
Robust Clustering of Data Streams using

Incremental Optimization

Basheer Hawwash and Olfa Nasraoui

Knowledge Discovery and Web Mining Lab
Computer Engineering and Computer Science Department

University of Louisville, Louisville, KY, USA

Abstract. In many applications, it is useful to detect the evolving pat-
terns in a data stream, and be able to capture them accurately (e.g. de-
tecting the purchasing trends of customers over time on an e-commerce
website). Data stream mining is challenging because of harsh constraints
due to the continuous arrival of huge amounts of data that prevent un-
limited storage and processing in memory, and the lack of control over
the data arrival pattern. In this paper, we present a new approach to
discover the evolving dense clusters in a dynamic data stream by in-
crementally updating the cluster parameters using a method based on
robust statistics. Our approach exhibits robustness toward an unknown
number of outliers, with no assumptions about the number of clusters.
Moreover, it can adapt to the evolution of the clusters in the input data
stream.

1 Introduction

Data Stream Mining has attracted increasing attention in recent years [2,3,8],
due to the proliferation of applications that generate massive streams of data.
Data streams are characterized by a huge throughput which makes it hard if
not impossible to store every single data point and process it, therefore each
new data point can be processed only once. Moreover, there is no control or
expectation on the order of the data arrival, which adds more di�culties when
trying to extract useful information from the data streams. An example of a
data stream are the transactions performed on a busy e-commerce website. The
output of the data stream mining, in this case, would be the purchasing patterns
of the customers.

To meet the challenge of mining data streams, clustering algorithms should
be scalable enough to cope with huge throughputs of data [1]. Several clustering
algorithms have been designed to deal with large amounts of data by updating
the clustering model incrementally or by processing data points in small batches.
For example, STREAMS [2] �rst processes data streams in batches which gen-
erates a set of weighted cluster centers for each batch; then the set of cluster
centers for all batches are clustered. However, it is not suitable to handle or
detect outliers because it is based on minimizing the sum of squared distances
which is very sensitive to extreme outliers [7]. BIRCH [3] is another incremental

clustering algorithm which uses a set of statistical measurements to capture the
closeness of data points. It updates these measurements incrementally and stores
the clusters in a tree of Cluster Features (CF). One of BIRCH's limitations is
that it treats all the data points in the same way without considering the time
when the data points arrived. Hence, it cannot handle the evolution of data,
where a cluster can disappear, change or merge with other clusters, which is one
of the inherent characteristics of a data stream. In [8], an algorithm for clustering
data streams, known as TRAC-Streams, was presented. It relied on incremental
processing and robust statistics for learning an evolving model of the clusters in
a data stream. Its objective function consists of two terms: the �rst term min-
imizes the scaled distances of the good points to the optimal cluster locations
to achieve robustness, while the second term maximizes a soft estimate of the
cluster cardinality (sum of weights) which ensures that as many good points as
possible are used in the estimation process. However, a constant factor α is used
to balance the two terms, and had to be chosen carefully and depends on the
data's dimensionality. DBSCAN [9] is a density based clustering technique that
relies on labeling each data point as a core point, border point or noise point
based on the number of points within a prede�ned distance. This labeling relies
on two important parameters, MinPts (a threshold on density around a core
point) and Eps (a measure of scale used as a threshold on the size of a dense
region). Its incremental version [10] (Inc-DBSCAN) achieves the same goal in an
online manner by attempting to label each new data point into one of the above
labels and updating (merging, elimination, etc) the clusters accordingly. It was
proved that Incremental DBSCAN results in clusters that are equivalent to the
original DBSCAN, however it has the same quadratic complexity in terms of the
data size.

In this paper, we present a novel algorithm for extracting evolving clusters
from a massive data stream in one pass, while being able to resist and detect the
presence of outliers in the data stream. Our approach is rooted in robust statistics
[7] since it uses a robust estimation of centroids (location) as well as a robust and
dynamic estimation of the cluster scales. It is also based on a robust distribution
independent statistical test (Chebyshev) for the detection of outliers and for the
mergal of compatible clusters, thus assuring robustness and compactness of the
extracted cluster model. The statistically based robustness to noise, dynamic es-
timation of scales, and fast analytical optimization constitute the distinguishing
contributions of our approach compared to existing stream clustering methods.
The main distinction between RINO-STREAMS and TRAC-STREAMS is in
the simpler objective function which consists of only one term (the density) for
the former, thus eliminating the need to balance two terms in the later. This
results in a simpler and faster optimization. Moreover, RINO-STREAMS has a
better cluster merging technique.

The rest of the paper is organized as follows. In Section 2, we describe the
proposed approach (RINO-STREAMS), while in Section 3, we present the ex-
perimental results that validate our algorithm. Finally, we conclude in Section
4.

2 RINO-STREAMS

The proposed algorithm, RINO-STREAMS, is based on incrementally updating
the clustering model using each newly arrived data point, and thus maintaining
the model summaries (clusters) over time. The data stream X consists of a set
of data instances or points that are indexed based on the order of their arrival,
and presented as: x1, x2...., xN , where N is the size of the data stream. Each
cluster i at time n (i.e. after receiving n points) is de�ned using its centroid ci,n,
its scale σ2

i,n and its age ti. The centroid represents the location of the cluster
center with respect to other clusters at any time, while the scale represents the
in�uence zone around the centroid. The data points are weighted using a weight
function that decreases with the distance from the cluster prototype/centroid as
well as with the time at which the data arrived. Hence, newer data points would
have more e�ect on the model than older ones, thus capturing the evolution of
clusters over time. Using an exponentially decaying forgetting factor was proved
to be successful in modeling evolution as was done in previous work [4,5,6]. The
age is the di�erence between the current time/iteration or step (n) and the time
when the cluster was �rst created.

De�nition 1. Adaptive Robust Weight: For the ith cluster, Ci, i = 1, ...,K,
the robust weight of the jth data point at time n (i.e. x1, x2, ..., xn points are
encountered so far) is de�ned as:

wij,n = e
−
(

d2ij
2σ2
i,n

+n−j
τ

)
(1)

where τ is an optional application-dependent parameter that controls the
time decay rate of old data points (when needed), and how much importance is
given to newer data points. d2

ij is the Euclidean distance from the jth data point

to the ith cluster's centroid ci, and σ
2
i,n is the scale of cluster i at time/step n and

relates to the size of the in�uence zone of the cluster where every point outside
this zone is considered an outlier with respect to cluster ci. The second term
represents a forgetting factor, where the weight of the data point j decreases
geometrically by the value of n − j, hence a new data would have a higher
weight since the forgetting factor would be close to zero, while an older point
would have a large value for the forgetting factor which results in a smaller
weight. Assuming that the parameters of the model don't change signi�cantly
with every new point, then each old point's weight, and thus its in�uence on the
cluster parameter estimates, would decrease as follows:

wij,n = e
−1
τ wij,n−1 (2)

After encountering n data points, we search for the cluster centroids ci,n and
scales σ2

i,n by optimizing the density objective function δi,n as follows:

max
ci,n,σ2

i,n

δi,n =
K∑
i=1

n∑
j=1

wij,n
σ2
i,n

 i = 1, ...,K (3)

The robust weight wij,n can also be considered as a typicality or possibilistic
degree of membership [13] of the point j in the cluster i after encountering n
points, hence the sum of the weights for each cluster represents a soft cardinality
of that cluster. A high cardinality is desirable because it means that this cluster
represents enough points to justify its existence. A small scale means that it is a
good and compact cluster. The density of the cluster, δi,n, combines the previous
two metrics of the cluster, and hence it increases as the cardinality increases and
the scale decreases. The advantage of optimizing the density, which combines
the two metrics, is that judging the quality of the cluster using only the sum of
weights (the numerator) is not enough, because a cluster with a large number of
similar points which are not con�ned within a small zone is not desirable from
the point of view of density.

Optimizing the density objective function is done using alternating optimiza-
tion, where �nding the optimal centroid is done by �xing all other variables, then
the same is done when optimizing the scale. This optimization technique is also
used in the EM algorithm [11]. Below we present the optimal update theorems
for the cluster centroids and scale, while omitting the proofs due to the paucity
of space. The proofs are similar to the approach followed in [8].

Theorem 1. Optimal Incremental Centroid Update: Given the previous
centroids, ci,n−1, and assuming that the scales do not change much relative to
the scale that resulted from the previous point, the new centroid that optimize
(3) after the nth point is given by:

ci,n =
e
−1
τ

(∑n−1
j=1 wij,n−1xj

)
+ win,nxn

e
−1
τ

(∑n−1
j=1 wij,n−1

)
+ win,nxn

(4)

The �rst term in the numerator (and denominator) represents the previ-
ous knowledge about the location of the centroid obtained from the points
(x1, ..., xn−1), and this term is multiplied by the forgetting factor to reduce
its e�ect on the new updated centroid and give more emphasis to the new data
point. This comes directly from the fact that the weight of each point is reduced
by e

−1
τ as given by equation (2). The second term represents the weighted e�ect

of the new data point on the location of the cluster.

Theorem 2. Optimal Incremental Scale Update: Given the previous scales,
σ2
i,n−1, the new scale that optimize (3) after the arrival of the nth point is given

by:

σi,n =
e
−1
τ

(∑n−1
j=1 wij,n−1d

2
ij

)
+ win,nd

2
in

2e
−1
τ

(∑n−1
j=1 wij,n−1

)
+ 2win,n

(5)

Similar to the centroid update equation, the �rst term in the numerator
represents the sum of the contributions of all previous points (x1, .., xn−1), and
this value is also penalized by the forgetting factor. The second term represents
the new information obtained from the new data point.

Following these two update equations, the algorithm would update the cluster
parameters with the arrival of a new data point incrementally, and it would keep
as a summary of the data stream only the previous centroids (ci,n), scales (σ

2
i,n)

and the sums of weights (Wi,n =
∑n
j=1 wij,n) for each cluster.

2.1 Detecting outliers

An outlier is de�ned as a data point that doesn't belong to any of the existing
clusters (i.e. not in their in�uence zone). If a point is determined to be an outlier
with respect to all existing clusters, then a new cluster will be created with the
point itself being its centroid. This newly created cluster will be allowed a grace
period, tmature, and if after this threshold, it is still weak (it has a density less
than a threshold δmin), then it will be considered an outlying cluster and will be
deleted. To detect outliers we are going to use the Chebyshev bound, an upper
tail bound that bounds the total probability that some random variable is in
the tail of the distribution, i.e. far from the mean. One important property of
Chebyshev bounds is that they rely on no assumptions about the distribution
of the data, rather they assume that a reliable scale estimate is available, which
is the case using RINO-STREAMS by virtue of the robust density and scale
optimization.

Chebyshev Bounds: The Chebyshev bound for a random variable Y with
standard deviation σ for any real number t > 0 is given by:

Pr {|Y − µ| ≥ tσ} ≤ 1
t2

(6)

This bound will allow us to design an outlyingness test for any new data point
with respect to cluster Ci with signi�cance probability 1/t2. The Chebyshev
inequality can be rearranged as follows:

Pr

{
e
−|Y−µ|2

2σ2 ≥ e
−t2
2

}
≤ 1

t2 Or Pr
{
wij ≥ e

−t2
2

}
≤ 1
t2

(7)

which means that if the robust weight wij of the point j with respect to cluster

Ci is less than the constant value of e
−t2
2 , then point j is considered to be an

outlier with a signi�cance probability of 1
t2 . Moreover, the Chebyshev Bound is

used when �nding the cardinality of the cluster when doing the evaluation (i.e.
all points that pass the Chebyshev test are considered part of the cluster with a
signi�cance probability of 1− 1

t2).

De�nition 2. Outlier with Chebyshev probability of 1
t2 : xj is an outlier

with respect to cluster Ci at time n with a signi�cance probability of 1
t2 if:

wij,n ≥ e
−t2
2 (8)

2.2 Cluster mergal and splitting

We further use the Chebyshev bound to design a compatibility test for merging
clusters Ci and Ck. This is done by checking their mutual Chebyshev bounds
with signi�cance probability 1/t2: Given the distance dik between the centroids
ci and ck, then using (6), the clusters are merged if:

d2
ik < t2σ2

i & d2
ik < t2σ2

k (9)

When the clusters Ci and Ck are merged, the centroid of the new cluster is
a weighted centroid as follows

cnew,n =
ci,n

∑n
j=1 wij,n + ck,n

∑n
j=1 wkj,n∑n

j=1 wij,n +
∑n
j=1 wkj,n

(10)

and the scale is weighted as follows:

σ2
new,n =

σ2
i,n

∑n
j=1 wij,n + σ2

k,n

∑n
j=1 wkj,n∑n

j=1 wij,n +
∑n
j=1 wkj,n

(11)

and the age tnew is max(ti, tk). Moreover a test is done to eliminate bad
clusters whose density is less than a threshold (δmin) and is mature enough (i.e.
ti > tmature). Splitting clusters in RINO-STREAMS occurs naturally and does
not require a special treatment (see experiments in Section 3.3). A cluster split
occurs when points from a cluster evolve in two or more di�erent directions.
The complete steps of RINO-STREAMS are listed in Algorithm 1. The input
parameters to RINO-STREAMS include the maximum number of clusters Kmax

which is an upper bound of the allowed number of clusters which constraints the
maximal amount of memory devoted to storing the cluster model, the initial
scale σ2

0 which is assigned to the newly created cluster, the density threshold
δmin which is used to ensure that only good clusters with high density are kept,
the maturity age tmature which provides the newly created clusters with grace
period before testing its density quality, the forgetting factor τ which controls
the decay in the data point weights over time and the Chebyshev bound constant
t that is used in equations (7) and (9).

2.3 Complexity

For each new data point, RINO-STREAMS computes the distance and the
weights with respect to all the clusters in ζ, which is done in linear steps.
Since the clustering model is updated incrementally, then nothing is recomputed
from scratch, and hence the computational complexity of RINO-STREAMS is
O(NK2) where N is the size of the data stream and K is the number of clusters
discovered in the data set (0 ≤ K ≤ Kmax) which is a very small value compared
to N . Moreover, the memory requirements of RINO-STREAM are linear with
the number of clusters, because at any point of time only the clusters properties
(ci, σ

2
i ,Wi) are kept besides the new data point. This memory is constrained

Algorithm 1 RINO-STREAMS

Input: Maximum number of clusters (Kmax), Initial scale (σ2
0), density threshold (δmin),

maturity age (tmature), forgetting factor (τ), Chebyshev Bound constant (t)
Output: Cluster model after n points ζ = C1∪C2....∪CK where Ci = (ci,n, σ

2
i,n, ti,Wi,n), where

Wi =
∑n
j=1 wij,n

FOR n = 1 TO N DO
//single pass over the data stream
Compute the distances, din, and robust weights win,n between xn and clusters

Ci∀i = 1, .., K
IF K < Kmax And xn is an outlier with respect to all clusters in ζ

// Create a new cluster centered on xn
K = K + 1
cK = xn //centroid
σ2
K = σ2

0 //initial scale
tK = 0 //initial age
WK = 1 //initial sum of robust weights
δK = 1

σ2
0

// initial density

END IF
FOR each cluster Ci∀i = 1, .., K

//Update the compatible clusters if xn is not an outlier
IF xn is NOT an outlier with respect to cluster i (see Def. 2)

Update ci,n using (4)

Update σ2
i,n using (5)

Update sum of weights: Wi,n = e
−1
τ Wi,n−1 + win

Update density δi,n =
Wi,n

σ2
i,n

Update age ti = ti + 1
END IF

END FOR
FOR each pair of clusters Ci&Ck∀i, k = 1, .., K

IF Ci and Ck are Chebyshev-compatible using equation (9)
Merge clusters Ciand Ck using equations (10) and (11)

END IF
END FOR
FOR each cluster Ci∀i = 1, .., K

IF ti > tmature & δi < δmin //remove mature clusters with low density
ζ = ζ − Ci

END IF
END FOR

END FOR

by Kmax × Bf × (Dim + 3) where Bf is the number of bytes needed to store
one �oating point number, and Dim is the dimensionality (number of data at-
tributes) and refers to the size of the centroid ci and the number 3 refers to the
scale σ2

i , soft cardinality Wi and age ti.

3 Experimental Results

RINO-STREAMS was evaluated using three synthetic datasets generated using
a random Gaussian generator: DS5 has �ve clusters, DS8 has eight clusters and
DS16 has 16 clusters. For each dataset, nine stream variations were created by
adding di�erent percentages of noise and by changing the order of data arrival.
We will be using a brief code that describes the experiments obtained with these
dataset variations. The �rst part of the code is the name of the algorithm used,
the second letter re�ects the number of true clusters, Cx where x is the number
of true clusters, then followed by the order of the points arrival (O: ordered one

cluster at a time then followed by the noise if any, R2: random points from two
clusters at a time followed by noise, R: completely random from all clusters and
noise). The �nal part of the code describes the percentage of noise added as Ny
where y is the percentage of noise relative to all the data.

3.1 Experimental Setup:

We compared RINO-STREAMS against two density based online clustering
algorithms: TRAC-STREAMS [8] and Inc-DBSCAN [10]. Since both RINO-
STREAMS and TRAC-STREAMS have similar parameters, we compared the
results between these two algorithms by changing the values of three parameters
while �xing the other parameters. These parameters and their values are listed
in Table 1. The �rst parameter is the optional forgetting lifetime (τ) where we
assigned a value as a percentage of the data stream length (|X|) with in�nity for
the case of no forgetting; the second parameter is the minimum sum of weights
(Wmin) which a�ects the minimum density threshold value (δmin = Wmin

σ2
0

), and

�nally the maximum number of clusters allowed (Kmax) as a percentage of the
real number of clusters in the ground truth (KG); KG = 5, 8, or 16 depending
on the data set. Some non-critical parameters were �xed, which are the initial
scale value σ2

0 = 0.01, maturity age tmature = 100, and Chebyshev constant
1
t2 = 0.075. When comparing against Inc-DBSCAN, we picked the best results
for both methods and compared using di�erent evaluation metrics discussed be-
low, because both algorithms don't share similar parameters. To optimize the
performance for Inc-DBSCAN, we tried di�erent values for MinPts from 1 to
10, and chose the best value, then we plotted the sorted k-dist graph for each
run and chose the best Eps value as recommended in [9]. Table 2 shows Inc-
DBSCAN's optimal values of MinPts and Eps found manually for the di�erent
datasets. We chose Inc-DBSCAN because it is a leading density-based algorithm
and has been widely studied in the literature.

To evaluate the results we used four evaluation metrics. Two internal met-
rics: Silhouette index [12] (a value close to 1 means that data points were well
clustered) and the similarity matrix [12] containing the similarity values between
every two data points, after ordering the data by their cluster label. The rest of
the metrics are external validation metrics: error in number of clusters detected
and the average centroid error relative to the ground truth. A cluster is consid-
ered to be correctly discovered if its centroid is close enough to one of the found
centroids based on the Chebyshev test (7), and the di�erence between the two
scales is less than a threshold value. In the case of Inc-DBSCAN, the centroid
and scale were calculated from the points themselves. Because Inc-DBSCAN
doesn't have the notion of centroid and scale, we cannot compare these values
with the ground truth. Table 3 explains the x-axis index values for �gure 3. All
the experiments against TRAC-STREAMS showed that RINO-STREAMS per-
formed as good or better than TRAC-STREAMS, hence, and due to paucity of
space, we will only present the comparison against Inc-DBSCAN.

Table 1: Experimental Parameters
τ
|X| 15% 40% ∞
Wmin 5 20 50
Kmax
KG

50% 100% 200%

Table 2: Inc-DBSCAN's Optimal Parameter Values (found manually)
MinPts Eps

DS5 6 0.029
DS8 3 0.02
DS16 4 0.01

Table 3: The meaning of the X-axis index values for �gure 3
X-axis Index 1 2 3 4 5 6 7 8 9

Dataset Variations C16ON0 C16ON9 C16ON18 C16R2N0 C16R2N9 C16R2N18 C16RN0 C16RN9 C16RN18

3.2 RINO-STREAMS vs Inc-DBSCAN

In this section, we compare the quality of clustering of the proposed algorithm
with that of Inc-DBSCAN. The Inc-DBSCAN optimal parameter values are
listed in Table 2. For the proposed algorithm, we set the reasonable value of
Kmax = 200%∗KG, τ = 40%∗|X| andWmin = 20. Figure 1 shows the clustering
output for the experiment C16RN18, where �gure 1(a) shows the ground-truth,
�gures 1(b) and 1(c) show the clustering output using Inc-DBSCAN and RINO-
STREAMS respectively. Inc-DBSCAN falsely detected more clusters because it
depends on the notion of density only, so outliers which are close to each other are
considered valid clusters, whereas RINO-STREAMS uses a robust estimation of
scale that makes it more resistant to outliers, and it also uses some quality tests
(using δmin) to ensure only high quality clusters are maintained. Figure 2 shows
the similarity matrices of the clustering outputs for Inc-DBSCAN and RINO-
STREAMS that serves to validate both cluster outputs. However Inc-DBSCAN
tends to fragment some clusters (e.g.the blocks toward the bottom right corner).
Figure 3 shows the results for DS16, where the x-axis corresponds to the di�erent
dataset variations (i.e. di�erent noise percentages and order of data arrival)
as explained in Table 3. DBSCAN always overestimates the actual number of
clusters, and it labels small groups of noise as clusters thus �nding more false
clusters as the noise increases, whereas RINO-STREAMS has correctly detected
the right number of clusters in most cases. The silhouette index for RINO-
STREAMS is always better than Inc-DBSCAN in all the con�gurations, which
means a higher quality clustering.

Fig. 1: DS16: Final output for Experiment C16RN18

(a) Ground Truth

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1
2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

(b) Inc-DBSCAN
(c) RINO-STREAMS (noise
points detected and removed)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2

3

4

5

6

7 8

9

10

11

12

13

14

15

16

Note 1. Only the points that were not labeled as noise are shown. Contours
denote the Chebyshev bound resulting from the estimated scales

Fig. 2: DS16: Similarity Matrix for Experiment C16RN18

(a) Inc-DBSCAN (b) RINO-STREAMS

Data Points

D
at

a
P

oi
nt

s

Similarity Matrix Blocks

500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500
Similarity

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3: DS16: RINO vs DBSCAN (See Table 3 for the x-axis legend)

(a) Error in Number of Clusters Detected
(K−KG

KG
)

1 2 3 4 5 6 7 8 9
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Dataset Variations

Difference in No. Clusters (DS16)

RINO
DBSCAN

(b) Silhouette Coe�cient

1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dataset Variations

Silhouette Index (DS16)

RINO
DBSCAN

Note 2. The absence of a bar means no error

3.3 Cluster splitting and mergal

To illustrate how clusters merge and split in RINO-STREAMS, we designed
two experiments where one cluster evolves into three di�erent clusters to show
cluster splitting, and one where three clusters evolve into one cluster to show
cluster mergal. Figure 4 shows the cluster output evolution at �ve di�erent time
periods, where time is measured in terms of the number of data points that
arrived relative to the data stream size (|X|). It can be seen that one cluster
(cluster number 1) is detected at the beginning, and then, as the cluster splits,
two more clusters are detected. Figure 5 illustrates the gradual mergal of three
di�erent clusters, over �ve di�erent time periods, into one cluster.

Fig. 4: A cluster gradually splits into three clusters over time

(a) At time=10% of |X| (b) At time=30% of |X| (c) At time=60% of |X| (d) At time=100% of |X|

Note 3. Points in turquoise are old points (their time of arrival > τ)

Fig. 5: Three clusters gradually merge into one cluster over time

(a) At time=10% of |X| (b) At time=30% of |X| (c) At time=70% of |X| (d) At time=100% of |X|

Note 4. Points in turquoise are old points (their time of arrival > τ)

4 Conclusion

We presented RINO-STREAMS, a novel algorithm for mining evolving clusters
from a dynamic data stream in one pass, while being able to resist and detect

the presence of outliers in the data stream. Our approach is rooted in robust
statistics since it uses a robust estimation of centroids (location) as well as a
robust and dynamic estimation of the cluster scales. It is also based on a ro-
bust distribution independent statistical test (Chebyshev) for the detection of
outliers and for the mergal of compatible clusters, thus ensuring the robustness
and compactness of the extracted evolving cluster model. The statistically based
robustness, dynamic estimation of scales, and fast analytical optimization distin-
guish our approach from existing stream clustering methods. Our experiments
validated the robustness properties of the proposed algorithm and the accuracy
of its clustering model obtained in a single pass compared to two competing
density based clustering algorithms, TRAC-STREAMS and Inc-DBSCAN.

Acknowledgment

This work was supported by US National Science Foundation Grant IIS-0916489

References

[1] Daniel Barbara, �Requirements for clustering data streams,� ACM SIGKDD Ex-
plorations Newsletter, vol. 3, no. 2, pp. 23�27, 2002.

[2] S. Guha, N. Mishra, R. Motwani, and L. O'Callaghan, �Clustering data streams,�
in IEEE Symposium on Foundations of Computer Science (FOCS'00), Redondo
Beach, CA, 2000.

[3] T. Zhang, R. Ramakrishnan, and M. Livny, �Birch: An e�cient data clustering
method for large databases,� in ACM SIGMOD International Conference on Man-
agement of Data, New York, NY, 1996, pp. 103�114, ACM Press.

[4] Cao, F.; Ester, M.; Qian, W. & Zhou, A. Density-based clustering over an evolving
data stream with noise In 2006 SIAM Conference on Data Mining, 2006, 328-339

[5] O. Nasraoui, C. Cardona, C. Rojas, and F. Gonzalez, �Tecnostreams: Tracking
evolving clusters in noisy data streams with a scalable immune system learning
model,� in Third IEEE International Conference on Data Mining (ICDM'03), Mel-
bourne, FL, November 2003.

[6] Chen, Y. & Tu, L. Density-based clustering for real-time stream data KDD '07:
Proceedings of the 13th ACM SIGKDD international conference on Knowledge
discovery and data mining, ACM, 2007, 133-142

[7] P. J. Huber, Robust Statistics, John Wiley & Sons, New York, 1981.
[8] Nasraoui, O. ,Rojas, C. Robust Clustering for Tracking Noisy Evolving Data

Streams SDM, 2006
[9] Ester, M.; peter Kriegel, H.; S, J. & Xu, X. A density-based algorithm for discov-

ering clusters in large spatial databases with noise AAAI Press, 1996, 226-231
[10] Ester, M.; Kriegel, H.-P.; Sander, J.; Wimmer, M. & Xu, X. Incremental Clustering

for Mining in a Data Warehousing Environment PROC. 24TH INT. CONF. Very
Large Data Bases, VLDB, 1998, 323-333

[11] Borman, S. The expectation maximization algorithm: A short tutorial. 2004
[12] Tan, P.N., Steinbach, M. , Kumar, V., Introduction to Data Mining, Addison

Wesley, 2005
[13] Krishnapuram, R. and J. M. Keller (1996). The possibilistic c-means algorithm:

insights and recommendations. IEEE Transactions on Fuzzy Systems 4 (3), 385-
393.

