
Scenario-based process modeling with GRETA

Dirk Fahland1 and Matthias Weidlich2

1 Humboldt-Universität zu Berlin, Germany
fahland@informatik.hu-berlin.de

2 Hasso-Plattner-Institute, University of Potsdam, Germany
matthias.weidlich@hpi.uni-potsdam.de

Abstract. Designing understandable business process models is one of the key
factors to successful business process management. Current modeling practices
advocate the use of block-oriented concepts and subprocesses to structure complex
process models. However, such guidelines cannot be applied in any case as case
studies in process mining have shown. Previously, we proposed the scenario-
based paradigm to structure models of complex processes in behavioral fragments,
i.e., scenarios. This paper presents GRETA as a tool that supports scenario-based
process modeling and execution.

1 Introduction

Business process modeling has become an established technique for documenting,
understanding, and analyzing business processes of enterprises of different kinds and
size. Depending on the domain, process modeling results in several hundred or thousand
process models [1]. These models need to be created, understood, and maintained by
modelers and stakeholders who are not necessarily experts in computer science.

The BPM community developed modeling practices to create understandable mod-
els [2]. Typically large process models are structured hierarchically using subprocess of
reasonable size or block-oriented concepts. However, important lessons from process
mining tell that actual processes do not follow such structuring. Typically, flow of infor-
mation connects various parts of a business process leading to “spaghetti-like” process
models [3] for which structuring into subprocesses or block-oriented concepts is hard, if
possible at all, e.g., Fig. 3 on the right.

In [4], we proposed the scenario-based modeling paradigm to structure behavior of
processes into behavioral fragments of any chosen shape. In this paradigm, a process
model is a set of scenarios. Each scenario denotes a finite acyclic process fragment
consisting of several actions, some of them ordered in parallel. A distinguished history
of the scenario expresses when the scenario may occur, i.e., how to continue a process
instance that exhibited the scenario’s history. We formalized these notions in the model
of oclets [5] based on Petri nets. Figure 1 depicts two example oclets depart standard
and depart devices (ignore the highlighted nodes). Each oclets’s history is drawn above
the horizontal line. Thus, depart standard triggers depart devices because of present
equipment. Moreover, depart standard and depart devices describe different continua-
tions after present equipment, i.e., both oclets describe alternative continuations of a



Fig. 1. Screenshot of GRETA with two oclets and a process instance constructed from these oclets.

process instance. This interplay allows to model complex business processes in terms of
behavioral scenarios.

A process modeler reads each oclet as a “self-contained story” that occurs in the
process. So, a scenario-based process model structures a complex process in terms of the
“stories in the process” rather than blocks or subprocesses. Each story can, in principle,
be understood in isolation. The difficulty of this approach is to design all oclets of the
process so that they “fit together”. This paper presents the tool GRETA that supports
scenario-based process modeling in a graphical editor with animated process execution.
Using GRETA, a process modeler can create and improve a complex model iteratively.
Section 2 elaborates on the use case in more detail. Section 3 explains how GRETA
supports scenario-based process modeling. We compare GRETA’s key features to existing
tools and conclude the paper in Section 4.

2 Use case: modeling unstructured processes

We illustrate the need for scenario-based modeling by a process that is run by the Task
Force Earthquakes of the German Research Center for Geosciences (GFZ). The main
purpose of the task force is to coordinate the allocation of an interdisciplinary scientific-
technical expert team after catastrophic earthquakes worldwide [4]. In particular, we
focus on the “Transport of Equipment” process of the task force. It specifies how the
transport of scientific equipment from Germany to the disaster area is handled.

In order to elicit a process model for the “Transport of Equipment” process, typically,
a process analyst conducts workshops with members of the task force and interviews
them about the process. As a result, the analyst is faced with descriptions of how the
transport of equipment is done in general. These descriptions resemble stories as they
relate to the concrete experience of the team members gained during recent missions.

In our example, one story relates to preparation activities enacted in Germany, such
as organizing transport of cargo and the actual transportation to the airport. Another story



relates to the activities that are done immediately after arrival in the disaster area, e.g.,
buying maps and renting vehicles. Once the standard processing has been clarified, the
analyst discusses exceptional cases with the team members. Again, these descriptions
can be seen as stories that describe ‘what if’ scenarios. In our exemplary process, for
instance, customs might require that the equipment is presented before the decision
on clearance is taken. Based thereon, the analyst abstracts the actual process model
containing the complete standard processing along with all exceptional cases. In case of
the “Transport of Equipment” process, the resulting model shows a complex structure as
illustrated in Fig. 3 on the right.

3 Tool support for scenario-based modeling

How to model processes with GRETA. The scenario-based modeling approach differs
from the typical approach discussed in Sect. 2 in the final step. Instead of creating
one Petri net that copes with all eventualities, the modeler expresses each story of the
“Transport of Equipment” process as a scenario. These scenarios are then assessed for
continuations and dependencies. GRETA supports scenario-based process modeling with
oclets by a graphical editor. To express a scenario in GRETA, the modeler creates a new
oclet and models the scenario’s behavior as a Petri net in the oclet’s lower compartment
as shown in Fig. 1 on the left and middle. To express when the scenario may occur, the
modeler describes the history that triggers the scenario in the oclet’s upper compartment.
Each oclet is created locally, focusing on its story and its local history.

Typically, standard scenarios such as depart standard of Fig. 1 are modeled first.
Then, variants and exceptions like depart devices are introduced one oclet at a time. The
modeler may refine the oclets iteratively to achieve consistency of the overall processing.
To this end, GRETA provides animated execution of oclets. The modeled oclets can be
executed step-wise until a situation is reached in which a particular oclet should “fit”, i.e.,
can be executed. If this is not the case, GRETA allows pausing the animation, changing
the oclet’s history, and resuming the animation at the current state. Thus, GRETA supports
the modeler effectively in relating different scenarios to each other.

oclets process
instance

graphical editor

change display

execution engine

(1) (2)
(4)
(3)

(5)

us
er

 in
te

rfa
ce

Gr
et

a c
or

e
an

im
at

ed
ex

ec
ut

io
n

Fig. 2. Architecture of GRETA.

The tool GRETA. Having illustrated how GRETA
supports scenario-based process modeling we
now explain some technical aspects of the tool.
We designed GRETA in a model-driven approach:
data structures (oclets, process instances) and the
graphical editor were modeled in respective lan-
guages of the EMF/GMF framework of Eclipse
(www.eclipse.org). These models were translated
to executable code which we extended manu-
ally to improve usability; details are given in [6].
GRETA exposes its data structures and user interface as plugins as illustrated in Fig. 2.

GRETA’s animated execution plugin provides an execution engine for scenario-based
models. When started, the engine (1) determines the enabling condition of each action in
the denoted oclets. For instance, in Fig. 1 action demonstration of devices is enabled iff
present equipment occurred. Then, the engine (2) checks which actions are enabled in the



Fig. 3. The complete model of the “Transport of Equipment” process of the “Taskforce Earthquakes”
(in the middle) and the Petri net model that can be synthesized with GRETA (on the right).

current process instance and (3) presents all enabled actions to the user by highlighting
them. In Fig. 1, the current process instance is depicted on the right as gray shaded
nodes with thin borders. Actions demonstration of devices and clear are enabled and
highlighted as possible extensions of this process instance. The user (4) picks one enabled
action for execution by clicking on it, and the engine (5) extends the process instance by
the chosen action. The user may pause, stop, or reset the execution at any time to change
the modeled oclets as she wishes.

Scalability. GRETA can handle models of complex processes consisting of dozens of
scenarios with various exceptions. Fig. 3 shows a typical modeling situation in GRETA.
The central window shows all oclets of the “Transport of Equipment” process of the
“Taskforce Earthquakes” and a process instance on the left with four enabled actions.
The two actions on the right are alternatives, all other actions are enabled concurrently.
All enabled actions originate in different oclets as highlighted.

As an extension, GRETA supports anti-oclets which describe behavior that must not
occur in the process. Further plugins for GRETA allow the modeler to check consistency
of the model (i.e., whether each action of each oclet can actually be triggered by some
other oclet), to verify soundness of a process model, and to automatically synthesize a
classical Petri net-based process model such as the one depicted in Fig. 3 on the right.
The synthesized Petri net exhibits exactly the behavior modeled in the oclets. Though
the net is not necessarily “elegant” because the modeled real-world process has many
exceptions and alternatives and does not follow a block structure. In Fig. 3, the oclets
are structurally simpler and hence easier to comprehend than the Petri net.



4 Discussion and Conclusion

This paper presented GRETA as a proof of concept prototype tool that demonstrates
the feasibility of scenario-based process modeling and execution. Currently, we are
successfully applying GRETA in a case study where we model the process of the
“Taskforce Earthquakes” with oclets as explained in Sect. 2 and 3. The case study
itself is work in progress; some more information can be found in [4, 7]. GRETA
and all its source code together with several examples are available for download at
http://service-technology.org/greta.

Related tools and approaches. First and foremost, our work relates to approaches of
scenario-based process modeling. Desel et al. advocated to model a business process
in terms of its partially ordered runs [8] or expressions over finite scenarios [9]. The
VipTool allows to synthesize a Petri net-based process model from such a scenario-based
model [9]. Oclets extend these ideas and provide a mechanism to control the chaining of
scenarios in terms of local histories. GRETA directly executes oclet-based models. Both
ideas are influenced by Live Sequence Charts and the play engine [10]. In comparison to
these, oclets directly serve business process modeling as they are based on Petri nets.

A closely related approach are proclets [11]. A proclet is a small workflow net in
which actions send and receive data via channels. A process model is a set of proclets that
are instantiated and coupled along their channels according to an underlying business
object model. In [12], process behavior is described with a set of business object life
cycle models. In both approaches, interaction between process artifacts follows from
a data model, whereas oclets focus on control flow and use the notion of a history to
describe when a behavior may occur; anti-oclets provide additional expressive power.

A high degree of variation of a common business process might be addressed using
concepts of flexible process management. Research projects like ADEPT [13] and
WASA [14] developed process management systems that enable ad-hoc modification
of a process model for certain process instances. The YAWL workflow engine provides
worklets [15], i.e., subprocesses that can be chosen and instantiated at runtime. The
main differences between GRETA and existing execution engines root in the underlying
semantic model: oclets are defined on the semantic model of distributed runs and the
process instance’s history defines which actions are enabled [5]. Existing execution
engines operate on sequential runs and decide enabling of actions based only on the
current state: history information is not available. The main difference to ADEPT is
that ADEPT requires symmetrical, block-structured process models [13]. In contrast,
oclets are unconstrained and describe process flow “as is”. So, integrating oclets into an
existing engine, e.g., as a plugin, remains a challenging and interesting task.

Finally, oclets can be seen as reusable patterns from which a process model is derived.
Patterns have been proposed to business process modeling on various abstraction levels,
e.g., control-flow patterns [16], business semantics aware action patterns [17], activity
patterns that represent micro workflows [18]. Such patterns might be leveraged for
modeling support, for instance, to accelerate process modeling and minimize modeling
errors [19]. In general, oclets are more specific than the aforementioned patterns. They
focus on partial scenarios and dynamically constructing process instances from scenarios
whereas patterns aim at reuse or modeling support in a broader context.



Future work. In future work, we aim at lifting oclets to high-level modeling languages,
such as BPMN. Here, the question of appropriate notions of a history has to be answered.
Further on, the execution of scenarios involves the decision on a dedicated continua-
tion once multiple oclets are activated. Such a decision should be supported by a tool
suggesting the best continuation relative to a quality criterion (e.g., execution time).

Acknowledgements. We thank the referees for valuable comments and suggestions.

References
1. Rosemann, M.: Potential pitfalls of process modeling: part A. Business Process Management

Journal 12(2) (2006) 249–254
2. Mendling, J., Reijers, H.A., van der Aalst, W.M.P.: Seven process modeling guidelines (7pmg).

Information & Software Technology 52(2) (2010) 127–136
3. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler, E., Günther,

C.W.: Process mining: a two-step approach to balance between underfitting and overfitting.
Software and System Modeling 9(1) (2010) 87–111

4. Fahland, D., Woith, H.: Towards process models for disaster response. In: Workshops of the
BPM’08. Volume 17 of LNBIP., Springer-Verlag (2008) 244–256

5. Fahland, D.: Oclets - scenario-based modeling with Petri nets. In: Petri Nets 2009. Volume
5606 of LNCS., Paris, France, Springer-Verlag (June 2009) 223–242

6. Wolf, M.: Erstellung einer modellbasierten Laufzeitumgebung für adaptive Prozesse. Diplo-
marbeit, Humboldt-Universität zu Berlin (September 2008)

7. Weidlich, M., Zugal, S., Pinggera, J., Fahland, D., Weber, B., Reijers, H., Mendling, J.: The
impact of change task type on maintainability of process models. In: ER-POIS 2010, held in
conjunction with CAiSE 2010. (2010) to appear.

8. Desel, J.: Validation of process models by construction of process nets. In van der Aalst,
W.M.P., Desel, J., Oberweis, A., eds.: BPM. Volume 1806 of LNCS., Springer (2000) 110–128

9. Bergenthum, R., Desel, J., Mauser, S., Lorenz, R.: Construction of process models from
example runs. T. Petri Nets and Other Models of Concurrency 2 (2009) 243–259

10. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs and the
Play-Engine. Springer-Verlag (2003)

11. van der Aalst, W.M.P., Barthelmess, P., Ellis, C.A., Wainer, J.: Workflow Modeling using
Proclets. In: CoopIS 2000. Volume 1901 of LNCS., Springer (2000) 198–209

12. Küster, J.M., Ryndina, K., Gall, H.: Generation of business process models for object life
cycle compliance. In: BPM 2007. Volume 4714 of LNCS., Springer (2007) 165–181

13. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for
robust and flexible process support. Computer Science - R&D 23(2) (2009) 81–97

14. Vossen, G., Weske, M.: The WASA2 object-oriented workflow management system. In:
SIGMOD Conference 1999, ACM Press (1999) 587–589

15. Adams, M., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Worklets: A service-
oriented implementation of dynamic flexibility in workflows. In: OTM. Volume 4275 of
LNCS., Springer (2006) 291–308

16. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distributed and Parallel Databases 14(1) (2003) 5–51

17. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business process
models. In: ICSOC. Volume 5900 of LNCS. Springer (2009) 115–129

18. Thom, L.H., Reichert, M., Iochpe, C.: Activity patterns in process-aware information systems:
Basic concepts and empirical evidence. IJBPIM 4(2) (2009) 93 – 110

19. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling. In:
BPM. Volume 5240 of LNCS., Springer (2008) 4–19


