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ABSTRACT 
End-user development (EUD), the practice of users creating, 
modifying, or extending programs for personal use, is a valuable 
but often challenging task for nonprogrammers. From the 
beginning, EUD systems have shown that recommendations can 
improve the user experience. However, these usability 
improvements are limited by a reliance on handcrafted rules and 
heuristics to generate reasonable and useful suggestions. When 
the number of possible recommendations is large or the available 
context is too limited for traditional reasoning techniques, 
recommender technologies present a promising solution. In this 
paper, we provide an overview of the state of the art in end-user 
development, focusing on the different kinds of recommendations 
made to users. We identify four classes of suggestion that could 
most directly benefit from existing recommendation techniques. 
Along the way we explore straightforward applications of 
recommender algorithms as well as a few difficult but high-value 
recommendation problems in EUD. We discuss the ways that 
EUD systems have been evaluated in the past and suggest the 
modifications necessary to evaluate recommenders within the 
EUD context. We highlight EUD research as one area that can 
facilitate the transition of recommender system evaluation from 
algorithmic performance evaluation to a more user-centered 
approach. We conclude by restating our findings as a new set of 
research challenges for the recommender systems community. 

Categories and Subject Descriptors 
H.1.2 [Models and Principles]: User/Machine Systems – end-
user development, recommender systems. 

General Terms 
Algorithms, Design, Experimentation, Human Factors. 

Keywords 
end-user development, recommender systems. 

1. INTRODUCTION: THE CASE FOR 
END-USER DEVELOPMENT 
Computing devices are ubiquitous in today’s professional 
environments and are increasingly invading our homes and mobile 
lives. Unfortunately, a deep understanding of these systems, and 
the ability to modify them, remains confined to the realm of the 
specialist. While the human-computer interaction community has 
made great strides in improving software usability, it has devoted 
far less attention to making systems customizable by end-users 
[22]. We argue here that existing recommender techniques can 
make a meaningful contribution toward increasing the usability, 
and therefore the acceptance and proliferation, of customizable 
software. 

The current state of the art in user-centered software design is to 
engage users in an iterative design process and to test systems 
with users to refine the interaction design. Customization, if 
available, is built into the system at design time as a bounded 
number of user-selectable options. However, as workflows and 
processes change over time, even customized software 
applications need updates. Currently, the burden of these updates 
falls on the shoulders of professional developers, but the pool of 
users needing customizations is expected to grow much faster 
than the supply of professional software engineers [3].  

One promising approach is end-user development (EUD), the 
practice of users creating, modifying, or extending programs for 
personal use [22,18]. This approach has two main benefits. One, it 
puts systems design in the hands of the domain experts who are 
most familiar with what needs should be met. Two, it scales with 
both a rapid increase in users and the increasing rate of change of 
many business processes. Unfortunately, EUD faces one major 
challenge—most end users do not have the specialized knowledge 
currently required to perform even basic development tasks [25].  

As such, EUD research mainly focuses on approaches for 
lowering the barrier of entry to software development. Such 
approaches cover a wide spectrum, from enhancing the macros 
and spreadsheets that millions use every day to sophisticated 
algorithms that create programs by example without ever 
exposing the user to textual code [22]. While the technology 
behind these approaches may vary a great deal, there are some 
crosscutting techniques that seem to improve usability across the 
spectrum of EUD systems. In this paper, we will discuss one 
particular mechanism for improving user performance—system-
generated recommendations.  

As early as 1991, EUD systems like EAGER were using simple 
proactive suggestions as a component of their user interaction [6]. 
When the system detects that the user is performing an iterative 
task, it suggests a sequence of actions for completing the iteration 
automatically. In this case, the recommendation algorithm is 
straightforward, owing to the fact that there is only one 
recommendation type. If the system can complete the iteration it 
makes the recommendation, otherwise it does not.  

Nearly twenty years later, advances in EUD systems have greatly 
expanded the opportunities for offering recommendations; 
however, most approaches continue to rely on constrained forms 
of recommendation that use handcrafted rules to make limited 
types of suggestions. In this paper, we explore the different 
classes of recommendations made in EUD systems, highlighting 
the areas where current approaches fall short and how 
recommender technologies can help fill the gap. Concurrently, we 
emphasize the ways in which these systems have been evaluated 
to date and discuss the ways in which such approaches will need 
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Figure 1. WARP identifies that the user is delayed in creating a document and offers to help [33]. 

modification to successfully evaluate integrated recommenders. 
We believe that by evaluating recommender systems in a user-
focused context like EUD, researchers can facilitate the 
transition of recommender system evaluation from a focus on 
algorithm performance evaluation to a more user-centered 
approach. 

2. INTEGRATING AUTOMATION INTO 
THE USER'S WORKFLOW 
A core tenet of user-centered design is to create systems that 
mesh with users’ existing workflows and environments [3]. 
EAGER is an early example of a tool that incorporates system 
suggestions to help “fit [end-user development] into the user's 
existing workflows” [18]. The focus on workflow integration is 
very important; it is likely that users will ignore an EUD system 
whose barrier to entry is too high. One approach to workflow 
integration, suggested by Lieberman, is to make “the cognitive 
load of switching from using to adapting … as low as possible” 
[22]. One way EUD systems have achieved this low barrier is by 
offering to automate portions of the user’s workflow, essentially 
bypassing an explicit programming process and attempting to 
directly accomplish the user’s task instead.  

2.1 Current Approaches 
One of the earliest approaches to EUD was programming by 
demonstration (PBD), also known as programming by example 
[5,21]. Many PBD systems rely on users explicitly 
demonstrating the process to be automated. However, some 
systems instead rely on implicit examples, continuously 
observing the user’s actions to find repetitions over which they 
can learn a looping program to complete the user’s task. 
Examples include EAGER, Dynamic Macro, and APE [6,24,28]. 
By recommending automation directly within the user’s 
workflow, these systems achieve EUD transparently, without the 
user’s awareness of having programmed the system. However, 
they are limited to automating repetitive tasks within the space 
of the looping programs they can generate.  

A more general approach to automation within the user’s 
workflow relies on activity recognition to observe what the user 
is doing and infer what that user is trying to accomplish. In 
combination with some mechanism for determining appropriate 
assistance, the system can use activity recognition to assist with 
the completion of a task. For example, Lumière uses Bayesian 
user models to offer context-dependent assistance [13]. While 

Lumière can offer assistance on a wider variety of tasks than the 
PBD systems focused on repetitive tasks, it is limited to 
assisting the tasks encoded by the developers, unlike PBD 
systems, which acquire looping programs on the fly. 
Some systems combine aspects of both approaches. WARP  
(Figure 1), like Lumière, utilizes probabilistic models for 
activity recognition on a wide variety of tasks [33]. However, its 
meta-level assistance patterns are designed to work over a 
knowledge base of procedures rather than a developer-defined 
set of tasks. Because of this, the system not only can offer to 
automate more complex tasks but, through EUD, can continue to 
extend its knowledge base to handle a wider variety of tasks. 

Task Assistant is another system that makes recommendations 
over an extensible knowledge base [27]. It allows users to 
explicitly define a workflow that groups of users collaboratively 
execute. It promotes automation by allowing the user to 
manually attach automated procedures, often produced by EUD, 
that support individual tasks in the workflow. Task Assistant 
uses these manual attachments to inform its suggestions for 
attaching other automated procedures to future tasks.  

2.2 Recommender Systems Opportunities 
EUD systems that make automation recommendations within a 
user’s workflow provide a gentle transition from the user’s core 
workflow into the world of programming, as users are generally 
not even aware that programs are being created or selected for 
execution. While current systems already provide useful EUD 
assistance, the use of recommender technology raises the 
possibility of further improvement. 

2.2.1 Recommending shared procedures 
EUD systems such as WARP and Task Assistant, which utilize a 
potentially unbounded set of automated procedures, offer the 
greatest opportunity for the application of recommender 
technology. Consider a shared procedure repository for the 
members of an organization. As the library of assistive 
procedures grows, handcrafting the rules or patterns for 
recommendation becomes more difficult. The problem is 
exacerbated when there are multiple criteria for evaluating 
procedure quality or applicability within a given context. As 
new procedure sources (e.g., web services, new EUD systems) 
continue to proliferate, the problem of finding and automating 
procedures and associating them to user tasks and workflows 
will only increase in frequency and importance. 
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For example, suppose the system determines that a user wants to 
schedule a meeting with some coworkers. The procedure 
repository may contain dozens of meeting scheduling 
procedures—some idiosyncratic to a given organization, some 
specific to certain types of meetings, and some buggy or 
outdated. Even if the procedure repository was constrained only 
to meeting scheduling, it would be difficult to craft a set of rules 
that covered all situations. Using recommender technology, one 
could imagine leveraging information about what other users 
have found useful (or not) to make better decisions about what 
procedures to recommend. The challenge is in incorporating 
sufficient context from the user’s current activity into the 
recommendation algorithms.  

2.2.2 Improving activity recognition 
Instead of applying recommender technology only after 
determining what the user is doing, one could also imagine a 
system like WARP applying a recommender within the activity 
recognition algorithm itself. In this case, the algorithm might be 
able to narrow its search space to the activities that similar 
people have automated or been assisted with in the past. Such an 
enhancement would be particularly valuable in the case where 
the number of identifiable activities is very high. 

2.3 Evaluation 
To evaluate a recommender’s ability to improve an EUD 
system’s level of integration into a user’s workflow, system 
designers must take a more user-centered approach than is 
traditional in recommender system evaluation. Instead of 
focusing on algorithmic performance of independent predictions 
involving a single, primitive task, EUD evaluation must situate 
itself in the context of a user performing a task, often comprising 
multiple subtasks. For Dynamic Macro and APE, this meant 
considering task performance time and user acceptance as part 
of the success criteria for the application [24,28]. Other systems 
may be able perform post-hoc analysis on user logs and avoid 
addressing the user’s workflow directly, but regardless of 
methodology, the type and complexity of the user’s task to 
automate will have some effect on the evaluation results [9]. 

The tasks supported by EUD systems are generally more 
complex than the simple viewing or purchasing decisions 
assisted by a traditional recommender system, so task-oriented 
evaluation can become particularly tricky. When testing even a 
simple task, it is can be difficult to tease apart user interface and 
algorithmic concerns. When the task becomes more complex, a 
simple design mistake can limit the user’s ability to complete a 
task, rendering analysis of a recommender’s efficacy difficult.  

In such cases, it is desirable to control for user interface 
variation using a two-step process. First, a series of short 
qualitative studies can quickly identify high-priority user 
interface problems that can confound later study results. We find 
that think-aloud and heuristic evaluation protocols are well 
suited for this purpose [31,26]. After resolving the issues 
identified qualitatively, one can perform a controlled experiment 
that compares the user interface with a naïve recommendation 
implementation against the same user interface backed by more 
sophisticated algorithms.  

A final consideration for evaluating increased automation and 
activity recognition is that recommendations may occur 
infrequently in comparison to the entire duration of the user’s 
workflow. In this situation, longitudinal study protocols are 

appropriate. In the PBD space, Dynamic Macros and LAPDOG 
both worked with logs collected over an extended period of time 
[24,8]. For activity recognition, such evaluations do not yet exist 
in the literature, but one possible approach is a hybrid diary/log 
study that captures both logging information about when a task 
is recognized appropriately and diary entries capturing instances 
where the user expected a recommendation and received none. 

3. HELPING THE USER MAKE THE 
RIGHT DECISIONS 
The cognitive burden on end-user developers can be further 
reduced, and their task performance improved, by providing 
recommendations that help them make better programming 
decisions. This approach can be of particularly high impact in 
EUD systems that require a mixed-initiative interaction with the 
user—with appropriate recommendations, the user and system 
can move through their dialog more quickly and with fewer 
errors. By using the recommendations to sort lists of 
programming decisions by likelihood of correctness, EUD 
systems can help users make the right decisions in an 
unobtrusive, easy-to-override fashion. 

3.1 Current Approaches 
The Integrated Task Learning (ITL) system provides a 
procedure editor that takes advantage of recommendations to 
produce sensible defaults [11]. For example, to edit the data 
flow in a procedure, a user clicks on the argument to edit, and 
the procedure editor provides a list of suggested changes (Figure 
2). The suggestions in this case are based on reasoning about the 
procedure using scope and type information. This bounds the 
recommendation space to suggestions that would not result in an 
invalid procedure; however, the system currently makes no 
attempt to rank the suggestions in any other way. 

Another task in EUD where sensible default behavior is 
important is the generalization performed by PBD systems 
[5,21]. Because users need to provide the demonstrations from 
which PBD systems learn, a primary challenge is to find the 
correct generalization with as few examples as possible. One 
way to do this is to involve the user in the generalization process 
by presenting candidate generalizations and letting the user pick 
the correct one. Past systems have explored several different 
methods for selecting the candidates to present to the user. For 
example, SMARTedit performs conservative generalization 
within a well-defined version space and then uses a probabilistic 
weighting scheme to rank alternative generalizations [38].  

 
Figure 2. Clicking on ‘resized image 1’ in ITL provides 
suggestions under the heading ‘Use an existing value:’. 
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CHINLE uses a similar scheme not just to rank the candidates 
but also to color-code its interface [9]. LAPDOG uses heuristics 
to guide the inferencing it performs to explain connections 
between parameters and filter out unlikely generalizations [15].  

3.2 Recommender Systems Opportunities 
For this class of problem, recommender systems would likely sit 
behind the scenes, transparently organizing the plethora of 
options that systems currently present to the user. Potentially, 
this input could even cause systems to suppress options that are 
highly unlikely to be to be useful. 

3.2.1 Suggesting preferred defaults 
For a system like ITL, the primary limitation for reasoning is 
that for large procedures, the number of valid suggestions can be 
large, and if the user’s desired edit does not appear high in the 
list of alternatives, that user’s task performance can suffer. As 
with procedure recommendation, in large repositories, 
collaborative or social recommender techniques could also be 
used to improve recommended edits. However, a key difference 
is that the possible edits are information sparse compared to 
procedures. Algorithms would need to utilize the 
recommendation context even more to make appropriate 
suggestions, i.e. “other users in this situation tended to make 
change A” rather than “other users generally like you tended to 
make change A.” Leveraging this context presents a challenge 
that recommender systems are only beginning to explore [1]. 

3.2.2 Suggesting more likely generalizations 
The approach of presenting users with candidate generalizations 
and letting them choose the correct generalization is appealing 
because it transforms the difficult problem (for the system) of 
divining user intent into the relatively easier problem (for the 
user) of recognizing the correct generalization. However, with 
very few demonstrations, the number of alternative 
generalizations can become prohibitively large and determining 
the best ones may be difficult. PBD systems can thus benefit 
from mechanisms to organize the space of options and provide 
guidance toward reasonable generalizations. 

Collaborative or social recommendations may help determine 
what and how to generalize. For example, in SMARTedit, a 
recommender system could speed up learning by suggesting a 
higher level of generalization based on how other similar actions 
were generalized in past procedures. And in LAPDOG, the 
preferences over different explanations could be derived from 
the explanations selected to explain similar actions in procedures 
developed by colleagues within an organization. 

3.3 Evaluation 
When determining the extent to which recommendations help 
users to make appropriate decisions, there are two phases in 
which a rigorous evaluation can be helpful: design time and 
implementation time. Post-implementation evaluations are 
common in the EUD literature but often fail to provide insight 
into the utility of the system in the field. Design evaluations are 
less common, although they are discussed for some systems, 
including ITL and CoScripter [11,20]. Such evaluations can 
define the types of recommendations that are beneficial to the 
user and to establish a set of ideal recommendations against 
which to evaluate actual algorithm performance in context. 

For ITL, early application of think-aloud design evaluation 
methods proved useful to determine that recommended defaults 

would make a big difference in user performance [11]. 
Interestingly, it was possible to discover this insight using a 
wizard-of-oz protocol and thus the study required no actual 
recommender implementation. The lesson here is that it is 
possible to evaluate important EUD user interactions without 
having to settle on a recommender algorithm upfront. 
In the space of recommending likely generalizations, evaluations 
have focused primarily on measuring whether the selected PBD 
algorithm can find the correct generalization—for example, in 
terms of whether it includes the correct generalization or if 
makes a correct predication using the generalization and ranks it 
highly [9,30,5]. In LAPDOG, there is an assumption that users 
will be able to recognize the correct generalization reasonably 
easily. However, many programming constructs, particularly 
when they include variables, are not easy for end users to 
comprehend. SMARTedit and CHINLE circumvent the 
generalization issue by presenting concrete predictions about the 
next step to execute in the context of a specific task. In this 
approach, users never have the sense of creating an actual 
program. Another interesting approach is sloppy programming, 
which represents programs in a pseudo-natural language that is 
interpretable by both humans and computers [22]. In general, 
PBD approaches that require the presentation of learned 
programs to users, whether for verification or for selection, need 
to identify the barriers to understanding such programs. For such 
cases, design-time survey methods may help to determine how 
users conceptualize the space of generalizations, leading system 
designers to more insight about how to create UI affordances to 
help users navigate the space of recommended generalizations. 

4. HANDLING ERRORS 
Much as is the case with professional programmers, end-user 
programmers spend a large proportion of their time debugging 
[29,14]. Consequently, many EUD systems provide mechanisms 
to help users identify and correct errors within their programs. 
Traditional debugging environments provide tools that allow 
developers to explore their code and track down errors; 
however, this exploration is left largely up to the user. A 
growing body of research suggests that for many users, this 
exploration process is hypothesis driven [10]. Unfortunately, 
when users do not have adequate knowledge of exactly how 
their programs execute, they can have difficultly formulating 
correct debugging hypotheses. 

4.1 Current Approaches 
Ko’s Whyline provides a novel approach to supporting 
hypothesis-driven debugging by suggesting “Why?” questions 
for the user to explore when debugging (Figure 3) [17,15]. Its 
current implementation is more focused on professional 
developers than “end-user” developers, but it has been 
successfully implemented in novice programming environments 
and could be extended to pure-EUD systems [15]. 

 
Figure 3. Whyline generates a set of possible questions about 

the black rectangle [17]. 
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By recording and analyzing program execution and relating it 
back to the source code, Whyline is able to generate questions 
that focus on why a particular code segment behaved in a certain 
way rather than simply on why the program produced certain 
output [17]. By automatically identifying code related to 
failures, Whyline bounds the space of appropriate debugging 
hypotheses and helps programmers avoid guesses about 
irrelevant code segments.  

Whyline generates its questions and answers automatically using 
heuristics and program slicing [16]. Questions are limited by 
two heuristics. The first heuristic relates to how users debug: 
hypotheses must reference observable failures. The second 
heuristic limits the number of possible entities to questions 
about code that the user wrote or directly referenced, with the 
expectation that the user will not ask questions about totally 
unfamiliar code. Once Whyline generates a set of questions, it 
extracts answers using program slicing to generate a “causal 
chain” of the code executed [16]. It then presents the questions 
to the user, fetching answers on demand. 

Another approach to error handling is to take the act of 
debugging out of the user’s hands entirely by automatically 
verifying the program for correctness before something goes 
wrong. For some classes of programming problems, EUD 
systems can detect errors and provide suggested fixes without 
forcing the user to search for problems. The ITL procedure 
editor takes this approach when possible (Figure 4) [11]. 

When the user performs an edit that causes an error, such as 
unbinding a variable, the editor detects the error via static 
analysis, marking the offending action. When the user clicks on 
the error icon, the system suggests solutions for that error. The 
solutions are parameterized to fit the given situation, but there 
are only a limited number of solutions at the present time [11].  

4.2 Recommender Systems Opportunities 
Whyline uses highly dynamic techniques to generate its 
hypothesis recommendations; however, it is still limited by its 
output and familiarity heuristics. Both exist to limit the number 
of questions and reduce time necessary to perform program 
slicing; however, as with all heuristics, they may not be correct 
all the time. By reducing the question space using 
recommendations rather than static heuristics, Whyline could 
find more bugs without sacrificing the processing time required 
to slice the program for every possible output primitive. 

4.2.1 Suggesting potential problems based on 
similar programs 
Users do not always test their programs on every possible 
execution path, so the observed output heuristic captures only a 
subset of the bugs that actually exist. A recommender that works 
over a community pool of debugged programs could suggest 
potential problem areas outside of the observed output based on 
problem areas in similar programs. This approach requires 
algorithms to be able to determine what features indicate 
programmatic similarity, a more difficult task than many 
traditional recommender applications. Nevertheless, programs 
are information-rich—the core problem is identifying what 
information is most relevant to determining similarity. 

4.2.2 Suggesting examples 
It is likely that users will be less successful debugging code with 
which they are unfamiliar. The familiarity heuristic weeds out  

 
Figure 4. ITL alerts the user that ‘saved attachments 1’ is 

unbound and suggests two ways to fix the problem. 
libraries that the user cannot modify without source code access, 
but it does not actually address the root cause of the 
unfamiliarity that leads to coding problems. A recommender of 
relevant code examples for problem application programming 
interfaces (APIs) could go a long way toward helping users 
debug calls into unfamiliar source. In fact, Brandt suggests that 
“opportunistic programming,” based on web searches of code 
examples and tutorials, constitutes a primary programming 
approach for novice programmers [4]. His work on supporting 
this sort of programming focuses on how to improve user code 
browsing experiences, but recommendations do not make up the 
core of the approach. It may well be fruitful to see how system-
driven recommendations interact with user-driven browsing to 
support opportunistic programmers. 

4.2.3 Suggesting solutions to programming 
problems 
Once errors are identified, recommending a subsequent fix is 
likely to be a highly relevant challenge for the recommender 
community. Here, current systems tend to pre-engineer 
relatively simple solutions to straightforward errors. If one could 
instead capture the ingenuity of an entire EUD system user 
community, it may be possible to propose solutions for more 
complex classes of problems. By creating a data set out of the 
problems and solutions faced by previous end-user developers, 
recommenders could suggest, and with some extension possibly 
apply, novel solutions to programming problems initially 
unanticipated by the creators of EUD systems. Such an advance 
would make EUD systems much more robust to unexpected 
programming challenges. 

4.3 Evaluation 
Whyline’s evaluation consisted of a task-focused controlled 
experiment of debugging approaches [17]. Such a protocol also 
lends itself to the evaluation of error-handling recommenders 
because it provides a solid task context while still allowing the 
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experimenter to isolate algorithmic performance from user-
interface design choices. For Whyline, a traditional breakpoint 
debugging system served as the control condition, and user task 
completion defined the success criteria. Thus, the experiment 
tested hypotheses about how the interaction design paradigm 
would affect user task performance 
To test the recommender opportunities above, one would instead 
control for user interface deviation and vary the 
recommendations while still measuring task completion to 
evaluate the success of each condition. To manage user interface 
variation, we again suggest following the two-step approach 
advocated in section 2.3, first isolating and solving confounding 
user interface problems qualitatively, and then comparing task 
performance on interface without recommendations against an 
interface with recommendations. 

Other possible conditions to test include recommendation 
domains of varying size or composition. Likewise, testing 
tunable parameters like recommendation confidence or 
recommendation diversity could yield insights into exactly what 
sorts of error-handling recommendations provide the most value 
to end user developers. 

5. SUPPORTING UNPLANNED SHARING 
End-user programmers, by definition, do not set out to create 
programs for others; however, unplanned sharing is a frequent 
side effect of EUD [23]. Even if end users do not plan on 
sharing their programs, they can often benefit from using 
someone else’s code. While many early EUD systems lacked a 
community and, by extension, lacked sharing, several systems 
now leverage this powerful capability. 

5.1 Current Approaches 
Two systems that benefit from sharing are ITL, which provides 
a demonstration-based EUD environment for collaborative 
military command and control, and Task Assistant, which allows 
users to explicitly encode best-practice workflows in a sharable 
way [7,27]. An even more widely used application is the 
CoScripter web automation system. Its relatively wide adoption 
provides a case study in how sharing can affect a community of 
end-user programmers [20]. While both ITL and CoScripter 
provide end users with a rich repository of programs to share, 
neither currently provides sharing support past simple browsing 
and search.  

 
Figure 5. CodeBroker suggests that the user use the 

predefined getInt() method rather than the user’s newly 
created getRandomNumber() method [32]. 

This sort of aid does not go far enough because users generally 
do not have sufficient familiarity with large codebases to know 
when code that solves their problems already exists [32]. Ye et 
al. suggest that “information push” (proactive recommendation) 
is one mechanism to assist users in such situations.  

The CodeBroker system is one example of proactive 
development support. It recommends API calls to the user based 
on programming context (Figure 5) [32]. While it is not focused 
on “end-user” developers, it is straightforward to imagine using 
similar mechanisms for a code repository like the one used by 
CoScripter. CodeBroker generates its recommendations by 
gathering context from code comments. Then it applies Latent 
Semantic Analysis (LSA) to determine what components in the 
code base are conceptually similar to the concepts described by 
comments [19]. It further reduces the suggestion space by 
applying signature matching to only suggest API calls that are 
close type matches to the current calling context. 
In the case that the above technique does not produce 
satisfactory results, the programmer can create a “discourse 
model” to manually identify suggestions that were not relevant 
[32]. Such irrelevant suggestions are not displayed in future 
queries. The system expands this concept to also include “user 
models” that manually identify code with which the user is 
already very familiar. Following the intuition that users do not 
want to get suggestions for familiar code, user models also serve 
to reduce the suggestion space for a given user. It is important to 
note, however, that in CodeBroker users manually create both 
the discourse and user models and must know a specific syntax 
for doing so. 

5.2 Recommender Systems Opportunities 
Community has not always been a central focus in EUD, but as 
recent systems push the boundaries toward more and more 
collaboration, community-based recommender systems seem to 
be a good fit. More users typically means more possible 
recommendations, and recommender algorithms can help EUD 
systems to cope with this increased scale. 

5.2.1 Suggesting reusable code elements 
LSA has been integrated previously into a collaborative filtering 
algorithm, so one could imagine implementing similar 
recommendation techniques within CodeBroker [12]. The 
system’s major usability problem for end-user developers is 
likely to be its manually specified user and discourse models. 
Users are not apt to learn a brand-new programming syntax just 
to remove non-salient recommendations. If users can instead 
provide positive/negative feedback regarding the system 
recommendations, recommender technology could be used to 
acquire user profiles for making desirable recommendations 
based on individual user feedback as well as collective group 
feedback. In the latter case, by driving such a system with 
simple ratings rather than a complex programming syntax, users 
become more likely to actually provide the feedback necessary 
for the system to tailor its behavior to meet their preferences. 

5.2.2 Assisting novices 
Higher hurdles remain for EUD systems that are actually 
focused on novice programmers. Not only do these 
programmers not know what API calls exist, but they are also 
likely to misuse such calls. As discussed in Section 4.2.2, 
recommendations that also include code examples can be useful 
to teach novice opportunistic programmers how to reuse code.  
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5.2.3 Suggesting best practices 
Suggesting code reuse is only half of the battle. End-user 
developers are unlikely to aim to create reusable code when their 
core goal is to program for personal use [18]. This is 
unfortunate, because by creating more reusable code, users can 
not only facilitate reuse by others but also make more robust, 
flexible programs for themselves [2]. It is difficult to get users to 
code to appropriate levels of abstraction, and current EUD 
systems have to attempt to build such abstractions into the 
development environment [18]. One possibility is to recommend 
code structures that reflect the code abstractions created by the 
most experienced programmers in an EUD community. 
Recommender technology could facilitate suggesting 
appropriate code abstractions to novice programmers working 
on programs similar to those already solved by experts. 

The workflows in Task Assistant explicitly encode best 
practices, and therefore are ripe for sharing. The difficulty for 
recommender systems in this case is the possibly endless copies 
of very similar workflows. For example, in a large company or 
community, subgroups may have many similar, but distinct, 
workflows for hiring a new employee. The best workflow for a 
given user depends on factors such as the user’s usage history, 
which other users have used particular versions, and the 
relationship between the current user and the other users. A 
hybrid of collaborative filtering and more personalized 
recommendation techniques promises to improve such 
recommendations. 

5.3 Evaluation 
Sharing is a particularly difficult user need to evaluate because a 
realistic evaluation must be situated within a community of 
users. CoScripter was able to overcome this difficultly by 
selecting users to interview based on indicators gathered from 
broad-based logging of user activities [20]. Unfortunately, this 
approach is difficult to replicate without a critical mass of users 
such as the one CoScripter enjoys. Without such a user pool, the 
CodeBroker evaluation protocol falls back on extrapolating code 
sharing efficacy from precision and recall of the method calls 
suggested [32]. While these measures are valuable, they cannot 
tell the whole story of how a community-based sharing system 
will operate in practice.  

In a situation where a large user pool is not available, we 
suggest an approach that combines a longitudinal protocol with 
user satisfaction surveys at regular intervals. In this case, users 
have a longer time in which to benefit from sharing, and the 
evaluation design explicitly addresses the user’s perceived 
benefit from this sharing. 

6. SUMMARY AND CONCLUSIONS 
As a mechanism to improve usability, system-created 
recommendations have been a part of end-user development 
systems for a very long time. Unfortunately, few systems today 
take advantage of recommender technologies to cope with the 
increased scope of recommendation within EUD. Instead, 
handcrafted rules limit the types of suggestions that today’s 
systems can make. As such, usability and adoption suffer. 

We identify four main classes of recommendation that could be 
improved by using recommender technology:  
• Inserting automation into the user’s workflow 
• Helping the user make the right decisions 

• Handling errors 
• Supporting unplanned sharing 

Each of these classes of recommendation could make 
appearances in a variety of EUD systems, and as a whole they 
address user needs across the entirety of an end-user 
development workflow, from conceiving of a needed 
customization, to programming it, to sharing it with others. 

In the space of inserting automation, recommenders could 
improve suggestions over shared repositories and perhaps 
directly improve activity recognition algorithms. Here, the major 
research challenges involve incorporating the user’s operating 
environment into the recommendation algorithm to make the 
recommendations appropriately context-aware. 

For improving user decision making, recommenders can help to 
organize the decision space, providing sensible defaults for a 
number of programming decisions, such as performing dataflow 
changes in an editor or choosing a best generalization in a PBD 
system. Challenges here include making recommendations about 
information-sparse decisions like simple edits. Again, context 
awareness could help to solve this problem. 

When handling errors, opportunities for recommender systems 
are numerous, including suggesting potential problems, code 
examples, and possible fixes. While suggesting code examples is 
a fairly straightforward recommendation application, identifying 
potential problems and fixes exposes recommender algorithms 
to a nontraditional set of features to reason over. Learning 
exactly what features allow recommenders to identify similar 
programs is an interesting challenge we pose to the community. 
Finally, supporting unplanned sharing allows recommender 
systems to apply their ability to leverage communities to the 
world of end-user development. Systems could help users to 
identify reusable components, especially aiding novices. 
Further, automatic identification of best practices could improve 
performance even for advanced end-user developers. 

In all of these cases, end-user development provides a natural 
environment in which to evaluate recommendations in the 
context of real user workflows. Many evaluations in the end-
user development space already combine user-centered 
evaluation methods with algorithm performance evaluation; 
user-centric evaluation of recommenders in this space simply 
requires evaluators to extend existing protocol designs to isolate 
the features unique to recommenders. 
In conclusion, EUD systems have just begun to scratch the 
surface of how recommendations can improve user experience. 
By increasing communication between the EUD and 
recommender communities and creating recommendations that 
meet real user needs, we can move development out of the realm 
of the specialist and into the real world. 
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