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1 Introduction

In Description Logics the infereneaost specific concefinsc) constructs a concept de-
scription that generalizes an individual into a conceptdpton. For the Description
Logic £C the msc needs not exist [1], if computed with respect to gaiE-TBoxes.
However, it is still possible to find a concept descriptioattls the msc up to a fixed
role-depth. In this paper we present a practical approacbdimputing the role-depth
bounded msc, based on the polynomial-time completion dkgorfor ££. We extend
this method to a simple probabilistic variant&f that can express subjective probabil-
ities and that was recently introduced in [6]. The probahdiDL that we use, called
Prob<£%", allows only a fairly limited use of uncertainty. More preely, it is only pos-
sible to express that a concepayhold (P~¢C), or that it holdsalmost surelyf(P—, C).
Despite its limited expressivity, this logic is interesgfidue to its nice algorithmic prop-
erties; as shown in [6], subsumption can be decided in polyaltime and instance
checking can be performed in polynomial time as well.

Many practical applications that need to represent praistibinformation, such as
medical applications or context-aware applications, rteetharacterize that observa-
tions only hold with certain probability. Furthermore, sleeapplications face the prob-
lem that information from different sources does not calear that different diagnoses
yield differing results. These applications need to “imgtg” differing observations for
the same state of affairs. A way to determine what the diffeigformation sources
agree upon is to represent this information as ABox indiald@and to find a common
generalization of these individuals. A description of sacheneralization of a group
of ABox individuals can be obtained by applying the so-ahbettom-up approacfor
constructing knowledge bases [4]. In this approach a setdifiduals is generalized
into a single concept description by first generating the afsach concept and then
apply the least common subsumer (Ics) to the set of obtaioedept descriptions to
extract their commonalities.

The second step, i.e., a computation procedure for the ajppative Ics has been
investigated fo£L and Prob€£%" in [8]. In this paper we present a similar procedure
for the msc. We devise a practical algorithm for computing thhsc up to a certain
role-depth foré£ and Prob€£%". The so-calledi-msc obtained by the algorithm is
still a generalization of the input, but not necessarily lggst one — in this sense it
is only an approximation of the msc. Moreover, our algorihane based upon the
completion algorithms fo€£ and Prob&£2' and thus can be easily implemented on
top of reasoners of these DLs. Due to space limitations thefpican be found in [7].



2 &L and Prob-£L

We introduce the DIEL and its probabilistic variant Proﬁﬁgl. Let Ny, Nc andNg be
disjoint sets oindividual-, concept-androle namesrespectivelyProb-£ £ -concept
descriptionsare built using the syntax rule

C:=T|A|CND|3Ir.C|PsoC|P=C,

whereA € N¢, andr € Ng. EL-concept descriptions are Préle?! -concept descrip-
tion that do not contain the constructdps, or P—;.

A knowledge bask = (7, .A) consists of a TBog and an ABoxA. An EC- (Prob-
£L£2-)TBox is a finite set ofoncept inclusiongCls) of the formC' C D, whereC, D
are EL- (Prob< L2 -)concept descriptions. AGL-ABox is a set of assertions of the
form C(a),r(a,b), whereC' is an&L-concept descriptiom; € Ny, anda,b € Ny. A
Prob< £2'-ABox is a set of assertions of the fox@{a), 7(a, b), P~or(a, b), P=17(a, b),
whereC is a Prob& £2'-concept description; € Ny, anda, b € Ny.

The semantics of is defined by means of interpretatidhs= (A%, -7) consisting
of a non-emptydomainAZ and aninterpretation function? that assigns binary rela-
tions onA? to role names, subsets af to concepts and elements 4f to individual
names. For a more detailed description of this semantieq3je

An interpretatiorf satisfiesa conceptinclusiod’ C D, denoted ag = C C D if
CT C D%, it satisfiesan assertioi€(a) (r(a, b)), denoted ag = C(a) (Z = r(a,b))
if aZ € O ((a,b?) € rT). Itis amodelof a knowledge bask = (7, A) if it satisfies
all Clsin7 and all assertions isl.

The semantics of ProB£°! generalizes the semantics&. A probabilistic inter-
pretationis of the form

T = (A%, W, (Zw)wew, 1),

whereAZ is the (non-emptyylomain W is a set ofworlds 1 is a discrete probability
distribution onWV, and for each worldv € W, Z,, is a classicatEL interpretation with
domainA?, wherea?w = o« foralla € N;, w,w’ € W. The probability that a given
element of the domaiid € A belongs to the interpretation of a concept nanie

pa(A) = p({w e W |de A™}).

The functionsZ,, andp? are extended to complex concepts in the usual way for the
classicallL constructors, where the extension to the new construétors defined as

(P>oC)F :={d e AT | p3(C) >0}, (Po1O)P» :={d € AT | p3(C) = 1}.

A probabilistic interpretatio satisfiesa concept inclusio® C D, denoted ag
C C D if for everyw € W it holds thatCZ» C DZw. It is amodelof a TBox 7 if
it satisfies all concept inclusions if. Let C, D be two Prob€£%' concepts and” a
TBox. We say that” is subsumedy D w.r.t. 7 (C ¢ D) if for every modelZ of
7 it holds thatZ = C C D. The probabilistic interpretatiof satisfieshe assertion
P-or(a,b) if u({w € W | I, = r(a,b)}) > 0, and analogously foP—,r(a,b). Z
satisfiegshe ABox A if there is aw € W such thatZ,, = A.



Finally, an individuala € N is aninstanceof a concept descriptiod’ w.r.t. K
(K = C(a)) if T = C(a) for all modelsZ of K. The ABox realization problens to
compute for each individual in A the set of named concepts frdéthat haven as an
instance and that are least (w.E4). In this paper we are interested in computing most
specific concepts.

Definition 1 (most specific concept)Let £ be a DL,K = (7, A) be aL-KB. Themost
specific concepimsc) of an individuak from A is the £-concept descriptiod’ s. t.

1. K = C(a), and
2. for eachZ-concept descriptio® holds: K = D(a) impliesC Cr D.

The msc depends on the DL in use. For the DLs with conjuncBaroacept constructor
the msc is, if it exists, unique up to equivalence. Thus itigtified to speak afhemsc.

3 Completion-based Instance Checking Algorithms

Now we briefly sketch the completion algorithms for instasbecking in£L [2] and
Prob< %" [6].

3.1 Completion Algorithms for £C

Assume we want to test for afC-KB K = (7,.4) whetherK = D(a) holds. The
completion algorithm first augments the knowledge basetogdunicing a concept name
for the complex concept descriptidn from the instance check, i.e., it sés= (7 U

{A, = D}, A), whereA, is a new concept name not appearing<inThe instance
checking algorithm fo€L works on normalized knowledge bases. The normalization
is done in two steps: first the ABox is transformed into a sempBox. An ABox is a
simple ABoxif it only contains concept names in concept assertions€AMBox A

can be transformed into a simple ABox by first replacing eawhmex assertiod’(A)

in A by A(a) with a fresh namel and, second, introducé = C in the TBox.

After this step the TBox is normalized. For a concept desiompC' let CN(C)
denote the set of all concept names &it(C') denote the set of all role names that
appear inC. Thesignature of a concept descriptia#i (denotedsig(C)) is CN(C) U
RN(C). Similarly, the set of concept (role) names that appear iflBexTare denoted
by CN(7) (RN(T)). Thesignature of a TBof (denotedsig(7)) is CN(7) URN(7).
The signature of an ABo¥ (denotedsig(.A)) is the set of concept (role / individual)
namesCN(A) (RN(A)/IN(A) resp.) that appear idl. The signature of a KB = (7,

A) (denotedsig(K)) is sig(7) U sig(.A).

Now, an&L-TBox 7 is in normal formif all concept axioms have one of the fol-

lowing forms, where®;, Cs € sig(7) andD € sig(7T)U {L}:

Cl E D7 Cl M CQ E D, Cl E 37’.02 or 37".01 E D.

Any EL-TBox can be transformed into normal form by introducing re@mcept names
and by applying the normalization rules displayed in Figusxhaustively. These rules
replace the GCI on the left-hand side of the rules with th@&&tCls on the right-hand



NFLCNMDCE — {DCACNACE}
NF2 3rhCCD-—{CCA3IACD}
NF3 CCD-—{CCAACD}

NF4 BC3I.C — {BC3IrAACC}
NFS BCCND — {BCC,BC D}
whereC', D ¢ BC7 and A is a new concept name.

Fig. 1. £ normalization rules (from [2])

side. Clearly, for a KBC = (7, .A) the signature ofA may be changed only during the
first of the two normalization steps and the signaturg ahay be extended during both
of them. The normalization of the KB can be done in linear time

The completion algorithm for instance checking is basederone for classifying
EL-TBoxes introduced in [2]. The completion algorithm coosts a representation of
the minimal model ofC. Let K =(7, .A) be a normalized&£-KB, i.e., with a simple
ABox A and a TBoxZ in normal form. The completion algorithm works on four kinds
of completion setsS(a), S(a,r), S(C) andS(C, r) for eacha € IN(A), C € CN(K)
andr € RN(K). The completion sets contain concept names fai/iC). Intuitively,
the completion rules make implicit subsumption and instaretationships explicit in
the following sense:

— D € S(C) implies thatC T+ D,

— D e S(C,r) implies thatC T+ 3r.D.

— D € S(a) implies thata is an instance oD w.r.t. K,

— D € S(a,r) implies thatz is an instance ofir.D w.r.t. K.

Sk denotes the set of all completion sets of a normaliged’he completion sets are
initialized for eachn € IN(.A) and eaclC' € CN(K) as follows:

- S(C) :={C, T} foreachC € CN(K),

- S(C,r) := 0 foreachr € RN(K),

— S(a) :={C € CN(A) | C(a) appearsind} U{T}, and

— S(a,r) :={beIN(A) | r(a,b) appears ind} for eachr € RN(K).
Then these sets are extended by applying the completios shi@vn in Figure 2 until
no more rule applies. In these rul&andY can refer to concept or individual names,
while C, C1,Cy and D are concept names amds a role name. After the completion

has terminated, the following relations hold between aividdal e, a roler and named
conceptsd and B:

— subsumption relation betweehand B from K holds iff B € S(A)
— instance relation betweenand B from K holds iff B € S(a),

which has been shown in [2]. To decide the initial quéfy’= D(a), one has to test
now, whetherd, appears inS(a). In fact, instance queries for all individuals and all
named concepts from the KB can be answered now; the complatimrithm does
not only perform one instance check, but complete ABox za#ithn. The completion
algorithm runs in polynomial time in size of the knowledgaba



CrR1IfC e S(X),CC DeT,andD ¢ S(X)
thenS(X) := S(X) U {D}

cr2If C1,C2 € S(X),CiMC; C DeT,andD ¢ S(X)
thenS(X) := S(X) U {D}

CR3If C e S(X),CC3IrDeT,andD ¢ S(X,r)
thenS(X,r) := S(X,r) U{D}

CRalfY € S(X,r),CeS(Y),Ir.CC DeT,and
D ¢ S(X) thenS(X) := S(X)u{D}

Fig. 2. £C completion rules

3.2 Completion Algorithms for Prob-£L

To describe the completion algorithm for Préls-, we need the notion of basic con-
cepts. The seBC+ of Prob< LY basic conceptor a KB K is the smallest set that
contains (1)T, (2) all concept names usedfy and (3) all concepts of the fori, A,
where A is a concept name ifC. A Prob<££2'-TBox 7 is in normal formif all its
axioms are of one of the following forms

cCCD, Cinc,CD, CCI:A IrACD,

whereC, Cy,Cs, D € BCy and A is a concept name. The normalization rules in Fig-
ure 1 can also be used to transform a P€al* - TBox into this extended notion of nor-
mal form. We further assume that for all asserti6t{g) in the ABox.A, C'is a concept
name. We denote &7, P7 andR{ the set of all concepts of the fori. A, P—; A,
andP-r(a, b) respectively, occurring in a normalized knowledge bése

The completion algorithm for ProB£2" follows the same idea as the algorithm
for L, but uses several completion sets to deal with the infoonadf what needs
to be satisfied in the different worlds of a model. We definegéeof worldsV :=
{0,6,1} U PZ URZ, where the probability distribution assigns a probability df
to the world0, and the uniform probability /(]V| — 1) to all other worlds. For each
individual nameu, concept namel, role name- and worldv, we store the completion
setsSy(A,v), Sc(4,v), So(A4,r,v), Sc(A,r,v), S(a,v), andS(a, r,v).

The algorithm initializes the sets as follows for evetye BCr,r € RN(K), and
a € IN(A):

— S0(A,0)={T,A} andSy(A4,v) ={T}forallv e V' \ {0},

- S:(A,e) ={T,A}andS.(4,v) = {T}forallv e V' \ {e},

- S(a,0) ={T}U{A]| A(a) € A}, S(a,v) ={T}forallv #0,

— So(A,r,v) = Se(A,r,v) =0 forallv e V, S(a,r,v) = () forv # 0,
— S(a,r,0) ={b€IN(A) | r(a,b) € A}.

These sets are then extended by exhaustively applying the shown in Figure 3,
whereX ranges oveBCr U IN(A), S.(X,v) stands forS(X, v) if X is an individual
and forSy(X,v), Se(X,v) if X € BCr, andy : V — {0,¢} is defined byy(0) = 0,
andy(v) =eforallv € V' \ {0}.



PRLIF C" € S.(X,v),C'E D e T,andD ¢ S.(X,v)
thenS.(X,v) := S.(X,v) U {D}

PR2 If C1,C2 € S«(X,v),C1MC2 C D e T,andD ¢ S.(X,v)
thenS..(X,v) := S.(X,v) U{D}

PR3If C' € S.(X,v),C' C3r.D € T,andD ¢ S.(X,r,v)
thenS.(X,r,v) := S«(X,r,v) U {D}

PRAIf D € S.(X,r,v), D" € Syy(D,v(v)),3IrD'C E €T,
andFE ¢ S.(X,v) thenS.(X,v) := S.(X,v) U{E}

PR5 If PsoA € Sy (X,v), andA ¢ S, (X, PsoA)
thenS. (X, PsoA) := S.(X, P>oA) U{A}

PR6 If P_1A € S.(X,v),v#0,andA ¢ S.(X,v)
thenS, (X,v) := S.(X,v) U{A}

PR7 If A € S.(X,v),v#0, PsoA € PJ,andP=oA ¢ S.(X,v")
thenS, (X,v") := S, (X,v") U {PsoA}

PRe If A € S.(X,1), P-1A € P{,andP-1A ¢ S.(X,v)
thenS. (X, v) := S.(X,v) U {P=1A}

PRY If r(a,b) € A,C € S(b,0),Ir.CC D e T,
andD ¢ S(a,0) thenS(a,0) := S(a,0) U{D}

PR10 If Psor(a,b) € A, C € S(b, Psor(a,b)),3r.CC D €T,
andD ¢ S(a, P>or(a,b))
thenS(a, Psor(a,b)) := S(a, Psor(a,b)) U{D}

PR11 If P_i7(a,b) € A,C € S(b,v)withv #0,3IrCC D e T
andD ¢ S(a,v) thenS(a,v) := S(a,v) U{D}

Fig. 3. Prob< £2' completion rules

This algorithm terminates in polynomial time. After terration, the completion
sets store all the information necessary to decide subsompf concept names, as
well as checking whether an individual is an instance of aigigoncept name [6]. For
the former decision, it holds that for every pair B of concept names3 € Sy(A,0)
iff A Cx B.Inthe case of instance checking, we have fiat A(a) iff A € S(a,0).

4 Computing the k-MSC using Completion

The msc was first investigated f6€-concept descriptions and w.r.t. unfoldable TBoxes
and possibly cyclic ABoxes in [5]. It was shown that the msesinot need to exists for
cyclic ABoxes. Consider the ABoX = {r(a,a),C(a)}. The msc ok is then

cnar(Cnar(Cnar(Cn-..

and cannot be expressed by a finite concept description yebc dBoxes it has been
shown in [1] that the msc does not need to exists even if thexABacyclic.



To avoid infinite nestings in presence of cyclic ABoxes it vgaisposed in [5] to
limit the role-depth of the concept description to be corepuT his limitation yields an
approximation of the msc, which is still a concept desooiptivith the input individual
as an instance, but it does not need to be the least one (W.wiith this property. We
follow this idea to compute approximative msc also in presasf general TBoxes.

Therole-depthof a concept descriptiof (denoted-d(C)) is the maximal number
of nested quantifiers @f’. Now we can define the msc with limited role-depth &a.

Definition 2 (role-depth bounded&L-msc).Let K =(7, A) be anEL-KB anda an in-
dividual in A andk € IN. Then theE£-concept descriptiold’ is therole-depth bounded
&L-most specific concepif ¢ w.r.t. K and role-depthk (written k-mscic(a)) iff

1. rd(C) < k,

2. KEC(a),and

3. for all £&£-concept descriptiondZ with rd(E) < k holds: K = E(a) implies
CCrE.

Please note thatin case the exact msc has a role-depthdegsthie role-depth bounded
msc is the exact msc.

4.1 Computing thek-msc in EL by completion

The computation of the msc relies on a characterizationefrtbtance relation. While
in earlier works this was given by homomorphism [5] or sintigias [1] between graph
representations of the knowledge base and the concept stigueve use the comple-
tion algorithm as such a characterization. Furthermoresamstruct the msc by travers-
ing the completion sets to “collect” the msc. More precistig set of completion sets
encodes a graph structure, where the §¢f§) are the nodes and the sé&t&X, ) en-
code the edges. Traversing this graph structure, one catraohan&L-concept. To
obtain a finite concept in the presence of cyclic ABoxes orXdédoone has to limit the
role-depth of the concept to be obtained.

Definition 3 (traversal concept).Let C be an£L-KB, K" be its normalized fornf
the completion set obtained frokhandk € IN. Then theraversal concept of a named
conceptA (denotedk-Cs, (A)) with sig(A4) C sig(K”) is the concept obtained from
executing the procedure calaversal-concept-c(A4, Sk, k) shown in Algorithm 1.

Thetraversal concept of an individual(denotedk-Cs, (a)) with a C sig(KC) is the
concept description obtained from executing the procedaletraversal-concept-i(a,
Sk, k) shown in Algorithm 1.

The idea is that the traversal concept of an individual wetd msc. However, the
traversal concept contains names frag(KC”) \ sig(K), i.e., concept names that were
introduced during normalization — we call this kind of coptaameshormalization
namesdn the following. The returned msc should be formulatedtwtine signature of
the original KB, thus the normalization names need to be weaor replaced.



Algorithm 1 Computation of a role-depth boundé&d-msc.

Procedurek-msc (a, IC, k)
Input: a: individual fromK; K =(7, A) an&L-KB; k € IN
Output: role-depth bounded(-msc ofa w.r.t. K andk.
1: (77, A') = simplify-ABox(7 , A)
2: K" = (normalize(7"), A’)
3: Sk := apply-completion-rules(K)
4: return Remove-normalization-names ( traversal-concept-i(a, Sk, k))

Proceduretraversal-concept-i (a, S, k)
Input: a: individual name froniC; S: set of completion setd; € IN
Output: role-depth traversal concept (w.it) andk.
1 if k= Othenreturn [, c 5.,y A
2: else return [, ¢ g(py A M
M 3r. traversal-concept-c (4,S,k — 1) M
r€RN(K’") A € CN(K")nS(a,r)
Jr. traversal-concept-i (b, S,k — 1)
r€RN(K"") b € IN(K")NS(a,r)
3: endif

Proceduretraversal-concept-c (A4, S, k)

Input: A: concept name fronC”’; S: set of completion setg; € IN
Output: role-depth bounded traversal concept.

1:if k= Othenretun [ g 4) B

2:elseretun [] BN N [1 3Ir.traversal-concept-c (B,S, k — 1)
BesS(A) rERN(K") BES(A,r)
3: end if

Lemma 1. LetK be an&L-KB, K" its normalized versiorfx be the set of completion
sets obtained fofC, k € N a natural number and € IN(K). Furthermore letC' = k-

Cs, (a) andC be obtained fron" by removing the normalization names. Then

K" = C(a) iff K = C(a).

This lemma guarantees that removing the normalization sdroen the traversal con-
cept preserves the instance relationships. Intuitiveig, emma holds since the con-
struction of the traversal concept conjoins exhaustiviiiya@amed subsumers and all
subsuming existential restrictions to a normalization eam to the role-depth bound.
Thus removing the normalization name does not change tleasixh of the conjunc-
tion. The proof can be found in [7]. We are now ready to deviseraputation algorithm
for the role-depth bounded msc: procedkmesc as displayed in Algorithm 1.

The proceduré&-msc has an individuak from a knowledge bask, the knowledge
basel itself and numbek: for the role depth-bound as parameter. It first performs the
two normalization steps ok, then applies the completion rules from Figure 2 to the
normalized KBK" and stores the set of completion setSjn Afterwards it computes
the traversal-concept af from Sx w.r.t. role-depth bound. In a post-processing step
it appliesRemove-normalization-names to the traversal concept.



Obviously, the concept description returned from the pdacek-msc has a role-
depth less or equal th. Thus the first condition of Definition 2 is fulfilled. We prove
next that the concept description obtained flomsc fulfills the second condition from
Definition 2.

Lemma 2. LetK = (7,.A) be an&L-KB anda an individual in A andk € NN. If
C = k-msc(a, K, k), thenk = C(a).

The claim can be shown by induction énEach name i’ is from a completion set of
(1) an individual or (2) a concept, which is connected vissetitial restrictions to an
individual. The full proof can be found in [7].

Lemma 3. LetK = (7,.A) be an&L-KB anda an individual in A andk € NN. If
C = k-msc(a, K, k), then for all &L-concept description& with rd(E) < k holds:
K = E(a) impliesC Ct E.

Again, the full proof can be found in [7]. The two lemmas yi#h& correctness of the
overall procedure.

Theorem 1. LetK = (7, .A) be an€L-KB anda an individual in4 andk € IN.
Thenk-msc(a, K, k) = k-msck(a).
The k-msc can grow exponential in the size of the knowledge base.

4.2 Most specific concept in Prob€ £2*

In order to compute the msc, we simply accumulate all corsdepihich the individual

a belongs, given the information in the completion sets. Piniecess needs to be done
recursively in order to account for both, the successors @fplicitly encoded in the
ABox, and the nesting of existential restrictions maskeddymnalization names. In the
following we use the abbreviatiof~(a,r) = Uver (o3 S(a, 7, v). We then define

traversal-concept-i(a, S, k) as

[l Bn [] ( [] 3rtraversal-concept-i(b,S,k— 1) N

BeS(a,0) reRN(K’’)  r(a,b)ek”
|_| 3r.traversal-concept-c(B, S,k — 1) M
BeCN(K")NnS(a,r,0)
|_| P_;(3r.traversal-concept-c(B,S, k — 1)) M1
BeCN(K)NS(a,r,1)
|_| P-o(3r.traversal-concept-c(B, S, k — 1)),

BeCN(K")NS>9(a,r)
wheretraversal-concept-c(B, S, k + 1) is
[1 Bn[]( [] 3rtraversal-concept-c(C,S, k) N
CeSy(B,0) reRN  C€So(B,r,0)

[ P-i(3rtraversal-concept-c(C,S, k)) N
CeSo(B,r,1)

|_| P-.o(3r.traversal-concept-¢(C, S, k)))
cesg%(B,r)



andtraversal-concept-¢(B,S,0) = [Noes,5.0) B- Once the traversal concept has been
computed, it is possible to remove all normalization nanresgrving the instance re-
lation, which gives us the msc in the original signaturé&KofThe proof can be found
in [7].

Theorem 2. Let K a Prob-<££%'-knowledge bases € IN(A), andk € N; then
Remove-normalization-names(traversal-concept-i(a, S, k)) = k-msci(a).

5 Conclusions

In this paper we have presented a practical method for canpilne role-depth bounded
msc of€L concepts w.r.t. a general TBox. Our approach is based orotheletion sets
that are computed during realization of a KB. Thus, any ofatalable implementa-
tions of theEL completion algorithm can be easily extended to an impleatinmt of
the (approximative) msc computation algorithm. We alsamsdbthat the same idea can
be adapted for the computation of the msc in the probalili3ti Prob£ £°" .

Together with the completion-based computation of rolptdémited (least) com-
mon subsumers given in [8] these results complete the betfwapproach for general
EC- and Probg £0'-KBs. This approach yields a practical method to computernom:
alities for differing observations regarding individuals the best of our knowledge this
has not been investigated for DLs that can express uncgttain
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