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Abstract

For some problems with many solutions, like planning and phylogeny
reconstruction, one way to compute more desirable solutions is to assign
weights to solutions, and then pick the ones whose weights are over (resp.
below) a threshold. This paper studies computing weighted solutions to such
problems in Answer Set Programming. We investigate two sorts of methods
for computing weighted solutions: one suggests modifying the representa-
tion of the problem and the other suggests modifying the search procedure
of the answer set solver. We show the applicability and the effectiveness
of these methods in reconstructing weighted phylogenies for Indo-European
languages. We also compare these methods in terms of computational effi-
ciency; the experimental results show that the search-based method is better.

1 Introduction

In Answer Set Programming (ASP) [10], a computational problem is described as
an ASP program whose answer sets correspond to solutions, and answer sets for
this program are computed using answer set solvers. Some problems, like planning
and phylogeny reconstruction, have many solutions. Moreover, the correspondence
between the answer sets and the solutions may not be one-to-one; there may be
many answer sets that denote the same solution. For such problems, one way to
compute more desirable solutions is to assign weights to solutions, and then pick
the distinct solutions whose weights are over (resp. below) a threshold. For ex-
ample, in a planning problem, we can define the weight of a plan in terms of the
costs of actions (or action sequences), and then compute the distinct plans whose
weights are less than a given value. In puzzle generation, we can define the weight
of a puzzle instance by means of some difficulty measure, and then generate diffi-
cult puzzles whose weights are over a given value. Motivated by such applications,
we study the problem of computing weighted solutions in ASP and show the appli-
cability of our approach in phylogeny reconstruction (i.e., computing leaf-labeled
trees, called phylogenies, to model the evolutionary history of a set of species).

We study two sorts of methods for computing weighted solutions and compare
them experimentally:

Representation-based methods The idea is to modify the representation of the
problem, to compute weighted solutions. In some cases, we do not have
to define the weight of a solution explicitly; we can use aggregates (e.g.,
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sum, count, times) to compute the weight, in the sense of [14, 8, 15]. Some
other problems require an explicit ASP definition of the weight of a solution.
Phylogeny reconstruction problems we consider are in the latter group: the
weight of a phylogeny does not only depend on the weights of some parts of
the phylogeny but also some domain-specific information.

Search-based methods These methods do not modify the ASP representation of
the problem, but define the weight function externally (e.g., as a C++ pro-
gram) and modify the search algorithm of the answer set solver to compute
solutions over (resp. below) a given threshold. There is no answer set solver
that can compute weighted solutions in such a way. In our studies, we con-
sider the solver CLASP [9], and modify its search algorithm to implement
the suggested method.

We apply these methods to phylogeny reconstruction. Reconstructing phylo-
genies for a given set of taxonomic units is important for various research such
as historical linguistics, zoology, anthropology, archeology, etc.. For example, a
phylogeny of languages may help scientists to better understand human migra-
tions [16]. For a given set of taxonomic units, some existing phylogenetic systems,
like that of [1], generate more than one phylogeny that explains the evolutionary
relationships between the given taxonomic units. In such cases, to pick the most
plausible ones, an expert needs to go over these phylogenies manually and in detail.
There is no phylogenetic system that can help experts to order phylogenies with re-
spect to a desirability/plausibility measure that includes also some domain-specific
information. In this study, we define the weight of a phylogeny for the family of
Indo-European languages studied in [1], in such a way as to reflect the plausibility
criterion provided by the historical linguistics. Using this weight function, we show
the applicability and effectiveness of the methods above (for computing weighted
solutions) in reconstructing plausible phylogenies for Indo-European languages,
and compare them in terms of computational efficiency.

To summarize, the main contributions of this paper are as follows:

• We precisely describe the decision/optimization problems for computing
weighted solutions in ASP (Section 2).

• We introduce a search-based method for computing weighted solutions, and
implement it by modifying the search algorithm of the answer set solver
CLASP (Section 3); the ASP representation of the problem is not modified.
The new algorithm is called CLASP-W. In this method, the weight of a so-
lution is defined in C++ in a separate file; this allows us to use CLASP-W to
compute weighted solutions to various problems.

• We also describe a representation-based method for computing weighted so-
lutions, where the weight of a solution is defined as an ASP program (Sec-
tion 3). With this method, we can use an existing ASP solver as is.
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• We compare the representation-based method and the search-based method
in terms of computational efficiency (e.g., computation time and memory
consumed) (Section 7), for reconstructing weighted phylogenies for Indo-
European languages [1] (Section 5). Experimental results show that the
search-based method is better than the representation-based method.

• Extending the applicability of the methods of [6] for computing similar
(diverse) solutions, we describe the problem of computing diverse/similar
weighted solutions in ASP, introduce a search-based method to compute
these solutions, and implement it by modifying the search algorithm of CLASP

(Section 6). The new algorithm is called CLASP-NKW.

• While evaluating the methods above experimentally in reconstructing phy-
logenies for Indo-European languages, we also illustrate their effectiveness
in reconstructing plausible phylogenies (Section 5). For that, we introduce a
weight function that takes into account the compatibility criterion for recon-
structing phylogenies as well as some domain-specific information provided
by the historical linguists (Section 4). The experimental results illustrate the
usefulness of our methods for phylogenetics.

This paper extends [3] by a detailed discussion on the representation-based
method and the search-based method for computing weighted solutions as well as
a discussion on computing similar/diverse weighted solutions. It also extends the
discussion of experimental results.

2 Weighted Solutions

We are interested in the following sorts of computational problems for computing
weighted solutions:

AT LEAST (resp. AT MOST) w-WEIGHTED SOLUTION: Given an ASP pro-
gram P that formulates a computational problem P , a weight measure ω
that maps a solution for P to a nonnegative integer, and a nonnegative inte-
ger w, decide whether a solution S exists for P such that ω(S) ≥ w (resp.
ω(S) ≤ w).

For instance, suppose that P describes the phylogeny reconstruction problem
for Indo-European languages, and that ω describes the total weight of the charac-
ters compatible with the to-be-constructed phylogeny and takes into account some
domain-specific information. Then finding phylogenies whose weights are at least
45 is an instance of the problem above.

Suppose that the ASP program P is a propositional normal logic program and
deciding ω(S) ≤ w (resp. ω(S) ≥ w) for a given w is in NP. Then, we can
conclude that

Theorem 1. AT LEAST (resp. AT MOST) w-WEIGHTED SOLUTION is NP-complete.
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  Compute.lp (P): (Computes a solution to the problem)
  Weight.lp (W): (Computes the weight of a solution)
  Constraint.lp (C): (Eliminates the solutions whose weight is above/below w)

w – weighted solutions

Figure 1: Representation-based method: computing at most/least w-weighted so-
lutions.

Membership follows from the fact that we can not only guess a candidate solution
S but also a witness for ω(S) ≤ w (resp. ω(S) ≥ w), and check in polynomial
time whether ω(S) ≤ w (resp. ω(S) ≥ w). For hardness, we can reduce the
answer-set existence for normal propositional programs, which is an NP-complete
problem, to this problem.

3 Computing Weighted Solutions

We study two sorts of methods, representation-based and search-based, for com-
puting at least/most w-weighted solutions of a given problem P , given an ASP
program P , a weight measure ω that maps a solution to a nonnegative integer, and
a nonnegative integer w.

The idea behind the representation-based methods is to modify the represen-
tation of the problem, to compute weighted solutions. In some cases, we do not
have to define the weight of a solution explicitly; we can use aggregates (e.g., sum,
count, times) to compute the weight, in the sense of [14, 8, 15]. Some other prob-
lems require an explicit definition of the weight of a solution. Phylogeny recon-
struction problems we consider are in the latter group: the weight of a phylogeny
does not only depend on the weights of some parts of the phylogeny but also some
domain-specific information. Therefore, we consider representation-based meth-
ods (as outlined in Figure 1) that formulate the weight function ω as an ASP pro-
gramW , the constraints on the weights of the solutions also as an ASP program C,
and then compute at least (resp. most) w-weighted solutions by computing answer
sets for the ASP program P ∪W ∪ C.

Search-based methods (as outlined in Figure 2) on the other hand do not modify
the ASP representation of the problem, but define the weight function externally
(e.g., as a C++ program) and modify the search algorithm of the answer set solver
to compute solutions over (resp. below) a given threshold. There is no answer set
solver that can compute weighted solutions in such a way.

In our studies, we consider the solver CLASP [9], and modify its search algo-
rithm to implement the search-based method above. Before describing these mod-
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w – weighted solutions

Compute.lp (P): (Computes a solution to the problem)

*The weight function is integrated into the solver.

w

Figure 2: Search-based method: computing at most/least w-weighted solutions.

Algorithm 1 CLASP
Input: An ASP program Π
Output: An answer set A for Π

A← ∅ // current assignment of literals
5← ∅ // set of conflicts
while No Answer Set Found do

// propagate according to the current assignment and conflicts; update the current assignment
PROPAGATION(Π, A,5)
if There is a conflict in the current assignment then

RESOLVE-CONFLICT(Π, A,5) // learn and update the conflict set and do backtracking
else

if Current assignment does not yield an answer set then
SELECT(Π, A,5) // select a literal to continue search

else
return A

end if
end if

end while

ifications, let us describe first CLASP’s algorithm. CLASP does a conflict-driven
DPLL-like [4] branch and bound search to find an answer set for the program: at
each level, it does propagation followed by backtracking or selection of new lit-
erals according to the current conflicts. A rough working principle of CLASP is
shown in Algorithm 1. As can be seen, CLASP goes through three main steps to
find an answer set. In the PROPAGATION step, it decides the literals that have to
be included in the answer set due to the current assignment and conflicts. In the
RESOLVE-CONFLICT step, it tries to resolve the conflicts encountered in the previ-
ous step. If there is a conflict, then CLASP learns it and does backtracking to an
appropriate level. If there are no conflicts and the currently selected literals do not
represent an answer set, in SELECT, CLASP selects a new literal (based on some
heuristics) to continue search.

We modify the CLASP’s algorithm (Algorithm 1) to compute at least (resp.
at most) w-weighted solutions, as shown in Algorithm 2; the parts in red denote
these modifications. The new algorithm is called CLASP-W. Note that compared to
CLASP, CLASP-W has an additional procedure called WEIGHT-ANALYZE; there-
fore, in order to use CLASP-W, we need to implement the WEIGHT-ANALYZE
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Algorithm 2 CLASP-W
Input: An ASP program Π and a nonnegative integer w
Output: An answer set for Π, that describes an at least (resp. at most) w-weighted solution

A← ∅ // current assignment of literals
5← ∅ // set of conflicts
while A does not represent an answer set do

// propagate according to the current assignment and conflicts;update the current assignment
PROPAGATION(Π, A,5)
// compute an upper (resp. lower) bound for the weight of a solution that contains A
weight← WEIGHT-ANALYZE(A)
// if the upper bound weight is less than the desired weight value w
// then no need to continue search to find an at least w-weighted solution
if There is a conflict in propagation OR weight < w then

RESOLVE-CONFLICT (Π, A,5) // learn and update the conflict set and do backtracking
end if
if Current assignment does not yield an answer set then

SELECT(Π, A,5) // select a literal to continue search
else

return A
end if

end while
return false

function according to the weight measure of the specific domain.
The WEIGHT-ANALYZE function is called at each step of the search; therefore,

it should be capable of identifying the partial solution formed by the currently
selected literals, and measuring the weight of that partial solution. Since a partial
solution may extend to many complete solutions, the WEIGHT-ANALYZE function
computes instead an upper bound (resp. a lower bound) for the weight of a solution
that extends the current partial solution. Computing an exact upper bound (resp.
a lower bound) might be hard and inefficient; therefore, one may be interested
in implementing a heuristic function that computes an approximate upper bound
(resp. lower bound) for a solution. To guarantee to find a complete solution, the
heuristic function shall be admissible. In other words, the upper bound (resp. lower
bound) computed by the heuristic function shall be greater (resp. less) than or equal
to the exact upper bound (resp. lower bound). If this is not the case, then we have
a risk of missing a solution. Once we define the WEIGHT-ANALYZE function to
estimate the weight of a solution, we check whether the estimated weight is less
(resp. greater) than the given weight threshold w. If the upper bound (resp. the
lower bound) computed by the heuristic function is already less (resp. greater) than
the given weight threshold w, then there is no solution that can be characterized by
the current assignment of literals and that has a weight greater (resp. smaller) than
w. Therefore; we set the current assignment of literals as conflict in that case.
After setting an assignment as conflict, CLASP learns that assignment and does
backtracking and never selects those assignment in the further stages of the search.
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4 Weighted Phylogeny Reconstruction Problem

The evolutionary relations between species (or “taxonomic units”) based on their
shared traits can be modeled as a phylogeny—a tree whose leaves represent the
species, internal vertices represent their ancestors and edges in between represent
the relationships between them. The problem of phylogeny reconstruction asks
for “plausible” phylogenies for a given set of taxonomic units. The plausibility
of phylogenies can be evaluated with respect to domain-specific information (e.g.,
biological evidence, archeological evidence, historical linguistics) provided by the
experts.

There have been various studies to compute plausible phylogenies (cf. [1]).
We consider a character-based cladistics approach with respect to the compatibility
criterion, as in [1]. In this approach, we describe each taxonomic unit with a set of
“characters”—traits that every taxonomic unit can instantiate in a variety of ways.
The taxonomic units that instantiate the character in the same way are assigned the
same “state” of that character. Once we describe the state of every character for
every taxonomic unit, we can reconstruct phylogenies using the “compatibility”
criterion: our goal is to find a phylogeny with a small number of incompatible
characters. The problem of reconstructing a phylogeny with at most k incompatible
characters (let us call this problem as k-CP) is NP-hard [5].

While reconstructing phylogenies, some characters may give more information
than the others. For instance, to model the evolutionary history of a family of lan-
guages, morphological/phonological characters are more informative than lexical
characters. In order to emphasize the role of such characters in reconstructing a
phylogeny, we define the concept of a weighted phylogeny.

Before we define weighted phylogenies, let us define a phylogeny. A phylogeny
for a set of taxonomic units is a finite rooted binary tree 〈V, E〉 along with two
finite sets I and S and a function f from L x I to S, where L is the set of leaves
of the tree. The set L represents the given taxonomic units, whereas the set V
describes their ancestral units and the set E describes the genetic relationships
between them. The elements of I represent, intuitively, qualitative characters, and
elements of S are possible states of these characters. The function f “labels” every
leaf v by mapping every index i to the state f(v, i) of the corresponding character
in that taxonomic unit.

A weighted phylogeny is a phylogeny (V,E,L, I, S, f) along with a weight
function Φ that maps every character i ∈ I to a nonnegative integer. The weight of
a phylogeny (V,E,L, I, S, f) can be defined in various ways with respect to Φ; in
the following, we consider the weight of a phylogeny as the sum of the weights of
all characters that are compatible with that phylogeny.

We are interested in computing weighted phylogenies for a given set of taxo-
nomic units, and thus the following decision problem:

AT LEAST w-WEIGHTED k-COMPATIBLE PHYLOGENIES (wk-WCP): Given
three sets L, I , S, a function f from L× I to S, a function Φ from I to non-
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negative integers, and two nonnegative integers w and k, decide the existence
of a phylogeny (V,E, L, I, S, f) with at most k incompatible characters and
whose weight is at least w.

Note that wk-WCP is NP hard: we can reduce k-CP to wk-WCP by taking Φ(i) =
1 for every i ∈ I .

5 Computing Weighted Phylogenies for Indo-European Lan-
guages

We can compute weighted phylogenies for the family of Indo-European languages
described in [1], using the representation-based method or the search-based method
described in Section 3. Before we show the applicability of these methods, let us
define the weight Φ of a character for languages, and the weight of a phylogeny
(V,E,L, I, S, f) for Indo-European languages.

5.1 Weight of a Phylogeny for Indo-European

As discussed in [1], out of all given characters and character states, only informa-
tive characters1 and their essential states2 play a role in reconstructing phylogenies.
Therefore, we consider informative characters and their essential states only while
reconstructing phylogenies for Indo-European languages. We have observed that
some informative characters have less number of essential states whereas some
have many; the ones with many essential states give more information as to how
the languages are related to each other. Based on this domain-specific informa-
tion, we define the weight Φ of an informative character i ∈ I with respect to a
phylogeny (V,E, L, I, S, f), as the number of languages that are mapped to an
essential state for that character:

ΦL,I,S,f (i) = |{l ∈ L : f(i, l, s) = s, i is informative, s is essential}| (1)

In the following, we drop the subscript from ΦL,I,S,f when L, I , S, f are clear
from the context.

We can define the weight of a phylogeny (V,E, L, I, S, f) for Indo-European
languages simply as the sum of the weights of compatible characters with that
phylogeny:

weight(V,E, L, I, S, f) =
∑

i∈I,i is informative

Φ(i) (2)

To get more plausible phylogenies, we also incorporate further domain-specific in-
formation. It is told us by historical linguist Don Ringe that it is least likely that
Greco-Armenian (GA) languages are siblings with Balto-Slavic (BS) languages.

1A character is informative if it has at least 2 essential states.
2For a phylogeny (V, E, L, I, S, f), a state s ∈ S is essential with respect to a character j ∈ I if

there exist two different leaves l1 and l2 in L such that f(l1, j) = f(l2, j) = s.
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Similarly, but not as least likely as GA and BS, is the grouping of GA with Ger-
manic (GE) languages. If the to-be-reconstructed phylogenies have such odd group-
ings of languages, we reduce some amount from the total weight of the phylogeny
making sure that the weight of a phylogeny is not negative.

5.2 The Representation-Based Method

The representation-based method (Section 3, Figure 1) suggests describing the
weight of a phylogeny as an ASP program W , the weight constraints as an ASP
program C, and then compute weighted phylogenies by means of computing an-
swer sets for the program P∪W∪C where P is a program that describes phylogeny
reconstruction. We describe ASP programs in the language of LPARSE [13]. We
take P as the phylogeny program of [1].

We describe the weight of a phylogeny (defined in the previous section) as an
ASP program W in four parts, as follows. Suppose that PW, W denote phylogeny
weights, IC denotes an incompatible character, CW denotes a character weight, and
C denotes a character. First we describe the weight CW of an informative character
IC as in (1):

weightOfChar(IC,CW) :-
CW{leaf(V):f(V,IC,S):essential_state(IC,S)}CW.

In the second part, first we define the sum of the weights of characters compat-
ible with the to-be-reconstructed phylogeny, as in (2):

totalWeightOfChars(PW) :- addCharWeights(PW,C), maxChar(C).

addCharWeights(PW,1) :- compatible(1), weightOfChar(1,PW).
addCharWeights(0,1) :- not compatible(1).

addCharWeights(PW+CW,C) :- compatible(C),
weightOfChar(C,CW), addCharWeights(PW,C-1).

addCharWeights(PW,C) :- not compatible(C),
addCharWeights(PW,C-1).

Observe in the third and the fifth rules that the incompatible characters do not
contribute to the weight of a phylogeny.

In the third part, we take into account the domain-specific information dis-
cussed in the previous section. For instance, it is least likely that Greco-Armenian
(GA) languages be siblings with Balto-Slavic (BS) languages. Therefore, we de-
crease some amount, say 30, from the weight of a phylogeny if it groups GA and
BS as siblings. For Indo-European, historical linguist Don Ringe identified 4 odd
groupings. We define the sum W of deductions due to all these odd groupings:

totalDeductions(W) :- addDeductions(W,4).
addDeductions(W,1) :- oddGroup(1,W).
addDeductions(W+PW,G+1) :- oddGroup(G+1,PW), addDeductions(W,G).

Finally, in the fourth part, we define the weight of a phylogeny by subtracting
the total deductions of odd groupings from the total weights of characters:

9



weightOfPhylogeny(PW-W) :- totalWeightOfChars(PW),
totalDeductions(W).

We describe the weight constraints, to ensure that the weight of the phylogeny is
larger than w, as another ASP program C as follows:

:- weightOfPhylogeny(W), W<w.

5.3 The Search-Based Method

The search-based method (Section 3, Fig 2) suggests defining the weight mea-
sure in C++ (in a separate file) and use it with CLASP-W (the modified version of
CLASP that computes weighted solutions).

As discussed in Section 3, we need to define and implement an admissible
heuristic function to estimate the upper bound for the weight of a phylogeny from
a partial phylogeny. Since the weight of a phylogeny is defined over the weights
of incompatible characters, we can define the heuristic function as follows with
respect to the set I of characters and the partially constructed answer set A:

UB(A, I) =
∑
i∈I

Φ(i)−
∑

incompatible(i)∈A

Φ(i)

UB is admissible because UB(A, I) is greater than or equal to the exact upper
bound weight (2) for the phylogeny to-be-reconstructed. Note that building an
admissible heuristic function depends on the characteristics of the domain specific
weight measure.

6 Computing Similar/Diverse Weighted Solutions

Our work is closely related to [6], which introduces methods for computing sim-
ilar (resp. diverse) solutions, in that they both introduce methods and tools for
analyzing and comparing solutions. In [6], the authors propose defining a distance
function to measure the similarity/diversity of solutions, and present a method for
integrating this distance measure in CLASP to compute n k-similar (resp. diverse)
solutions (i.e., n solutions whose distance is less (resp. greater) than or equal to k).
They call this modified version of CLASP as CLASP-NK.

We extend the applicability of our methods and the methods of [6], by consid-
ering more general problems as follows:

n k-SIMILAR (resp. k-DIVERSE) AT LEAST (resp. AT MOST) w-WEIGHTED

SOLUTIONS: Given an ASP program P that formulates a computational
problem P , a weight measure ω that maps a solution for P to a nonnegative
integer, a distance measure ∆ that maps a set of solutions to a nonnegative
integer, nonnegative integers w and k, decide whether a set S of n solutions
for P exists such that ∆(S) ≤ k (resp. ∆(S) ≥ k) and for each s ∈ S,
ω(s) ≥ w (resp. ω(s) ≤ w).
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Algorithm 3 CLASP-NKW
Input: An ASP program Π and nonnegative integers w, n and k
Output: A set of n k-similar at least w-weighted solutions

A← ∅ // current assignment of literals
5← ∅ // set of conflicts
X ← ∅ // previously computed answer sets
while |X| < n do

PROPAGATION(Π, A,5)
weight← WEIGHT-ANALYZE(A) // Related to CLASP-W
distance← DISTANCE-ANALYZE(A, X) // Related to CLASP-NK
if (There is a conflict in propagation) OR (weight < w) OR (distance > k) then

RESOLVE-CONFLICT (Π, A,5)
end if
if Current assignment does not yield an answer set then

SELECT(Π, A,5)
else

return X ← X ∪A
end if

end while
return X

We introduce a search-based method for computing n k-similar (resp. k-diverse)
at least (resp. at most) w-weighted solutions in ASP, and implement this method
by modifying the search algorithm CLASP-W as in Algorithm 3; the parts in blue
denote these modifications. The modified version is called CLASP-NKW.

Note that AT LEAST (resp. AT MOST) w-WEIGHTED SOLUTION can be solved
using CLASP-NK of [6] by defining the distance function in terms of the given
weight function ω. However, in general, we cannot compute n k-similar (resp.
diverse) at least (resp. most) w-weighted solutions in this way. To be able to
solve all four variations of n k-SIMILAR (resp. k-DIVERSE) AT LEAST (resp. AT

MOST) w-WEIGHTED SOLUTIONS using CLASP-NK, we need to define four dif-
ferent distance functions (rather than a generic distance function) in terms of the
given distance function ∆ and the given weight function ω.

7 Experimental Results

We applied the computational methods described above (i.e., the representation-
based method, and the search-based method) to reconstruct weighted phylogenies
for Indo-European languages. We used the dataset assembled by Don Ringe and
Ann Taylor [12]. While computing phylogenies, we also took into account some
domain-specific information.

Let us first consider computing an at least w-weighted phylogeny with at most
c incompatible characters (Table 1). Based on the results of [1], we consider
c = 16, 17, 18 and w = 45. For each problem, for each method, we present
the computation time, the size of the ground program, and the size of the mem-
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ory used in computation.3 For instance, let us consider computing a phylogeny
with at most 17 incompatible characters, and whose weight is at least 45. With
the representation-method, CLASP takes 15.32 CPU sec.s to compute such a phy-
logeny; the ground program has 79229 atoms and 1585419 rules; the computation
of the phylogeny consumes 369 MB of memory. On the other hand, with the
search-based method, CLASP-W takes 1.30 CPU sec.s to compute such a phy-
logeny; the ground program has 3744 atoms and 55219 rules; the computation of
the phylogeny consumes 22 MB of memory.

Observe in Table 1 that in terms of both computation time and the memory
used, the search-based method performs better than the representation-method.
These results conform with our expectations. The representation-based method
explicitly defines the weight function, and thus the program/memory size is larger.
The search-based method deals with the time consuming computation of weights
of phylogenies, not at the representation level but at the search level: It does not
require an ASP representation of the weight function but requires a modification
of the solver to guide it find a plausible phylogeny. Therefore, in the search-based
methods, the program/memory size is smaller as well as the computation time.

Now let us examine the results of experiments, while computing all at least w-
weighted phylogenies with at most c incompatible characters (Table 2): In terms of
both computation time and the memory used, the search-based method performs
better than the representation-method. For instance, let us consider the problem
of computing all phylogenies with at most 17 incompatible characters, and whose
weight is at least 45. With the representation-method, CLASP takes 126 CPU sec.s
to compute all 8 phylogenies; whereas, with the search-based method, CLASP-W
takes 17 CPU sec.s to compute them.

In [1], after computing all 45 phylogenies, the authors examine them manually
and identify 34 of them as plausible (1 with 16 incompatible characters, 7 with
17 incompatible characters, 6 with 18 incompatible characters, 3 with 19 incom-
patible characters, 17 with 20 incompatible characters). With the weight measure
defined in Section 5, and the representation/search-based methods described above
for computing weighted phylogenies, we could automatically compute all plausible
phylogenies with at most 18 incompatible characters.

We also applied our search-based method for computing similar/diverse phy-
logenies for Indo-European languages, using CLASP-NKW. We considered the
nodal distance (as in [6]) to measure the similarity/diversity of a set of phyloge-
nies. For instance, we computed 2 12-similar and at least 45-weighted phylogenies
using CLASP-NKW; the computation took 2.3 CPU sec.s. Likewise, we computed
2 24-diverse and at least 45-weighted phylogenies using CLASP-NKW; the com-
putation took 2.7 CPU sec.s. In [1], after examining all 34 plausible phylogenies
manually, the authors come up with three forms of tree structures, and then “filter”
the phylogenies accordingly. The results of our experiments comply with these

3All CPU times are in seconds, for a workstation with a 1.5GHz Xeon processor and 4x512MB
RAM, running Red Hat Enterprise Linux (Version 4.3).
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Table 1: The representation-based method vs. the search-based method: computing
an at least w-weighted phylogeny with at most c incompatible characters.

# of incompatibleweightmethod time program size memory size
characters (c) (w) (CPU sec.s) (MB)
16 45 representation-based15.52 # of atoms: 79229 369

# of rules: 1585419
search-based 1.34 # of atoms: 3744 22

# of rules: 55219
17 45 representation-based15.32 # of atoms: 79229 369

# of rules: 1585419
search-based 1.30 # of atoms: 3744 22

# of rules: 55219
18 45 representation-based15.47 # of atoms: 79229 369

# of rules: 1585419
search-based 1.10 # of atoms: 3744 22

# of rules: 55219

Table 2: The representation-based method vs. the search-based method: computing
all at least w-weighted phylogenies with at most c incompatible characters.

# of incompatibleweight# of phylogeniesmethod time memory size
characters (c) (w) (CPU sec.s)(MB)
16 45 1 representation-based14.49 369

search-based 3.67 22
17 45 8 representation-based126.06 369

search-based 17 22
18 45 14 representation-based210.32 369

search-based 22.35 22

groupings: the similar phylogenies computed by CLASP-NKW are in the same
group; the diverse phylogenies are in different groups.

8 Discussion

We studied the problem of computing weighted solutions in ASP, where the weight
of a solution is defined explicitly. We introduced two methods to solve this prob-
lem. One method is based on the idea of modifying the representation of the prob-
lem so that we can use an existing ASP solver to compute weighted solutions.
In this method, the weight measure and the weight constraints are encoded as ASP
programs, and the main program is modified in an elaboration tolerant way by sim-
ply adding these programs. The other method is based on the idea of modifying
the search algorithm of an ASP solver so that we can compute weighted solutions
without modifying the main program. In this method, the weight of a solution is
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implemented as a C++ program (in a separate file), and the search algorithm of
the ASP solver CLASP is modified to compute weighted solutions with respect to
this program. The modified version of CLASP is called CLASP-W. We compared
the search-based method with the representation-based method in reconstructing
weighted phylogenies for Indo-European languages. We observed that CLASP-W
performs better in terms of computation time and space.

One benefit of the search-based method (other than computational efficiency)
is that it allows implementing complex numerical weight measures which cannot
be easily encoded in ASP. On the other hand, to take advantage of computational
efficiency of this method, one has to devise an admissible heuristic function for
the weight measure. Though, in some cases (e.g., when it is easier to represent
the weight measure in ASP) it might be desirable to use the representation-based
method.

For some problems, we do not have to define the weight of a solution explicitly,
and we can use aggregates (e.g., sum, count, times) to compute the weight, in the
sense of [14, 8, 15]. For such problems, other approaches assign weights to weak
constraints [7, 2] or some rules [11] and then find the answer set that minimizes
the sum of the weights of the violated weak constraints or violated rules. However,
these representation-based methods are not general enough to handle more com-
plicated weight functions that requires further new definitions, like that of a phy-
logeny above where we need to define total deductions relative to domain-specific
information.

Based on the promising experimental results above, we extended our search-
based method to be able to compare weighted solutions; for that we modified
CLASP-W in the spirit of [6]. The modified version of CLASP-W is called CLASP-
NKW. By this way, given a weight measure ω for a phylogeny and a distance mea-
sure ∆ for a set of phylogenies (both as C++ programs, in separate files), we can
compute similar/diverse weighted phylogenies.

Our methods for computing (similar/diverse) weighted solutions, and the solvers
CLASP-W and CLASP-NKW provide useful tools for analyzing/comparing solu-
tions both in ASP and in phylogenetics. In ASP, there are many appealing appli-
cations (e.g., product configuration, planning) for which finding weighted and/or
similar/diverse solutions could be useful. In phylogenetics, there is no software
system that has utilities for analying/comparing phylogenies; in that sense, our
search-based methods (including the weight/distance measures) allow experts to
automatically analyze phylogenies.
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