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Abstract

Text Categorization is the task of assigning predefined categories
to text documents. It can provide conceptual views of document col-
lections and has many important applications in the real world. Nowa-
days, most of the research on text categorization has focused on map-
ping text documents to a set of categories among which structural
relationships hold. Without loss of generality, let us assume that a
classifier entrusted with recognizing documents of a given category
outputs a degree of membership, usually a value in [0,1]. The behav-
ior of any such classifier typically depends on an acceptance threshold,
which turns the degree of membership into a dichotomous decision. In
principle, the problem of finding the best acceptance thresholds for a
set of classifiers related by taxonomic relationships is a difficult prob-
lem. Hence, any proposal aimed at finding suboptimal solutions to
this problem may have great importance, especially in the field of hi-
erarchical text categorization. In this paper, we make an experimental
assessment of a greedy threshold selection algorithm aimed at finding
a suboptimal combination of thresholds in a hierarchical text catego-
rization setting. The quadratic complexity of the algorithm makes it
easier to find good suboptimal solutions even for large taxonomies. Ex-
perimental results, performed on Reuters data collections, show that
the proposed approach is able to find suboptimal solutions with small
computational complexity.

1 Introduction

The new information era has widely changed our lives thanks to a great deal
of new possibilities to create content (i.e., knowledge) and share it all over
the world throughout new and widespread communication systems. Human
beings have always known the importance of organizing entities or notions
in hierarchies, according to the “divide et impera” paradigm. In the last few
decades, with the advent of modern information systems, this concept has
been widely employed to partition items and concepts into smaller parts,
each being effectively and efficiently managed. The contribution of this
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approach is particularly evident in the Web 2.0, where the main and most
crucial knowledge bases exploit it in order to organize large collections of
web pages!, articles? or emails® in hierarchies of topics. This organization
allows to focus on a specific level of details ignoring specialization at lower
levels and generalization at upper levels. In this scenario, the main goal
of automatic categorization systems is to deal with reference taxonomies
in an effective and efficient way —the corresponding research subfield being
Hierarchical Text Categorization (HTC).

Nowadays there is a great amount of contributions in HTC focusing, in
particular, on how to build training sets, selecting features, and learning
methods. In our opinion, a further important issue is concerned with the
fact that, in real-world scenarios, data is typically characterized by imbal-
ance. In fact, relevant and irrelevant documents (i.e., positive and negative
examples, respectively) are typically imbalanced, turning classifiers trained
with the same percent of positive and negative examples into inadequate
tools. According to [8], a hierarchical approach can give benefits to the
systems involved with the above scenarios.

Without loss of generality, let us assume that a classifier for a category
¢; € C usually consists of a function CSV; : D — [0,1]. Given a document
d;, CSV;(d;) returns a categorization status value for it that represents the
evidence for the fact d; € ¢;. The behavior of ¢; depends on an acceptance
threshold 6;, such that C'SV;(d;) > 0; is interpreted as d; € c;, and con-
versely C'SV;(d;) < 6; is interpreted as d; ¢ ¢;. In HTC, this is transposed
into a multidimensional space, i.e., the definition of a vector of thresholds 6.

In principle, how to find the best acceptance thresholds for a set of clas-
sifiers related by taxonomic relationships is a difficult problem. As for TC,
there are various policies for determining the acceptance threshold, the most
important distinction being whether it is analytically or experimentally de-
rived [11]. The former approach is possible only in presence of a theoretical
result that indicates how to compute the threshold that maximizes the ex-
pected value of an effectiveness function [10]. The latter consists of testing
different values for the acceptance threshold on a validation set and choosing
the value which maximizes effectiveness [12]. As for HTC, let us recall here
the threshold selection algorithms proposed in [7] and [5].

In this paper, we perform an experimental assessment of a greedy thresh-
old selection algorithm aimed at finding a suboptimal combination of thresh-
olds in the context of Progressive Filtering (PF), the hierarchical text catego-
rization setting proposed in [2]. Experimental results, performed on Reuters
data collections, show that the proposed approach is able to find suboptimal

'see e.g., Google Directory (http://www.google.com/dirhp) and the DMOZ project
(http://www.dmoz.org)

%see e.g., Wikipedia (http://www.wikipedia.org) and Reuters
(http://www.reuters.com/)

3see e.g., Thunderbird 3 (http://www.mozillamessaging.com/thunderbird /)



solutions while maintaining a quadratic complexity, which makes it easier
to find good suboptimal solutions even for large taxonomies [3].

The rest of the paper is organized as follows: in section 2, we briefly
recall the PF approach. In section 3 we describe T'SA, putting into evidence
the theoretical background that allowed to build the algorithm and its com-
putational benefits. Experiments and results are illustrated in section 4.
Conclusions discussed in section 5 end the paper.

2 Progressive Filtering

A way to implement Progressive Filtering (PF) consists of unfolding the
given taxonomy into pipelines of classifiers, as depicted in Figure 1. Each
node of the pipeline is a binary classifier able to recognize whether or not
an input belongs to the corresponding class (i.e., to the corresponding node
of the taxonomy).

R

Figure 1: A taxonomy and its corresponding pipelines.

In principle, PF could be applied to classify any kind of item: images,
audios, videos, textual documents, and so on. In this paper we are interested
in using PF for hierarchical text categorization, so that textual documents
(documents for short hereinafter) have been considered.

Given a taxonomy, where each node represents a classifier entrusted with
recognizing all corresponding positive inputs (i.e., interesting documents),
each input traverses the taxonomy as a “token”, starting from the root. If
the current classifier recognizes the token as positive, it passes it on to all
its children (if any), and so on. A typical result consists of activating one or
more branches within the taxonomy, in which the corresponding classifiers
have been activated by the given token. Let us note that partitioning the
taxonomy in pipelines gives rise to a set of new classifiers, each represented
by a pipeline. For instance, the taxonomy depicted in Figure 1 gives rise to
six corresponding pipelines.



3 The Proposed Threshold Selection Algorithm

3.1 Motivations

As we know from classical text categorization, given a set of documents D
and a set of labels C, a function CSV; : D — [0, 1] exists for each ¢; € C.
The behavior of ¢; is controlled by a threshold 6;, responsible for relaxing or
restricting the acceptance rate of the corresponding classifier. Let us recall
that, given d € D, CSV;(d) > 0; is interpreted as a decision to categorize d
under ¢;, whereas C'SV;(d) < 0; is interpreted as a decision not to categorize
d under ¢;.

In PF, let us still assume that CSV; exists with the same semantics
adopted in the classical case. Considering a pipeline m, composed by n
classifiers, the acceptance policy strictly depends on the vector of thresholds
0. = (01,602, ,0n) that embodies the thresholds of all classifiers in 7. In
order to categorize d under m, the following constraint must be satisfied:
for k = 1.n, CSV;(d) > 0. On the contrary, d is not categorized under
¢; in the event that a classifier in 7 rejects it. In so doing, a classifier may
have different behaviors, depending on which pipeline it is embedded. As a
consequence, each pipeline can be considered in isolation from the others.
For instance, given m = (C1,C2,C3) and ma = (C4,Ca, Cy), the classifier
(' is not compelled to have the same threshold in 7; and in 7 (the same
holds for C5).

Actually, the proposed approach performs a sort of “flattening” though
preserving the information about the hierarchical relationships embedded
in a pipeline. For instance, the pipeline (C1,Cs,C3) actually represents
the classifier C3, although the information about the existing subsumption
relationships are preserved (i.e., C5 < C2 < (4, where “<” denotes the
usual covering).

In PF, given an utility function?, we are interested in finding an effective
(and computationally “light”) way to reach a sub-optimum in the task of
determining the best vector of thresholds. To this end, for each pipeline
7 a sub-optimal combination of thresholds is searched for, considering the
actual ratio between positive and negative examples, which in turn depends
on the given scenario. Unfortunately, finding the best acceptance thresholds
is a difficult task. In fact, exhaustively trying each possible combination of
thresholds (brute-force approach) is unfeasible, the number of thresholds
being infinite. However, the brute-force approach can be approximated by
defining a granularity step that requires to assess only a finite number of
points in a range [0, 1] in which the thresholds are permitted to vary with
step . This “relaxed” brute force algorithm (RBF for short) for calibrating
thresholds would be very helpful in the task of finding a sub-optimal solution,

“Different utility functions (e.g., precision, recall, Fjs, user-defined) can be adopted,
depending on the constraint imposed by the underlying scenario.



although still too heavy from a computational point of view. Thus, in this
paper we propose a novel Threshold Selection Algorithm (namely, TSA)
devised to deal with this problem, which maintains the capability of finding
a near-optimum solution characterized by a low time complexity.

3.2 The Proposed Algorithm

Utility functions typically adopted in TC, and therefore in HTC, are nearly-
convex with respect to the acceptance threshold. In Figure 2 three typical
trends of utility functions are depicted (precision, recall, and F}).
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Figure 2: Example of utility functions.

Let us note that setting the threshold of a classifier to 0, no matter which
utility function is adopted, forces the classifier to reach its maximum error
in terms of false positives (FP). On the other hand, setting the threshold to
1 forces the classifier to reach its maximum error in terms of false negatives
(FN).

Due to the shape of the utility function and to its dependence on FP
and FN, it becomes feasible to search its maximum around a restricted range
(i.e., a subrange of [0, 1]) towards a defined direction. In particular, bearing
in mind that the lower the threshold the less restrictive the classifier, we can
build a greedy bottom-up algorithm for selecting decision threshold that
relies on two functions:

e repair (R), which operates on a classifier C' by increasing or decreasing
its threshold —i.e., R(up, C) and, R(down, C), respectively— until the
selected utility function reaches and maintains a local maximum.

e calibrate (C), which operates going downwards from the given classifier
to its offspring by repeatedly calling R. It is intrinsically recursive and
at each step it calls R to calibrate the current classifier.

Given a pipeline 7 = (Cy,Cq,--- ,Cp), where L is its depth, TSA is then
defined as follows (all thresholds are initially set to zero):



TSA(r) := fork = L downto1doC(up,Cy) (1)

which indicates that C is applied to each node of the pipeline, starting from
the leaf (k = L).

Under the assumption that p is a structure that contains all information
about a pipeline, including the corresponding vector of thresholds and the
utility function to be optimized, the pseudo-code of TSA is:

function TSA(p:pipeline):
for k:=1 to p.length
do p.thresholds[i] = 0
for k:=p.length downto 1
do Calibrate (up,p, k)
return p.thresholds
end TSA

The Calibrate function is defined as follows:

C(up,Cx) == R(up,Cy), k=1L
C(up, Ck) := R(up, Cx) + C(down, Cr11), k < L (2)

and

C(down, Ck) = R(down,Cy), k=L
C(down, Ck) = R(down, Ck) + C(up, Cr+1), k < L (3)

where the + operator actually denotes a sequence operator, meaning that
in the formula a + b action a is performed before action b. In pseudo-code:

function Calibrate(dir: {up,down}, p:pipeline, level:integer):
Repair(dir,p, level)
if level < p.length then Calibrate(toggle (dir),p,level+l)
end Calibrate

where toggle is a function that reverses the current direction, and Repair is
defined as:

function Repair(dir:{up,down}, p:pipeline, level:integer):

delta := (dir = up) ? p.delta : -p.delta
best_threshold := p.thresholds[level]
max_uf := p.utility_function|{()
uf := max_uf
while uf >= max_uf » 0.8 and p.thresholds[level] in [0,1]
do p.thresholds[level] := p.thresholds[level] + delta
uf := p.utility_function()

if uf < max_uf then continue
max_uf := uf



best_threshold := p.thresholds[level]
p.thresholds[level] best_threshold
end Repair

The factor 0.8 is used to limit the impact of local minimums during the
search.
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Figure 3: Unfolding the threshold-selection procedure for a pipeline com-
posed by three classifiers.

To better illustrate the approach, let us consider the unfolding reported
in Figure 3, which corresponds to m = (C1, Ca, Cs):

step 1
C(up703) :R(up7c3)

step 2

C(’LLp, 02) = R(Up, 02) + C(dO’LU’I’L, 03)
= R(Up, 02) + 'R(down, 03)

step 3

C(’U,p, Cl) = (U‘pa Cl) + C(down, CZ)

R
R(up, C1) + R(down, Cs) + C(up, C3)
R('U,p, Cl) + R(dO’LU?’L, 02) + R(upv 03)

Once calculated the sub-optimal combination of thresholds for a given
imbalance, the pipelines are ready to be used in the corresponding sce-
nario. Let us note, here, that this combination depends on both the adopted
dataset and the actual input imbalance. In fact, as noted in [10], different
goals for the system lead to different optimal behaviors.



3.3 Computational Complexity

Searching for a sub-optimal combination of thresholds in a pipeline can be
actually viewed as the problem of finding a maximum in a utility function
F that depends on the corresponding thresholds 6:

0* = argmax F(6) (4)
6

Unfortunately, the above task is characterized by a high time complex-
ity, being actually a problem of meta-learning (i.e., a learning problem
whose instances are in fact learning problems themselves). To calculate the
computational complexity, let us define a granularity step that requires to
visit only a finite number of points in a range [pPmin, Pmaz), 0 < Pmin <
Pmaz < 1, in which the thresholds could vary with step 6. Therefore,
p = [0 (pmaz — Pmin) | being the maximum number of points to be checked
for each classifier in a pipeline and L being the length of the pipeline, the
average time of TSA, T(T'SA), is proportional to (L + L?)-p- (pmaz — Pmin),
which implies that TSA has complexity O(L?). Hence, the time complex-
ity is quadratic with the number of classifiers embedded by a pipeline. As
already noted, a comparison between TSA and the brute-force approach is
unfeasible, the generic element of the threshold vector being a real num-
ber. Nevertheless, experimental results show that the effectiveness of TSA
is almost identical to the one obtained by running RBF', in which only p
points are checked for each classifier in a pipeline. Note that the average
time of RBF, T(RBF), is proportional to pl, which in turns implies that
its computational complexity is O(p”).

To show the drastic complexity reduction brought by the TSA algorithm,
let us consider a pipeline composed of 4 classifiers (i.e., L = 4), and p = 100.
In this case the orders of magnitude of T(RBF) and T(T'SA) are 10° whereas
103, respectively.

It is also important to note that, due to the enormous computational time
that can be reached, the RBF approach should be applied in practice only
by setting p to a value much lower than the one applicable with TSA. For
instance, with a ratio of 1072, i.e., prpr = 20 and prga = 2000, T(RBF) x
160,000 and T(T'SA)  20,000. In other words, TSA is still 8 times faster
than RBF (even considering ppmar = 1 and ppi, = 0), while ensuring a
better result due to the higher granularity.

4 Experimental Results

The Reuters Corpus Volume I (RCV1-v2) [9] has been chosen as benchmark
dataset. In this corpus, stories are coded into four hierarchical groups: Cor-
porate/Industrial (CCAT), Economics (ECAT), Government/Social (GCAT),



and Markets (MCAT'). Although the complete list consists of 126 categories,
only part of them have been used in our hierarchical approach. The total
number of codes actually assigned to the data is 93, whereas the overall
number of documents is about 803,000, each document belonging to at least
one category and, on average, to 3.8 categories. To calculate the time com-
plexity of TSA with respect to RBF, we selected the 24 pipelines of depth
4 that end with a leaf node.

Experiments have been performed on a SUN Workstation with two Opteron
280, 2Ghz+ and 8Gb Ram. To perform experiments we customized the
X.MAS [1] architecture, a generic multiagent architecture built upon JADE
[4] and devised to make it easier the implementation of information re-
trieval /filtering applications.

Experiments have been carried out by using classifiers based on the wk-
NN technology [6], which do not require specific training and are very robust
with respect to noisy data. As for document representation, we adopted the
bag of words approach, a typical method for representing texts in which each
word from a vocabulary corresponds to a feature and a document to a feature
vector. First, all non-informative words such as prepositions, conjunctions,
pronouns and very common verbs are disregarded by using a stop-word list.
Subsequently, the most common morphological and inflexional suffixes are
removed by adopting a standard stemming algorithm. After having de-
termined the overall sets of features, their values are computed for each
document resorting to the well-known TF-IDF method. To reduce the high
dimensionality of the feature space, we locally select the features that repre-
sent a node by adopting the information gain method. During the training
activity, each classifier has been trained with a balanced data set of 1000
documents, characterized by 200 (TF-IDF) features selected in accordance
with their information gain.

Experiments, performed on a balanced dataset of 2000 documents for
each class, have been focused on calculating the performance improvement
of TSA vs. RBF. A step d754 = 5 x 10~* (hence, prsa = 2 x 10%) has been
adopted to increment thresholds in TSA; whereas a step dgpr = 0.05 (hence,
prer = 20) has been adopted for the RBF approach®. Table 1 illustrates
the results comparing the time spent, in seconds and hours, by RBF and
TSA. Each row of the table corresponds to the time spent to perform a
calibrate step so that the last row corresponds to the total elapsed time.
The last column clearly shows that, the ratio between the time spent by the
two algorithms is approximately constant. Table 1 shows that, as expected,
TSA is faster than RBF notwithstanding the imposed granularity step. To
show that the overall performances of PF are not worsened by the adoption
of TSA vs. RBF, we performed further experiments aimed at comparing the
performance obtained by applying TSA vs. the performance obtained by

Sthe motivation of this choice has been discussed in the previous section



Table 1: Time comparison between TSA and RBF.

RBF TSA
Step time (s) | time (h) | time (s) | time (h) | ratio
Stepl (Leveld) | 10333 2.87 382 0.11 27.02
Step2 (Level3) | 97907 27.20 3497 0.97 28
Step3 (Level2) | 213724 59.37 7610 2.11 28.08
Stepd (Levell) | 328372 91.21 11634 3.23 28.22

Table 2: F} in presence of input imbalance.

Input imbalance | Fy1(RBF') | F1(TSA)
2-1 0.830 0.835
272 0.722 0.733
273 0.619 0.632
24 0.497 0.515
275 0.404 0.428
26 0.323 0.345
27 0.245 0.273

applying RBF. In particular, experiments have been performed by assessing
the behavior of PF in terms of F} in presence of different ratios of positive
examples vs. negative examples i.e., from 27! to 277. Results, summarized
in Table 2, show that the performance of T'SA is always better than the one
obtained with RBF. This is due to the fact that, as previously pointed out,
TSA worked with a higher granularity (i.e., prar/prsa = 20/2000 = 1072).

Taking into account these results, we can also establish the average range
of search in which the TSA found a maximum of the utility function with
PRBF = 20, pPrsaA = 2000, and L = 4: TRBF =8 P TTSA =28 TTSA *i.e.,
p = 0.29. This further interesting result shows that TSA succeeds in finding
the sub-optimum within less that the 30% of the search range. For obvious
Teasons, Pmaz — Pmin decreases while climbing a pipeline from the leaf to the
root.

5 Conclusions

In this paper, after proposing TSA, a threshold selection algorithm for hier-
archical text categorization, we made an experimental assessment aimed at
finding a suboptimal combination of thresholds in a hierarchical text catego-
rization setting. The quadratic complexity of the algorithm makes it easier
to find good suboptimal solutions even for large taxonomies. Experimental

10



results, performed on Reuters data collections, show that the proposed ap-
proach is able to outperform a relaxed version of the brute force approach.
Furthermore, TSA is also very effective in dealing with the input imbalance
that typically occurs in real-world scenarios.
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