
Recommendations for End-User Development
Will Haines

SRI International
333 Ravenswood Ave.
Menlo Park, CA 94025

1 650-859-6153

haines@ai.sri.com

Melinda Gervasio
SRI International

333 Ravenswood Ave.
Menlo Park, CA 94025

1 650-859-4411

gervasio@ai.sri.com

 Aaron Spaulding
SRI International

333 Ravenswood Ave.
Menlo Park, CA 94025

1 650-859-3911

spaulding@ai.sri.com

 Bart Peintner
SRI International

333 Ravenswood Ave.
Menlo Park, CA 94025

1 650-859-3209

peintner@ai.sri.com

ABSTRACT
End-user development (EUD), the practice of users creating,
modifying, or extending programs for personal use, is a valuable
but often challenging task for nonprogrammers. From the
beginning, EUD systems have shown that recommendations can
improve the user experience. However, these usability
improvements are limited by a reliance on handcrafted rules and
heuristics to generate reasonable and useful suggestions. When
the number of possible recommendations is large or the available
context is too limited for traditional reasoning techniques,
recommender technologies present a promising solution. In this
paper, we provide an overview of the state of the art in end-user
development, focusing on the different kinds of recommendations
made to users. We identify four classes of suggestion that could
most directly benefit from existing recommendation techniques.
Along the way we explore straightforward applications of
recommender algorithms as well as a few difficult but high-value
recommendation problems in EUD. We discuss the ways that
EUD systems have been evaluated in the past and suggest the
modifications necessary to evaluate recommenders within the
EUD context. We highlight EUD research as one area that can
facilitate the transition of recommender system evaluation from
algorithmic performance evaluation to a more user-centered
approach. We conclude by restating our findings as a new set of
research challenges for the recommender systems community.

Categories and Subject Descriptors
H.1.2 [Models and Principles]: User/Machine Systems – end-
user development, recommender systems.

General Terms
Algorithms, Design, Experimentation, Human Factors.

Keywords
end-user development, recommender systems.

1. INTRODUCTION: THE CASE FOR
END-USER DEVELOPMENT
Computing devices are ubiquitous in today’s professional
environments and are increasingly invading our homes and mobile
lives. Unfortunately, a deep understanding of these systems, and
the ability to modify them, remains confined to the realm of the
specialist. While the human-computer interaction community has
made great strides in improving software usability, it has devoted
far less attention to making systems customizable by end-users
[22]. We argue here that existing recommender techniques can
make a meaningful contribution toward increasing the usability,
and therefore the acceptance and proliferation, of customizable
software.

The current state of the art in user-centered software design is to
engage users in an iterative design process and to test systems
with users to refine the interaction design. Customization, if
available, is built into the system at design time as a bounded
number of user-selectable options. However, as workflows and
processes change over time, even customized software
applications need updates. Currently, the burden of these updates
falls on the shoulders of professional developers, but the pool of
users needing customizations is expected to grow much faster
than the supply of professional software engineers [3].

One promising approach is end-user development (EUD), the
practice of users creating, modifying, or extending programs for
personal use [22,18]. This approach has two main benefits. One, it
puts systems design in the hands of the domain experts who are
most familiar with what needs should be met. Two, it scales with
both a rapid increase in users and the increasing rate of change of
many business processes. Unfortunately, EUD faces one major
challenge—most end users do not have the specialized knowledge
currently required to perform even basic development tasks [25].

As such, EUD research mainly focuses on approaches for
lowering the barrier of entry to software development. Such
approaches cover a wide spectrum, from enhancing the macros
and spreadsheets that millions use every day to sophisticated
algorithms that create programs by example without ever
exposing the user to textual code [22]. While the technology
behind these approaches may vary a great deal, there are some
crosscutting techniques that seem to improve usability across the
spectrum of EUD systems. In this paper, we will discuss one
particular mechanism for improving user performance—system-
generated recommendations.

As early as 1991, EUD systems like EAGER were using simple
proactive suggestions as a component of their user interaction [6].
When the system detects that the user is performing an iterative
task, it suggests a sequence of actions for completing the iteration
automatically. In this case, the recommendation algorithm is
straightforward, owing to the fact that there is only one
recommendation type. If the system can complete the iteration it
makes the recommendation, otherwise it does not.

Nearly twenty years later, advances in EUD systems have greatly
expanded the opportunities for offering recommendations;
however, most approaches continue to rely on constrained forms
of recommendation that use handcrafted rules to make limited
types of suggestions. In this paper, we explore the different
classes of recommendations made in EUD systems, highlighting
the areas where current approaches fall short and how
recommender technologies can help fill the gap. Concurrently, we
emphasize the ways in which these systems have been evaluated
to date and discuss the ways in which such approaches will need

42

FULL PAPER

Proceedings of the ACM RecSys 2010 Workshop on User-Centric Evaluation of Recommender Systems and Their Interfaces (UCERSTI),
Barcelona, Spain, Sep 30, 2010

Published by CEUR-WS.org, ISSN 1613-0073, online ceur-ws.org/Vol-612/paper7.pdf

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.
This volume is published and copyrighted by its editors: Knijnenburg, B.P., Schmidt-Thieme, L., Bollen, D.

Figure 1. WARP identifies that the user is delayed in creating a document and offers to help [33].

modification to successfully evaluate integrated recommenders.
We believe that by evaluating recommender systems in a user-
focused context like EUD, researchers can facilitate the
transition of recommender system evaluation from a focus on
algorithm performance evaluation to a more user-centered
approach.

2. INTEGRATING AUTOMATION INTO
THE USER'S WORKFLOW
A core tenet of user-centered design is to create systems that
mesh with users’ existing workflows and environments [3].
EAGER is an early example of a tool that incorporates system
suggestions to help “fit [end-user development] into the user's
existing workflows” [18]. The focus on workflow integration is
very important; it is likely that users will ignore an EUD system
whose barrier to entry is too high. One approach to workflow
integration, suggested by Lieberman, is to make “the cognitive
load of switching from using to adapting … as low as possible”
[22]. One way EUD systems have achieved this low barrier is by
offering to automate portions of the user’s workflow, essentially
bypassing an explicit programming process and attempting to
directly accomplish the user’s task instead.

2.1 Current Approaches
One of the earliest approaches to EUD was programming by
demonstration (PBD), also known as programming by example
[5,21]. Many PBD systems rely on users explicitly
demonstrating the process to be automated. However, some
systems instead rely on implicit examples, continuously
observing the user’s actions to find repetitions over which they
can learn a looping program to complete the user’s task.
Examples include EAGER, Dynamic Macro, and APE [6,24,28].
By recommending automation directly within the user’s
workflow, these systems achieve EUD transparently, without the
user’s awareness of having programmed the system. However,
they are limited to automating repetitive tasks within the space
of the looping programs they can generate.

A more general approach to automation within the user’s
workflow relies on activity recognition to observe what the user
is doing and infer what that user is trying to accomplish. In
combination with some mechanism for determining appropriate
assistance, the system can use activity recognition to assist with
the completion of a task. For example, Lumière uses Bayesian
user models to offer context-dependent assistance [13]. While

Lumière can offer assistance on a wider variety of tasks than the
PBD systems focused on repetitive tasks, it is limited to
assisting the tasks encoded by the developers, unlike PBD
systems, which acquire looping programs on the fly.
Some systems combine aspects of both approaches. WARP
(Figure 1), like Lumière, utilizes probabilistic models for
activity recognition on a wide variety of tasks [33]. However, its
meta-level assistance patterns are designed to work over a
knowledge base of procedures rather than a developer-defined
set of tasks. Because of this, the system not only can offer to
automate more complex tasks but, through EUD, can continue to
extend its knowledge base to handle a wider variety of tasks.

Task Assistant is another system that makes recommendations
over an extensible knowledge base [27]. It allows users to
explicitly define a workflow that groups of users collaboratively
execute. It promotes automation by allowing the user to
manually attach automated procedures, often produced by EUD,
that support individual tasks in the workflow. Task Assistant
uses these manual attachments to inform its suggestions for
attaching other automated procedures to future tasks.

2.2 Recommender Systems Opportunities
EUD systems that make automation recommendations within a
user’s workflow provide a gentle transition from the user’s core
workflow into the world of programming, as users are generally
not even aware that programs are being created or selected for
execution. While current systems already provide useful EUD
assistance, the use of recommender technology raises the
possibility of further improvement.

2.2.1 Recommending shared procedures
EUD systems such as WARP and Task Assistant, which utilize a
potentially unbounded set of automated procedures, offer the
greatest opportunity for the application of recommender
technology. Consider a shared procedure repository for the
members of an organization. As the library of assistive
procedures grows, handcrafting the rules or patterns for
recommendation becomes more difficult. The problem is
exacerbated when there are multiple criteria for evaluating
procedure quality or applicability within a given context. As
new procedure sources (e.g., web services, new EUD systems)
continue to proliferate, the problem of finding and automating
procedures and associating them to user tasks and workflows
will only increase in frequency and importance.

43

FULL PAPER

Proceedings of the ACM RecSys 2010 Workshop on User-Centric Evaluation of Recommender Systems and Their Interfaces (UCERSTI),
Barcelona, Spain, Sep 30, 2010

Published by CEUR-WS.org, ISSN 1613-0073, online ceur-ws.org/Vol-612/paper7.pdf

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.
This volume is published and copyrighted by its editors: Knijnenburg, B.P., Schmidt-Thieme, L., Bollen, D.

For example, suppose the system determines that a user wants to
schedule a meeting with some coworkers. The procedure
repository may contain dozens of meeting scheduling
procedures—some idiosyncratic to a given organization, some
specific to certain types of meetings, and some buggy or
outdated. Even if the procedure repository was constrained only
to meeting scheduling, it would be difficult to craft a set of rules
that covered all situations. Using recommender technology, one
could imagine leveraging information about what other users
have found useful (or not) to make better decisions about what
procedures to recommend. The challenge is in incorporating
sufficient context from the user’s current activity into the
recommendation algorithms.

2.2.2 Improving activity recognition
Instead of applying recommender technology only after
determining what the user is doing, one could also imagine a
system like WARP applying a recommender within the activity
recognition algorithm itself. In this case, the algorithm might be
able to narrow its search space to the activities that similar
people have automated or been assisted with in the past. Such an
enhancement would be particularly valuable in the case where
the number of identifiable activities is very high.

2.3 Evaluation
To evaluate a recommender’s ability to improve an EUD
system’s level of integration into a user’s workflow, system
designers must take a more user-centered approach than is
traditional in recommender system evaluation. Instead of
focusing on algorithmic performance of independent predictions
involving a single, primitive task, EUD evaluation must situate
itself in the context of a user performing a task, often comprising
multiple subtasks. For Dynamic Macro and APE, this meant
considering task performance time and user acceptance as part
of the success criteria for the application [24,28]. Other systems
may be able perform post-hoc analysis on user logs and avoid
addressing the user’s workflow directly, but regardless of
methodology, the type and complexity of the user’s task to
automate will have some effect on the evaluation results [9].

The tasks supported by EUD systems are generally more
complex than the simple viewing or purchasing decisions
assisted by a traditional recommender system, so task-oriented
evaluation can become particularly tricky. When testing even a
simple task, it is can be difficult to tease apart user interface and
algorithmic concerns. When the task becomes more complex, a
simple design mistake can limit the user’s ability to complete a
task, rendering analysis of a recommender’s efficacy difficult.

In such cases, it is desirable to control for user interface
variation using a two-step process. First, a series of short
qualitative studies can quickly identify high-priority user
interface problems that can confound later study results. We find
that think-aloud and heuristic evaluation protocols are well
suited for this purpose [31,26]. After resolving the issues
identified qualitatively, one can perform a controlled experiment
that compares the user interface with a naïve recommendation
implementation against the same user interface backed by more
sophisticated algorithms.

A final consideration for evaluating increased automation and
activity recognition is that recommendations may occur
infrequently in comparison to the entire duration of the user’s
workflow. In this situation, longitudinal study protocols are

appropriate. In the PBD space, Dynamic Macros and LAPDOG
both worked with logs collected over an extended period of time
[24,8]. For activity recognition, such evaluations do not yet exist
in the literature, but one possible approach is a hybrid diary/log
study that captures both logging information about when a task
is recognized appropriately and diary entries capturing instances
where the user expected a recommendation and received none.

3. HELPING THE USER MAKE THE
RIGHT DECISIONS
The cognitive burden on end-user developers can be further
reduced, and their task performance improved, by providing
recommendations that help them make better programming
decisions. This approach can be of particularly high impact in
EUD systems that require a mixed-initiative interaction with the
user—with appropriate recommendations, the user and system
can move through their dialog more quickly and with fewer
errors. By using the recommendations to sort lists of
programming decisions by likelihood of correctness, EUD
systems can help users make the right decisions in an
unobtrusive, easy-to-override fashion.

3.1 Current Approaches
The Integrated Task Learning (ITL) system provides a
procedure editor that takes advantage of recommendations to
produce sensible defaults [11]. For example, to edit the data
flow in a procedure, a user clicks on the argument to edit, and
the procedure editor provides a list of suggested changes (Figure
2). The suggestions in this case are based on reasoning about the
procedure using scope and type information. This bounds the
recommendation space to suggestions that would not result in an
invalid procedure; however, the system currently makes no
attempt to rank the suggestions in any other way.

Another task in EUD where sensible default behavior is
important is the generalization performed by PBD systems
[5,21]. Because users need to provide the demonstrations from
which PBD systems learn, a primary challenge is to find the
correct generalization with as few examples as possible. One
way to do this is to involve the user in the generalization process
by presenting candidate generalizations and letting the user pick
the correct one. Past systems have explored several different
methods for selecting the candidates to present to the user. For
example, SMARTedit performs conservative generalization
within a well-defined version space and then uses a probabilistic
weighting scheme to rank alternative generalizations [38].

Figure 2. Clicking on ‘resized image 1’ in ITL provides
suggestions under the heading ‘Use an existing value:’.

44

FULL PAPER

Proceedings of the ACM RecSys 2010 Workshop on User-Centric Evaluation of Recommender Systems and Their Interfaces (UCERSTI),
Barcelona, Spain, Sep 30, 2010

Published by CEUR-WS.org, ISSN 1613-0073, online ceur-ws.org/Vol-612/paper7.pdf

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.
This volume is published and copyrighted by its editors: Knijnenburg, B.P., Schmidt-Thieme, L., Bollen, D.

CHINLE uses a similar scheme not just to rank the candidates
but also to color-code its interface [9]. LAPDOG uses heuristics
to guide the inferencing it performs to explain connections
between parameters and filter out unlikely generalizations [15].

3.2 Recommender Systems Opportunities
For this class of problem, recommender systems would likely sit
behind the scenes, transparently organizing the plethora of
options that systems currently present to the user. Potentially,
this input could even cause systems to suppress options that are
highly unlikely to be to be useful.

3.2.1 Suggesting preferred defaults
For a system like ITL, the primary limitation for reasoning is
that for large procedures, the number of valid suggestions can be
large, and if the user’s desired edit does not appear high in the
list of alternatives, that user’s task performance can suffer. As
with procedure recommendation, in large repositories,
collaborative or social recommender techniques could also be
used to improve recommended edits. However, a key difference
is that the possible edits are information sparse compared to
procedures. Algorithms would need to utilize the
recommendation context even more to make appropriate
suggestions, i.e. “other users in this situation tended to make
change A” rather than “other users generally like you tended to
make change A.” Leveraging this context presents a challenge
that recommender systems are only beginning to explore [1].

3.2.2 Suggesting more likely generalizations
The approach of presenting users with candidate generalizations
and letting them choose the correct generalization is appealing
because it transforms the difficult problem (for the system) of
divining user intent into the relatively easier problem (for the
user) of recognizing the correct generalization. However, with
very few demonstrations, the number of alternative
generalizations can become prohibitively large and determining
the best ones may be difficult. PBD systems can thus benefit
from mechanisms to organize the space of options and provide
guidance toward reasonable generalizations.

Collaborative or social recommendations may help determine
what and how to generalize. For example, in SMARTedit, a
recommender system could speed up learning by suggesting a
higher level of generalization based on how other similar actions
were generalized in past procedures. And in LAPDOG, the
preferences over different explanations could be derived from
the explanations selected to explain similar actions in procedures
developed by colleagues within an organization.

3.3 Evaluation
When determining the extent to which recommendations help
users to make appropriate decisions, there are two phases in
which a rigorous evaluation can be helpful: design time and
implementation time. Post-implementation evaluations are
common in the EUD literature but often fail to provide insight
into the utility of the system in the field. Design evaluations are
less common, although they are discussed for some systems,
including ITL and CoScripter [11,20]. Such evaluations can
define the types of recommendations that are beneficial to the
user and to establish a set of ideal recommendations against
which to evaluate actual algorithm performance in context.

For ITL, early application of think-aloud design evaluation
methods proved useful to determine that recommended defaults

would make a big difference in user performance [11].
Interestingly, it was possible to discover this insight using a
wizard-of-oz protocol and thus the study required no actual
recommender implementation. The lesson here is that it is
possible to evaluate important EUD user interactions without
having to settle on a recommender algorithm upfront.
In the space of recommending likely generalizations, evaluations
have focused primarily on measuring whether the selected PBD
algorithm can find the correct generalization—for example, in
terms of whether it includes the correct generalization or if
makes a correct predication using the generalization and ranks it
highly [9,30,5]. In LAPDOG, there is an assumption that users
will be able to recognize the correct generalization reasonably
easily. However, many programming constructs, particularly
when they include variables, are not easy for end users to
comprehend. SMARTedit and CHINLE circumvent the
generalization issue by presenting concrete predictions about the
next step to execute in the context of a specific task. In this
approach, users never have the sense of creating an actual
program. Another interesting approach is sloppy programming,
which represents programs in a pseudo-natural language that is
interpretable by both humans and computers [22]. In general,
PBD approaches that require the presentation of learned
programs to users, whether for verification or for selection, need
to identify the barriers to understanding such programs. For such
cases, design-time survey methods may help to determine how
users conceptualize the space of generalizations, leading system
designers to more insight about how to create UI affordances to
help users navigate the space of recommended generalizations.

4. HANDLING ERRORS
Much as is the case with professional programmers, end-user
programmers spend a large proportion of their time debugging
[29,14]. Consequently, many EUD systems provide mechanisms
to help users identify and correct errors within their programs.
Traditional debugging environments provide tools that allow
developers to explore their code and track down errors;
however, this exploration is left largely up to the user. A
growing body of research suggests that for many users, this
exploration process is hypothesis driven [10]. Unfortunately,
when users do not have adequate knowledge of exactly how
their programs execute, they can have difficultly formulating
correct debugging hypotheses.

4.1 Current Approaches
Ko’s Whyline provides a novel approach to supporting
hypothesis-driven debugging by suggesting “Why?” questions
for the user to explore when debugging (Figure 3) [17,15]. Its
current implementation is more focused on professional
developers than “end-user” developers, but it has been
successfully implemented in novice programming environments
and could be extended to pure-EUD systems [15].

Figure 3. Whyline generates a set of possible questions about

the black rectangle [17].

45

FULL PAPER

Proceedings of the ACM RecSys 2010 Workshop on User-Centric Evaluation of Recommender Systems and Their Interfaces (UCERSTI),
Barcelona, Spain, Sep 30, 2010

Published by CEUR-WS.org, ISSN 1613-0073, online ceur-ws.org/Vol-612/paper7.pdf

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.
This volume is published and copyrighted by its editors: Knijnenburg, B.P., Schmidt-Thieme, L., Bollen, D.

By recording and analyzing program execution and relating it
back to the source code, Whyline is able to generate questions
that focus on why a particular code segment behaved in a certain
way rather than simply on why the program produced certain
output [17]. By automatically identifying code related to
failures, Whyline bounds the space of appropriate debugging
hypotheses and helps programmers avoid guesses about
irrelevant code segments.

Whyline generates its questions and answers automatically using
heuristics and program slicing [16]. Questions are limited by
two heuristics. The first heuristic relates to how users debug:
hypotheses must reference observable failures. The second
heuristic limits the number of possible entities to questions
about code that the user wrote or directly referenced, with the
expectation that the user will not ask questions about totally
unfamiliar code. Once Whyline generates a set of questions, it
extracts answers using program slicing to generate a “causal
chain” of the code executed [16]. It then presents the questions
to the user, fetching answers on demand.

Another approach to error handling is to take the act of
debugging out of the user’s hands entirely by automatically
verifying the program for correctness before something goes
wrong. For some classes of programming problems, EUD
systems can detect errors and provide suggested fixes without
forcing the user to search for problems. The ITL procedure
editor takes this approach when possible (Figure 4) [11].

When the user performs an edit that causes an error, such as
unbinding a variable, the editor detects the error via static
analysis, marking the offending action. When the user clicks on
the error icon, the system suggests solutions for that error. The
solutions are parameterized to fit the given situation, but there
are only a limited number of solutions at the present time [11].

4.2 Recommender Systems Opportunities
Whyline uses highly dynamic techniques to generate its
hypothesis recommendations; however, it is still limited by its
output and familiarity heuristics. Both exist to limit the number
of questions and reduce time necessary to perform program
slicing; however, as with all heuristics, they may not be correct
all the time. By reducing the question space using
recommendations rather than static heuristics, Whyline could
find more bugs without sacrificing the processing time required
to slice the program for every possible output primitive.

4.2.1 Suggesting potential problems based on
similar programs
Users do not always test their programs on every possible
execution path, so the observed output heuristic captures only a
subset of the bugs that actually exist. A recommender that works
over a community pool of debugged programs could suggest
potential problem areas outside of the observed output based on
problem areas in similar programs. This approach requires
algorithms to be able to determine what features indicate
programmatic similarity, a more difficult task than many
traditional recommender applications. Nevertheless, programs
are information-rich—the core problem is identifying what
information is most relevant to determining similarity.

4.2.2 Suggesting examples
It is likely that users will be less successful debugging code with
which they are unfamiliar. The familiarity heuristic weeds out

Figure 4. ITL alerts the user that ‘saved attachments 1’ is

unbound and suggests two ways to fix the problem.
libraries that the user cannot modify without source code access,
but it does not actually address the root cause of the
unfamiliarity that leads to coding problems. A recommender of
relevant code examples for problem application programming
interfaces (APIs) could go a long way toward helping users
debug calls into unfamiliar source. In fact, Brandt suggests that
“opportunistic programming,” based on web searches of code
examples and tutorials, constitutes a primary programming
approach for novice programmers [4]. His work on supporting
this sort of programming focuses on how to improve user code
browsing experiences, but recommendations do not make up the
core of the approach. It may well be fruitful to see how system-
driven recommendations interact with user-driven browsing to
support opportunistic programmers.

4.2.3 Suggesting solutions to programming
problems
Once errors are identified, recommending a subsequent fix is
likely to be a highly relevant challenge for the recommender
community. Here, current systems tend to pre-engineer
relatively simple solutions to straightforward errors. If one could
instead capture the ingenuity of an entire EUD system user
community, it may be possible to propose solutions for more
complex classes of problems. By creating a data set out of the
problems and solutions faced by previous end-user developers,
recommenders could suggest, and with some extension possibly
apply, novel solutions to programming problems initially
unanticipated by the creators of EUD systems. Such an advance
would make EUD systems much more robust to unexpected
programming challenges.

4.3 Evaluation
Whyline’s evaluation consisted of a task-focused controlled
experiment of debugging approaches [17]. Such a protocol also
lends itself to the evaluation of error-handling recommenders
because it provides a solid task context while still allowing the

46

FULL PAPER

Proceedings of the ACM RecSys 2010 Workshop on User-Centric Evaluation of Recommender Systems and Their Interfaces (UCERSTI),
Barcelona, Spain, Sep 30, 2010

Published by CEUR-WS.org, ISSN 1613-0073, online ceur-ws.org/Vol-612/paper7.pdf

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.
This volume is published and copyrighted by its editors: Knijnenburg, B.P., Schmidt-Thieme, L., Bollen, D.

experimenter to isolate algorithmic performance from user-
interface design choices. For Whyline, a traditional breakpoint
debugging system served as the control condition, and user task
completion defined the success criteria. Thus, the experiment
tested hypotheses about how the interaction design paradigm
would affect user task performance
To test the recommender opportunities above, one would instead
control for user interface deviation and vary the
recommendations while still measuring task completion to
evaluate the success of each condition. To manage user interface
variation, we again suggest following the two-step approach
advocated in section 2.3, first isolating and solving confounding
user interface problems qualitatively, and then comparing task
performance on interface without recommendations against an
interface with recommendations.

Other possible conditions to test include recommendation
domains of varying size or composition. Likewise, testing
tunable parameters like recommendation confidence or
recommendation diversity could yield insights into exactly what
sorts of error-handling recommendations provide the most value
to end user developers.

5. SUPPORTING UNPLANNED SHARING
End-user programmers, by definition, do not set out to create
programs for others; however, unplanned sharing is a frequent
side effect of EUD [23]. Even if end users do not plan on
sharing their programs, they can often benefit from using
someone else’s code. While many early EUD systems lacked a
community and, by extension, lacked sharing, several systems
now leverage this powerful capability.

5.1 Current Approaches
Two systems that benefit from sharing are ITL, which provides
a demonstration-based EUD environment for collaborative
military command and control, and Task Assistant, which allows
users to explicitly encode best-practice workflows in a sharable
way [7,27]. An even more widely used application is the
CoScripter web automation system. Its relatively wide adoption
provides a case study in how sharing can affect a community of
end-user programmers [20]. While both ITL and CoScripter
provide end users with a rich repository of programs to share,
neither currently provides sharing support past simple browsing
and search.

Figure 5. CodeBroker suggests that the user use the

predefined getInt() method rather than the user’s newly
created getRandomNumber() method [32].

This sort of aid does not go far enough because users generally
do not have sufficient familiarity with large codebases to know
when code that solves their problems already exists [32]. Ye et
al. suggest that “information push” (proactive recommendation)
is one mechanism to assist users in such situations.

The CodeBroker system is one example of proactive
development support. It recommends API calls to the user based
on programming context (Figure 5) [32]. While it is not focused
on “end-user” developers, it is straightforward to imagine using
similar mechanisms for a code repository like the one used by
CoScripter. CodeBroker generates its recommendations by
gathering context from code comments. Then it applies Latent
Semantic Analysis (LSA) to determine what components in the
code base are conceptually similar to the concepts described by
comments [19]. It further reduces the suggestion space by
applying signature matching to only suggest API calls that are
close type matches to the current calling context.
In the case that the above technique does not produce
satisfactory results, the programmer can create a “discourse
model” to manually identify suggestions that were not relevant
[32]. Such irrelevant suggestions are not displayed in future
queries. The system expands this concept to also include “user
models” that manually identify code with which the user is
already very familiar. Following the intuition that users do not
want to get suggestions for familiar code, user models also serve
to reduce the suggestion space for a given user. It is important to
note, however, that in CodeBroker users manually create both
the discourse and user models and must know a specific syntax
for doing so.

5.2 Recommender Systems Opportunities
Community has not always been a central focus in EUD, but as
recent systems push the boundaries toward more and more
collaboration, community-based recommender systems seem to
be a good fit. More users typically means more possible
recommendations, and recommender algorithms can help EUD
systems to cope with this increased scale.

5.2.1 Suggesting reusable code elements
LSA has been integrated previously into a collaborative filtering
algorithm, so one could imagine implementing similar
recommendation techniques within CodeBroker [12]. The
system’s major usability problem for end-user developers is
likely to be its manually specified user and discourse models.
Users are not apt to learn a brand-new programming syntax just
to remove non-salient recommendations. If users can instead
provide positive/negative feedback regarding the system
recommendations, recommender technology could be used to
acquire user profiles for making desirable recommendations
based on individual user feedback as well as collective group
feedback. In the latter case, by driving such a system with
simple ratings rather than a complex programming syntax, users
become more likely to actually provide the feedback necessary
for the system to tailor its behavior to meet their preferences.

5.2.2 Assisting novices
Higher hurdles remain for EUD systems that are actually
focused on novice programmers. Not only do these
programmers not know what API calls exist, but they are also
likely to misuse such calls. As discussed in Section 4.2.2,
recommendations that also include code examples can be useful
to teach novice opportunistic programmers how to reuse code.

47

FULL PAPER

Proceedings of the ACM RecSys 2010 Workshop on User-Centric Evaluation of Recommender Systems and Their Interfaces (UCERSTI),
Barcelona, Spain, Sep 30, 2010

Published by CEUR-WS.org, ISSN 1613-0073, online ceur-ws.org/Vol-612/paper7.pdf

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.
This volume is published and copyrighted by its editors: Knijnenburg, B.P., Schmidt-Thieme, L., Bollen, D.

5.2.3 Suggesting best practices
Suggesting code reuse is only half of the battle. End-user
developers are unlikely to aim to create reusable code when their
core goal is to program for personal use [18]. This is
unfortunate, because by creating more reusable code, users can
not only facilitate reuse by others but also make more robust,
flexible programs for themselves [2]. It is difficult to get users to
code to appropriate levels of abstraction, and current EUD
systems have to attempt to build such abstractions into the
development environment [18]. One possibility is to recommend
code structures that reflect the code abstractions created by the
most experienced programmers in an EUD community.
Recommender technology could facilitate suggesting
appropriate code abstractions to novice programmers working
on programs similar to those already solved by experts.

The workflows in Task Assistant explicitly encode best
practices, and therefore are ripe for sharing. The difficulty for
recommender systems in this case is the possibly endless copies
of very similar workflows. For example, in a large company or
community, subgroups may have many similar, but distinct,
workflows for hiring a new employee. The best workflow for a
given user depends on factors such as the user’s usage history,
which other users have used particular versions, and the
relationship between the current user and the other users. A
hybrid of collaborative filtering and more personalized
recommendation techniques promises to improve such
recommendations.

5.3 Evaluation
Sharing is a particularly difficult user need to evaluate because a
realistic evaluation must be situated within a community of
users. CoScripter was able to overcome this difficultly by
selecting users to interview based on indicators gathered from
broad-based logging of user activities [20]. Unfortunately, this
approach is difficult to replicate without a critical mass of users
such as the one CoScripter enjoys. Without such a user pool, the
CodeBroker evaluation protocol falls back on extrapolating code
sharing efficacy from precision and recall of the method calls
suggested [32]. While these measures are valuable, they cannot
tell the whole story of how a community-based sharing system
will operate in practice.

In a situation where a large user pool is not available, we
suggest an approach that combines a longitudinal protocol with
user satisfaction surveys at regular intervals. In this case, users
have a longer time in which to benefit from sharing, and the
evaluation design explicitly addresses the user’s perceived
benefit from this sharing.

6. SUMMARY AND CONCLUSIONS
As a mechanism to improve usability, system-created
recommendations have been a part of end-user development
systems for a very long time. Unfortunately, few systems today
take advantage of recommender technologies to cope with the
increased scope of recommendation within EUD. Instead,
handcrafted rules limit the types of suggestions that today’s
systems can make. As such, usability and adoption suffer.

We identify four main classes of recommendation that could be
improved by using recommender technology:
• Inserting automation into the user’s workflow
• Helping the user make the right decisions

• Handling errors
• Supporting unplanned sharing

Each of these classes of recommendation could make
appearances in a variety of EUD systems, and as a whole they
address user needs across the entirety of an end-user
development workflow, from conceiving of a needed
customization, to programming it, to sharing it with others.

In the space of inserting automation, recommenders could
improve suggestions over shared repositories and perhaps
directly improve activity recognition algorithms. Here, the major
research challenges involve incorporating the user’s operating
environment into the recommendation algorithm to make the
recommendations appropriately context-aware.

For improving user decision making, recommenders can help to
organize the decision space, providing sensible defaults for a
number of programming decisions, such as performing dataflow
changes in an editor or choosing a best generalization in a PBD
system. Challenges here include making recommendations about
information-sparse decisions like simple edits. Again, context
awareness could help to solve this problem.

When handling errors, opportunities for recommender systems
are numerous, including suggesting potential problems, code
examples, and possible fixes. While suggesting code examples is
a fairly straightforward recommendation application, identifying
potential problems and fixes exposes recommender algorithms
to a nontraditional set of features to reason over. Learning
exactly what features allow recommenders to identify similar
programs is an interesting challenge we pose to the community.
Finally, supporting unplanned sharing allows recommender
systems to apply their ability to leverage communities to the
world of end-user development. Systems could help users to
identify reusable components, especially aiding novices.
Further, automatic identification of best practices could improve
performance even for advanced end-user developers.

In all of these cases, end-user development provides a natural
environment in which to evaluate recommendations in the
context of real user workflows. Many evaluations in the end-
user development space already combine user-centered
evaluation methods with algorithm performance evaluation;
user-centric evaluation of recommenders in this space simply
requires evaluators to extend existing protocol designs to isolate
the features unique to recommenders.
In conclusion, EUD systems have just begun to scratch the
surface of how recommendations can improve user experience.
By increasing communication between the EUD and
recommender communities and creating recommendations that
meet real user needs, we can move development out of the realm
of the specialist and into the real world.

7. ACKNOWLEDGEMENTS
This material is based upon work supported by the Defense
Advanced Research Projects Agency (DARPA) under Contract
No. FA8750-07-D-0185/0004. Any opinions, findings and
conclusions, or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of
the Defense Advanced Research Projects Agency (DARPA) or
the Air Force Research Laboratory (AFRL).

48

FULL PAPER

Proceedings of the ACM RecSys 2010 Workshop on User-Centric Evaluation of Recommender Systems and Their Interfaces (UCERSTI),
Barcelona, Spain, Sep 30, 2010

Published by CEUR-WS.org, ISSN 1613-0073, online ceur-ws.org/Vol-612/paper7.pdf

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.
This volume is published and copyrighted by its editors: Knijnenburg, B.P., Schmidt-Thieme, L., Bollen, D.

8. REFERENCES
[1] Adomavicius, G., Sankaranarayanan, R., Sen, S. and

Tuzhilin, A. 2005. Incorporating contextual information
in recommender systems using a multidimensional
approach. ACM Trans. on Information Systems. 23, 1
(2005), 103–145.

[2] Basili, V.R., Briand, L.C. and Melo, W.L. 1996. How
reuse influences productivity in object-oriented systems.
Communications of the ACM. 39, 10 (1996), 116.

[3] Boehm, B.W., Madachy, R. and Steece, B. 2000.
Software Cost Estimation with Cocomo II. Prentice Hall,
NJ.

[4] Brandt, J., Guo, P., Lewenstein, J., Dontcheva, M. and
Klemmer, S. 2009. Two studies of opportunistic
programming: Interleaving web foraging, learning, and
writing code. Proc. 27th Conference on Human Factors
in Computing Systems (2009), 1589–1598.

[5] Cypher, A. and Halbert, D.C. 1993. Watch What I Do:
Programming by Demonstration. MIT press.

[6] Cypher, A. 1991. EAGER: Programming repetitive tasks
by example. Proc. 9th Conference on Human Factors in
Computing Systems (New Orleans, LA, 1991), 33-39.

[7] Garvey, T., Gervasio, M., Lee, T., Myers, K., Angiolillo,
C., Gaston, M., Knittel, J. and Kolojejchick, J. 2009.
Learning by demonstration to support military planning
and decision making. Proc. 21st Conference on
Applications of Artificial Intelligence (2009).

[8] Gervasio, M., Lee, T.J. and Eker, S. Learning email
procedures for the desktop. Proc. AAAI 2008 Workshop
on Enhanced Messaging.

[9] Gervasio, M. and Murdock, J. 2009. What were you
thinking? Filling in missing dataflow through inference
in learning from demonstration. Proc. 14th Conference
on Intelligent User Interfaces (2009).

[10] Gilmore, D.J. 1991. Models of debugging. Acta
Psychologica. 78, 1-3 (1991), 151–172.

[11] Haines, W., Gervasio, M., Blythe, J., Lerman, K. and
Spaulding, A. 2010. A world wider than the web: End
user programming across multiple domains. No Code
Required. Morgan Kaufmann. 213-231.

[12] Hofmann, T. 2003. Collaborative filtering via Gaussian
probabilistic latent semantic analysis. Proc. 26th
Conference on Research and Development in Informaion
Retrieval (2003), 266.

[13] Horvitz, E., Breese, J., Heckerman, D., Hovel, D. and
Rommelse, K. 1998. The Lumière project: Bayesian user
modeling for inferring the goals and needs of software
users. Proc. of the 14th Conference on Uncertainty in
Artificial Intelligence (1998), 256–265.

[14] Ko, A.J., DeLine, R. and Venolia, G. 2007. Information
needs in collocated software development teams. Proc.
29th Conference on Software Engineering (2007), 344–
353.

[15] Ko, A.J. and Myers, B.A. 2004. Designing the whyline:
A debugging interface for asking questions about
program behavior. Proc. 22nd Conference on Human
Factors in Computing Systems (2004), 158.

[16] Ko, A.J. and Myers, B.A. 2008. Debugging reinvented.
Proc. 30th Conference on Software Engineering (2008),
301–310.

[17] Ko, A.J. and Myers, B.A. 2009. Finding causes of
program output with the Java Whyline. Proc. 27th
Conference on Human Factors in Computing Systems
(2009), 1569–1578.

[18] Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.,
Burnett, M., Erwing, M., Scaffidi, C., Lawrance, J.,
Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G.,
Shaw, M. and Wiedenbeck, S. 2010. The state of the art
in end-user software engineering. ACM Computing
Surveys. (2010).

[19] Landauer, T.K. and Dumais, S.T. 1997. A solution to
Plato's problem: The latent semantic analysis theory of
acquisition, induction, and representation of knowledge.
Psychological Review. 104, 2 (1997), 211–240.

[20] Leshed, G., Haber, E.M., Matthews, T. and Lau, T. 2008.
CoScripter: Automating & sharing how-to knowledge in
the enterprise. Proc. 26th Conference on Human Factors
in Computing Systems. (2008).

[21] Lieberman, H. 2001. Your Wish is My Command:
Programming by Example. Morgan Kaufmann, San
Francisco, CA.

[22] Lieberman, H., Paterno, F., Klann, M. and Wulf, V.
2006. End-user development: An emerging paradigm.
End User Development. (2006), 1–8.

[23] Mackay, W.E. 1990. Patterns of sharing customizable
software. Proc. Conference on Computer-Supported
Cooperative Work (Los Angeles, CA, 1990), 209-221.

[24] Masui, T. and Nakayama, K. 1994. Repeat and predict:
Two keys to efficient text editing. Proc. 12th Conference
on Human Factors in Computing (1994), 118–130.

[25] Nardi, B.A. 1993. A small matter of programming:
Perspectives on end user computing. The MIT Press.

[26] Nielsen, J. and Molich, R. 1990. Heuristic evaluation of
user interfaces. Proc. 8th Conference on Human Factors
in Computing Systems (1990), 249-256.

[27] Peintner, B., Dinger, J., Rodriguez, A. and Myers, K.
2009. Task assistant: Personalized task management for
military environments. IAAI-09. (2009).

[28] Ruvini, J. and Dony, C. 2000. APE: Learning user's
habits to automate repetitive tasks. Proc. 5th Conference
on Intelligent User Interfaces (2000), 229–232.

[29] Tassey, G. 2002. The economic impacts of inadequate
infrastructure for software testing. National Institute of
Standards and Technology, RTI Project. (2002).

[30] Wolfman, S., Lau, T., Domingos, P. and Weld, D. 2001.
Mixed initiative interfaces for learning tasks:
SMARTedit talks back. Proc. 6th Conference on
Intelligent User Interfaces (2001), 167–174.

[31] Wright, P.C. and Monk, A.F. 1991. The use of think-
aloud evaluation methods in design. SIGCHI Bull. 23, 1
(1991), 55-57.

[32] Ye, Y. and Fischer, G. 2005. Reuse-conducive
development environments. Automated Software
Engineering. 12, 2 (2005), 199–235.

[33] Yorke-Smith, N., Saadati, S., Myers, K.L. and Morley,
D.N. 2009. Like an intuitive and courteous butler: A
proactive personal agent for task management. Proc. 8th
Conference on Autonomous Agents and Multiagent
Systems-Volume 1 (2009), 337–344.

49

FULL PAPER

Proceedings of the ACM RecSys 2010 Workshop on User-Centric Evaluation of Recommender Systems and Their Interfaces (UCERSTI),
Barcelona, Spain, Sep 30, 2010

Published by CEUR-WS.org, ISSN 1613-0073, online ceur-ws.org/Vol-612/paper7.pdf

Copyright © 2010 for the individual papers by the papers' authors. Copying permitted only for private and academic purposes.
This volume is published and copyrighted by its editors: Knijnenburg, B.P., Schmidt-Thieme, L., Bollen, D.

