the user.

Example To communicate the results to medical specialists, the data analyst
creates a textual analytical report summarizing his/her findings. In the report
s/he also includes the semantic query against the Semantic KB for related as-
sociation rules that were found in previous tasks, including those executed over
different datasets.

8 Conclusions

The main purpose of this paper was to discuss the requirements on a standard
for exchange of background knowledge in data mining. The paper also details
an attempt for such a specification consisting of the BKEF Schema and BKOn
ontology. Practical experience with these formats has already been described
in [11], including the interlinking of BKOn with a data mining ontology for
association rules introduced in [10] and examples of semantic queries over the
merged ontologies.

Future work will primarily address the issue of ‘smart’ interlinking to domain
ontologies, presumably using ontology patterns9. This will allow to explicitly
disambiguate vague notions, e.g. that of hypertension, which can equally be a
summarization of several measurements or a permanent characteristic of a pa-
tient. In relation to that, a version of BKOn based on the RDF/OWL formalism
(in addition to the Topic Map one) will be built.
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Zemánek J.: Semantic Analytical Reports: A Framework for Post-Processing Data
Mining Results. In: Foundations of Intelligent Systems (ISMIS’09). Springer Ver-
lag, LNCS, 2009, 88i?198.

12. Rauch, J.: Classes of Association Rules: An Overview. In: Studies In Computational
Intelligence. Springer 2008.

13. Rauch J.: Considerations on Logical Calculi for Dealing with Knowledge in Data
Mining. In: Advances in Data Management. Studies in Computational Intelligence,
Volume 223/2009, Springer 2009.
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Importing Knowledge Fragments to
CMS-Enabled Data Mining Analytical Reports

Andrej Hazucha, Tomáš Kliegr, and Vojtěch Svátek

University of Economics, Prague,
{xhaza00,tomas.kliegr,svatek}@vse.cz

Descriptive data mining only brings its fruits when the results are provided
to the end user in a palatable form. The vehicle for end-user delivery of mining
results (and associated information such as data schema, task settings, and do-
main background knowledge) are so-called analytical reports. In order to manage
a huge number of reports referring to different mining sessions, we designed a
data mining web portal based on a content management system, together called
SEWEBAR-CMS.1 One of the requirements on the CMS was the ability to in-
teract with semantic knowledge sources and other structured data, see [1].

The data analyst who authors an analytical report in the CMS has different
possibilities of (semi-)automatically entering structured data into the text.

First, for locally stored data such as mining task/result/data descriptions
exported from mining tools in PMML (Predictive Model Mark-Up Language), a
CMS plugin can pick marked segments of HTML code, produced from PMML
using XSLT, and insert them into the report as indicated by the analyst.

Second, sophisticated support for remote data/knowledge has been newly
added. The infrastructure for this functionality allows to persistently specify

– Links to queriable resources
– Template queries for these resources (which can be paramatrized by the

end-user at runtime)
– XSLT transformations allowing to insert the results of queries as HTML

fragments, either static or dynamically updated from the resources.

Currently we experiment with queriable resources in the form of native XML
database (Berkeley, queried via XQuery), which stores PMML data, and seman-
tic knowledge bases both in the form of SPARQL endpoint and Ontopia Knowl-
edge Suite (a Topic Maps tool, queried via a Prolog-like language called tolog).
Inclusion of further types of resources such as Lucene indices is in progress.

This work has been partially supported by the CSF project no.201/08/0802, and
by Grant F4/15/2010 of the University of Economics, Prague.
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Towards a Semantic Foundation for Bioinformatics 
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1   Abstract

With a two and half thousand year tradition logic is the best understood way of 
representing scientific knowledge.  Only logic provides the semantic clarity necessary 
to  ensure  the  comprehensibility,  reproducibility,  and free  exchange of  knowledge. 
The use of logic is also necessary to enable computers to play a full part in science 
[1]. The semantic web is transforming the dissemination of science by making for the 
first time making a large amount of scientific knowledge available expressed in logic. 

Bioinformatics is one of the undoubted successes stories of the semantic web, with 
bioinformatic knowledge making up a large percentage of the scientific semantic web. 
Many of  the  problems that  make semantic  web reasoning  difficult  don't  apply  to 
bioinformatics:  a  ground truth of  scientific  knowledge exists,  top level  ontologies 
have  been  agreed  (BFO),  many  other  ontological  standards  exist,  and  the 
bioinformatic semantic web is large but not too large.

The use of bioinformatic software is essential to modern biology.  However, there 
is a clear mismatch between the increasing use of the semantic web and logic, and the 
way bioinformatic systems utlilise and make inferences with this knowledge.   This is 
because  almost  all  computer  based  bioinformatic  reasoning  is  done using  ad hoc 
programs.  From a formal point of view these programs are invariably making logical 
inferences: deductions, abductions, inductions, with perhaps a probabilistic element. 
However, what exactly these inferences exactly are is generally unclear.

The aim of my research is to make these inferences clear and to express them in 
logic, and make them executable across the semantic web.

For example, we argue that abductive inference is central to modern evolutionary 
based phylogenetics - clustering.  This can be seen in evolutionary definition of a 
taxon (grouping of organisms): “that all members of a taxon are descendants of the 
nearest common ancestor (monophyly sensu stricto)” [2].  We express this in logic as: 
∀A . A ∈ taxon1 ⇒ (∃Ancestor . ∀B . B∉ taxon1 ⋀ ancestor(Ancestor, A) ⋀ ¬ancestor(Ancestor, B)).

This clustering is based on the abductive inference of the existence of an ancestor 
organism not shared by any other taxon.
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