
The integration of OntoClean in WebODE

Mariano Fernández-López, Asunción Gómez-Pérez

Facultad de Informática . Universidad Politécnica de Madrid

Campus de Montegancedo, s/n. 28660 Boadilla del Monte. Madrid. Spain

{mfernandez, asun}@fi.upm.es}

Abstract. Enterprises will only be interested in the use of ontologies if such

ontologies are evaluated enough. Therefore, the development of ontology

evaluation tools is a crucial matter. We have built the ODEClean module in the

workbench for building ontologies named WebODE. ODEClean allows

cleaning taxonomies following the OntoClean method, and WebODE provides

technical support to the Methontology methodology for building ontologies. We

approached the development of this module in two steps. Firstly, we have

integrated the OntoClean method into the conceptualisation activity of

Methontology. Secondly, we have designed and implemented ODEClean using

a declarative approach for specifying the knowledge to be used on the

evaluation. ODEClean uses: (a) the Top Level of Universals, (b) meta-

properties based on philosophical notions, and (c) OntoClean evaluation

axioms. The main advantage of this approach is that the system could easily

allow the user relax or stress the evaluation of the taxonomy just selecting more

or less meta-properties.

1 Introduction
Currently the semantic web [1] attracts researchers from all around the world.

Numerous tools and applications of semantic web technologies are already available

[2] [3] [4] and the number is growing fast [5]. Ontologies play an important role for

the semantic web as a source of formally defined terms for communication. They aim

at capturing domain knowledge in a generic way and provide a commonly agreed

understanding of a domain, which may be reused, shared, and operationalised across

applications and groups. The large visibility of the semantic web, its tools and

applications already attracts industrial partners, e.g. in numerous projects funded by

the European Commission. As they move from academic institutions into commercial

environments they have to fulfil stronger requirements (e.g. concerning correctness,

consistency, completeness, conciseness, etc.). Therefore, the evaluation is a key

activity in ontology development. Some of the most well-known proposals for

ontology evaluation are: Gómez-Pérez's proposal [14] [15] [16], Kalfoglou and

colleagues' proposal [22][23], and OntoClean [26]. OntoClean is a method for

cleaning tangled taxonomies founded in philosophical notions as: rigidity, identity,

unity, etc.

Most of the methodologies and methods ([25], [18], [10], [24], etc) for building

ontologies include an evaluation activity. Most of the times, ontology evaluation is

done once the ontology is finished and implemented in a given ontology language.

Methontology [12] proposes to evaluate the ontology during its whole life cycle: it

recommends to carry out most of the evaluation of the content at the conceptualisation

activity to prevent the detection of faults in the ontology code. WebODE [8] is the

workbench that gives technological support to some activities of Methontology.

However, Methontology does not propose a set of design principles that guide the

development of taxonomic knowledge and methods to clean tangled taxonomies.

Therefore, given that OntoClean allows cleaning wrong subclass of links in

taxonomies using notions like rigidity, identity and unity, it is an appropriate

complement to be used for building taxonomies at the conceptualisation activity in

Methontology. As a consequence, we integrated OntoClean method in Methontology,

as we presented in [11].

Once the unification at the methodological level was performed, we were in the

appropriate situation to build the software that gives support to OntoClean in

WebODE. We call this software ODEClean. The inclusion of the ODEClean module

would allow the use of the OntoClean method in an efficient way. Indeed, until now,

OntoClean is being used in several industrial and academic settings to evaluate

taxonomies [19]. However it is usually applied by hand.

Our solution also fits with the idea presented in [13], since we have not built an

isolated tool for OntoClean, but a module integrated in an ontological engineering

workbench.

The base of ODEClean is Guarino and their colleagues' top-level level ontology of

universals [20], whose instances are concepts (in contrast with the top-level of

particulars, whose instances are individuals). We have implemented the top level

ontology of universals in WebODE. We enriched this ontology including the meta-
properties (rigidity, identity, unity) and the evaluation rules proposed by OntoClean

method. Then, the ontology was completly translated automatically using WebODE

translators into Ciao Prolog. Thus, ODEClean consults the enriched top-level of

universals and the axioms in Prolog every time that it has to evaluate a given domain

ontology. That is, the main advantage of the ODEClean module is that the
knowledge used to evaluate ontologies is declaratively expressed through an
ontology inside our ODEClean module. The user could relax or to stress the
evaluation just clicking on more or less meta-properties

 Section 2 will present OntoClean, section 3 will present the top-level ontology of

universals, section 4 will show ODEClean's ontology (enriched top-level of

universals), section 5 will present WebODE, section 6 will show the ODEClean plug-

in, its functions and how we have developed it, and, finally, section 7 will be devoted

to conclusions and future lines.

2 OntoClean method
OntoClean has been elaborated by the Ontology Group of the LADSEB-CNR in

Padova (Italy). It is a method to clean taxonomies according to notions such as:

rigidity, identity and unity. Let us see these notions [17]:

• Rigidity. This notion is defined based on the idea of essence. A property is

essential to an individual if and only if necessarily holds for that individual. Thus,

a property is rigid (+R) if and only if is necessarily essential to all its instances. A

property is non-rigid (-R) if and only if it is not essential to some of its instances,

and anti-rigid (~R) if and only if it is not essential to all its instances. For

example, the concept person is usually considered rigid, since every person is

essentially such, while the concept student is not normally considered anti-

rigid, since every student can possibly be a non-student a few years later.

• Identity. A property carries an identity criterion (IC) (+I) if and only if all its

instances can be (re)identified by means of a suitable “sameness” relation. A

property supplies an identity criterion (+O) if and only if such criterion is not

inherited by any subsuming property. For example, person is usually considered

a supplier of an identity criterion (for example the fingerprint), while student

just inherits the identity criterion of person, without supplying any further

identity criteria.

• Dependency. An individual x is constantly dependent on y if and only if, at any

time, x cannot be present unless y is fully present, and y is not part of x. For

example, a hole in a wall is constantly dependent on the wall. The hole cannot be

present if the wall is not present. A property P is constantly dependent if and only

if, for all its instances, there exists something they are constantly dependent on.

For instance, the concept hole is constantly dependent because every instance of

hole is constantly dependent.

• Unity. We can say that an individual is a whole if and only if it is made by a set

of parts unified by a relation R. For example, the enterprise Iberia is a whole

because it is composed by a set of people that are linked by the relation having
the same president. A property P is said to carry unity (+U) if there is a

common unifying relation R such that all the instances of P are wholes under R1
.

For example, the concept enterprise-with-president carries unity

because every enterprise with president is made up people linked through the

relation having the same president. A property carries anti-unity (~U)

if all its instances can possibly be non-wholes. Properties that refer to amounts of

matter, like gold, water, etc., are good examples of anti-unity.

Note that the definition of these notions refer to properties of properties. For example,

rigid is a property that can take different values in different properties (yes in

person, no in student, etc.). Another example is carries an identity criterion,

since it can also take different values in different properties (yes in person, no in

student, etc.). These properties of properties are called meta-properties, and to

indicate their values, special symbols are used. For example, +R means that the meta-

property rigid has the value yes. The meta-properties are useful to detect wrong

subclass of relations. For example, person cannot be subclass of student because

the former one is rigid and the later one not. In fact, if we had this link, what would it

happen if a person was not student any more?

According to LADSEB-CNR's proposal, the specific steps to clean the wrong

subclass of links in a taxonomy are (based on [26] and interviews with LADSEB-

CNR's group):

1) Put tags to every property assigning meta-properties. This eases the analysis,

because all the meta-properties are simultaneously visible.

1
 In the actual definition, the authors use essential wholes instead of wholes. We will

sometimes sacrifice the accuracy to make clear the ideas of this paper to people still

non very familiarised with Formal Ontology.

2) Focus just on the rigid properties. A taxonomy without rigid properties is called

backbone taxonomy. It is the base of the rest of the taxonomy, that is, the

essential part.

3) Evaluate the taxonomy taking into account principles based on the meta-
properties. For instance, a rule suggested in OntoClean is “a property carrying

anti-unity has to be disjoint of a property carrying unity”. As a consequence, “a

property carrying unity cannot be a subclass of a property carrying anti-unity”.

Therefore, bronze statue (it carries unity) cannot be a subclass of bronze

(it carries anti-unity), for example.

4) Consider non-rigid properties. When the backbone taxonomy has been

examined, the modeller has to evaluate the non-rigid properties. One of the

proposed rules is: “a rigid property and an anti-rigid property are ever disjoint”.

As a consequence, “a non anti-rigid property cannot be a subclass of an anti-rigid

property”. Therefore, person (rigid) cannot be a subclass of student (anti-

rigid).

5) Complete the taxonomy with other concepts and relations. There can be several

reasons to introduce new concepts. One of them is the transformation of concepts

in relations, for example, student could be transformed into a relation between

person and university.

OntoClean has been used by IBM, OntologyWorks
2
, Document Development

Corporation
3
. At the Italian National Research Council Laboratories (LADSEB-CNR

and ITBM-CNR), in Padova and Rome, OntoClean is in use in several projects

including the development of an upper-level ontology based on a restructuring of

WordNet, and the development of a core ontology for financial knowledge

interchange [19].

3 Top level Ontoloy of Universals
The LADSEB-CNR’s Ontology Group (in Italy) has built two top-level ontologies, as

presented in figure 1: one of universals, and another of particulars. Universals are

concepts like car or computer, etc. and individuals are instances of these concepts,

like my car or my computer, etc. Thus, for example, the particular my car is an

instance of the universal car.

Top Level Ontology of Universals (TPU) is made up by meta-concepts like type

or role, for example (see figure 2) [20]. The instances of such meta-concepts are

concepts (universals). Concerning Top Level Ontology of Particulars (and every

domain ontology) it is made up by concepts (universals) whose instances are

particulars. That is, the tag "universals" or "particulars" associated to the names of the

two CNR's ontologies are given by the kind of instances that they can contain.

2
 www.ontologyworks.com

3
 www.docdev.com

Fig. 1. Relationship between particulars and universals

Fig. 2. Class taxonomy of the top-level ontology of universals

4 ODEClean's ontology
LADSEB-CNR's group continues its research in defining well-defined criteria for

cleaning taxonomies, therefore, the proposed axioms can be modified and extended.

top level of particulars

car traveler

my car Jonh Smith

instance of instance of

PARTICULARS

UNIVERSALS

subclass ofsubclass of

instance ofinstance of

type role

top level of universals

That is, every tool that implements OntoClean should be flexible. Consequently, we

have taken a declarative approach to implement the knowledge used to clean

taxonomies in ODEClean. Moreover, the representation of OntoClean rules to clean

taxonomies also requires the representation of knowledge about meta-properties

(rigid, carries an identity criterion, etc.). Because of this, ODEClean uses the top-

level ontology of universals [19] enriched with LADSEB-CNR's meta-properties [17]

and evaluation axioms [26].

To build ODEClean's ontology in WebODE, we mixed the following components:

1) The top level of universals. We introduced the taxonomy that appears in figure 2,

which was obtained from [20].

2) Meta-properties. They were introduced as instance attributes of the root of TPU

(property) according to WebODE knowledge model. Figure 3 shows the meta-

concept property and its attributes.

3) OntoClean axioms. The OntoClean axioms to evaluate ontologies that appear in

[26] were also included in TPU using the WebODE WAB module. Figure 4 shows

the axiom that says : “a non anti-rigid property cannot be a subclass of an anti-

rigid property”.

During its working, ODEClean automatically links every concept inserted in the

ontology into the root of its ontology through the relation instance of, as we can see in

figure 3. Consequently, the TPU ontology meta-properties will be meta-attributes

(class attributes) of every concept of the ontology to be cleaned. Hence, the user can

assign values to the meta-properties in every concept of the ontology that (s)he is

building.

Fig. 3. Links between the top-level of universals and the ontology in process of development

TOP LEVEL OF UNIVERSALS

PROPERTY

Carries identity criterion: boolean

Supplies identity criterion: boolean

Carries anti-unity: boolean

Carries unity: boolean

Is dependent: boolean

Is anti rigid: boolean

Is rigid: boolean

The rest of

the top level

of universals

APPLE

Carries identity criterion: yes

Supplies identity criterion: yes

Carries anti-unity: no

Carries unity: yes

Is dependent: no

Is anti rigid: no

Is rigid: yes

Instance of

FOOD

Carries identity criterion: yes

Supplies identity criterion: no

Carries anti-unity: yes

Carries unity: no

Is dependent: yes

Is anti rigid: yes

Is rigid: no

Instance of

Subclass of

ONTOLOGY IN PROCESS OF
DEVELOPMENT

Fig. 4. OntoClean axiom in WebODE

In the current version of ODEClean the complete TPU hierarchy is not necessary,

since OntoClean meta-properties are defined in a single meta-concept. However, the

complete TPU hierarchy will be very useful. On the one hand, the values that the

meta-properties take in the domain ontologies could be used to automatically classify

the domain ontology concepts as instances of the meta-concepts of the TPU ontology

(role, type, etc.). In fact, each TPU meta-concept has values associated to different

meta-properties. For example, every role is anti-rigid, dependent, etc. On the other

hand, TPU is already a part of OntoClean [26]. When the ontologist has to assign

meta-property values to a domain concept, (s)he can take into account if that domain

concept (for example, food) is a role, a type, etc. Indeed, some meta-properties

values in the domain concepts could be deduced from the links between the domain

ontology and TPU.

Nowadays, the problem to use TPU as a part of OntoClean is to know which meta-

concept is each domain ontology concept instance of. Even more, depending on the

point of view adopted by the modeller, the same concept can be, for example, a role

or a type. In any case, ODEClean already includes the different meta-property values

through all its ontology. Thus, for example, the meta-property anti-rigid takes the

value yes in the meta-concept role. In this way, ODEClean is already prepared to

help, in the future, in meta-property value inference.

5 WebODE
WebODE is a scalable, integrated workbench for ontological engineering that eases

the representation of ontologies, the reasoning with ontologies and the exchange of

ontologies with other ontology tools and ontology-based applications [8]. It has been

developed by the Ontology Group of the Technical University of Madrid. The

WebODE’s knowledge model [6] is based on the intermediate representations

proposed in Methontology [10]. Hence, it allows modelling concepts and their

attributes (both class and instance attributes), taxonomies of concepts, disjoint and

exhaustive class partitions, ad-hoc binary relations between concepts, properties of

relations, constants, axioms and instances of concepts and relations.

WebODE is built according to a four-tier architecture: client, presentation,

business logic, and database tiers. In all these tiers, we have used standard technology.

The client tier uses HTML, XML, CSS, JavaScript and Java applets. The presentation

tier uses servlets and JSPs. The business logic tier uses Java and RMI-IIOP. Finally,

the database tier uses JDBC and Oracle. The main WebODE services are:

• The WebODE Ontology Editor. It allows the collaborative construction of

ontologies at the knowledge level. It provides a default form-based web user

interface to create ontologies according to the knowledge model aforementioned.

The WebODE Ontology Editor also includes OntoDesigner, a visual tool that

aids in the construction of concept taxonomies and ad-hoc relations between

concepts.

• WebODE Axiom Builder (WAB) . WAB is an axiom and rule editor that is

integrated in the WebODE Ontology Editor. It allows creating first order logic

axioms and rules using a graphical user interface. It also provides a library of

built-in axioms, which can be reused for creating other axioms, rather than

building them from scratch.

• WebODE's inference engine service. WebODE includes an OKBC-based

inference engine. This inference engine reasons with a subset of the OKBC

protocol’s primitives [7].

• WebODE interoperability services. Ontologies built with WebODE can be easily

integrated in other ontology servers or used in ontology-based applications.

Possible choices for interoperability include WebODE's ontology access API,

which can be accessed by other applications using RMI, and is completely

compliant with the WebODE's knowledge model. Currently, WebODE is able to

export to and import ontologies from: RDF(S), OIL, DAML + OIL, the

XMLization of CARIN and FLogic. It also can export to JESS and Prolog.

• WebPicker [9] is a set of wrappers that allow importing standards of

classification of products and services in the context of electronic commerce into

WebODE (UNSPSC, e-cl@ss and RosettaNet). We are currently extending it to

wrap other sources of information, such as Cyc.

• ODECatalogue is able to generate electronic catalogs from ontologies according

to some parameters. The catalogue generation from an ontology assures a correct

and rich classification of the different products.

• ODEMerge performs a supervised merge of concepts, attributes and relationships

from two different ontologies built for the same domain, according to semantic

criteria and resources used for natural language processing.

• ODEClean plug-in, which will be presented in this paper.

WebODE has been successfully used, with different domains and purposes and by

different groups of people, in the following projects: The European IST project

MKBEEM (IST 1999-10589), the OntoWeb thematic network (IST-2000-29243), the

Spanish CICYT project ContentWeb (TIC-2001-2745), the Spanish CICYT project

on Methodology for Knowledge Management (TIC-980741), etc.

6 The ODEClean plug-in of WebODE

To present the plug-in, first of all, we show its functions (section 6.1), and then, we

will describe how ODEClean module has been built (section 6.2). In section 6.2 we

will not describe the integration process of OntoClean in METHONTOLOGY

because it was presented at [11].

6.1 Functions of the ODEClean plug-in of WebODE

The purpose of ODEClean is to allow developers to evaluate taxonomies using

OntoClean method. ODEClean is a plug-in of WebODE and WebODE was designed

taking into account the METHONTOLOGY methodology. When the ontologists

build an ontology in WebODE, it is possible for him to select wheather he wants to

build the taxonomy taking into account the OntoClean principles. It is also possible to

pick up an ontology from WebODE ontology library and to clean its taxonomy just

assigning values of the meta-properties of each concepts. One way to assign meta-

properties to the concepts is through the form-based web user interface of WebODE

(see figure 5). The other way to assign meta-properties is through the visual tool

OntoDesigner (see figure 6). This last way allows the developer to tag the concepts of

the ontology like if (s)he was designing the taxonomy in a blackboard.

Fig. 5. Form-based web for ODEClean

Fig. 6. OntoDesigner for evaluating taxonomies following OntoClean (taxonomy taken from

[26], where the authors use it to show how to evaluate ontologies with OntoClean)

The main functions provided by ODEClean are:

1. Establishing the evaluation mode. The user can choose whether the system has to

show the errors every time that it detects a problem in the domain ontology, or

the system only has to show the errors when the user ask for them. This option is

available in the button Change Evaluation Mode of the form-based web (see top

figure 5), whereas it is available in the signal Evaluation (figure 6) of

OntoDesigner.

2. Assigning meta-properties to concepts. The user will be able to set up meta-

properties concerning identity, unity, dependency and rigidity. If the form-based

web is used, then a change in the value of a meta-property can provoke an

automatic change in the value of other meta-property. For example, if you click

in yes in supplies an identity criterion, then the value of carries an identity
criterion is automatically established as yes. On the other hand, the assignment of

values to the meta-properties using the OntoDesigner is performed tagging each

concept with the OntoClean classical symbols introduced in section 2 (~R+I-O,

etc.). A user that does not wish to see the meta-properties with OntoDesigner can

hide them clicking in Metaproperties.

3. Focusing on rigid properties. The user can decide whether to show or not the

non-rigid properties. As you can see in section 2, one of the step of OntoClean is

to focus on rigid properties.

4. Evaluation according to the taxonomic constraints. If the user order to evaluate

the ontology, then the found errors are shown. Each error message describes the

violation of a OntoClean axiom (see [26]) in a link subclass of between two

concepts. The first error that appears in figure 7, for example, shows that the

concept food is anti-rigid whereas apple (a subclass of food) does not. This

is a violation of OntoClean axioms.

Fig. 7. Errors detected by ODEClean

6.2 How we have built ODEClean

To develop ODEClean, we firstly built TPU using the WebODE Ontology Editor. We

enriched it with the necessary meta-properties for OntoClean. Then, using WAB, we

added the LADSEB-CNR's rules into the top level of universals. Then, we translated

this ODEClean's ontology into Prolog using the WAB service of WebODE. Such

Prolog ontology is the base of our system.

Thus, the particular steps that we have carried out to develop ODEClean are (see

figure 8):

1. ODEClean's ontology building. As we have said in section 4, we made an

ontology that contains OntoClean knowledge, useful for taxonomy cleaning.

2. Translating into Prolog of ODEClean's ontology. The purpose of this step was to

generate a code with inference engine available. We used the WebODE translator

that generates Prolog. WebODE translator into Prolog uses OKBC primitives.

The use of OKBC primitives could ease the interaction with other systems.

3. Building the rest of the system. Taking the Prolog ontology, we built the rest of

the modules of ODEClean: the user interface and the communication with the

rest of WebODE.

Fig. 8. The development of ODEClean

Concerning the internal behaviour of the system, WebODE's inference engine

makes use of Ciao Prolog [21]), as a consequence, the inference engine that applies

the OntoClean rules uses Ciao Prolog.

7 Conclusions
In this paper we have presented the plug-in of WebODE that imp lements OntoClean,

the method to clean ontologies elaborated in the LADSEB-CNR of Padua (Italy).

WebODE is the ontology development platform developed by the Ontology Group of

the Technical University of Madrid. This plug-in allows the developer to assign meta-

properties to concepts, focus on non-rigid properties, automatically check errors, etc.

The user can visualise the ontolology either through a form-based web user interface

or graphically with OntoDesigner.

This plug-in is not only the product of software development, but also a work at

the ontology development methodological level. That is, first of all, we integrated

OntoClean in METHONTOLOGY. Then, we made the ODEClean plug-in integrated

in WebODE, the METHONTOLOGY software support.

Top level of

Universals

+

Meta-properties

+

Evaluation axioms

Step 1. ODEClean’s ontology building

Step 2. Translation into Prolog of
ODEClean’s ontology

ODEClean’s

ontology in

Prolog

ODEClean’s

ontology

User interface

Communication

with the rest of

WebODE

Step 3. Building of the rest of the system

ODECLEAN

The plug-in has been built using as base LADSEB-CNR's top-level ontology of

universals translated to Prolog. We have used the WebODE WAB plug-in to add it

the OntoClean evaluation rules before translating it to Prolog.

The main contributions of our work are:

1. The new module is a consequence of the integration of an evaluation method in a

development methodology. That is, we have carried out an integration at the

methodological level before performing it at the software level.

2. We have built the first tool integrated in a ontology development platform that

supports the method OntoClean.

3. An ontology built by a group that has not participated in the development of

WebODE has been introduced in WebODE. Moreover, the ontology enriched

with meta-properties and axioms coded in Prolog is thought to be reusable in

other platforms or tools different to WebODE.

Kalfoglou and colleagues' evaluation of applications is also based on the use

of ontologies. However, their approach is more focussed on the use of an

ontology as the formal a specification of the application that they are going to

evaluate.

4. The knowledge used to evaluate ontologies is declaratively specified,. which

means that:

• New meta-properties could be added easily, just introducing new attributes in

ODEClean's ontology.

• New axioms could be added or modified using WAB.

According to our experience developing this plug-in, if the future evaluation tools

are declaratively developed, they will be flexible.

Acknowledgements

This work is supported by the project "ContentWeb: Plataforma tecnológica para la

web semántica: ontologías, lenguaje natural y comercio electrónico
4
" (TIC-2001-

2745), and by the project "Esperonto Services" (IST-2001-34373). This work would

not have been possible without the help of Emilio Raya.

References

1. T. Berners-Lee, J. Hendler and O. Lassila. A new form of Web content that is meaningful

to computers will unleash a revolution of new possibilities. Scientific American, 2002, cf.

http://www.scientificamerican.com/2001/0501issue/0501berners-lee.html.

2. EU IST-1999-10132 project “On-To-Knowledge: Content-driven knowledge management

tools through evolving ontologies”, cf. http://www.ontoknowledge.org.

3. US DARPA project “DARPA Agent Markup Language (DAML)”, cf.

http://www.daml.org.

4. EU IST-2000-29243 thematic network “OntoWeb: Ontology -based Information Exchange

for Knowledge Management and Electronic Commerce”, cf. http://www.ontoweb.org.

4
 ContentWeb: Platform for the Semantic Web: ontologies, natural language and e-

commerce

5. A survey on ontology tools. Deliverable D13. IST OntoWeb Thematic Network. May

2002.

6. Arpírez, J.C.; Corcho, O.; Fernández-López, M.; Gómez-Pérez, A. WebODE: a scalable

ontological engineering workbench. First International Conference on Knowledge Capture

(K-CAP 2001). Victoria, Canada. October, 2001.

7. Chaudhri V. K.; Farquhar A.; Fikes R.; Karp P. D.; Rice J. P. The Generic Frame Protocol

2.0. Technical Report, Stanford University.1997.

8. Corcho, O., Fernández-López, M., Gómez-Pérez, A., Vicente, O. WebODE: an integrated

workbench for ontology representation, reasoning and exchange. 13th International

Conference on Knowledge Engineering and Knowledge Management EKAW02. 2002.

9. Corcho, O.; Gómez-Pérez, A. WebPicker: Knowledge Extraction from Web Resources.

6th Intl. Workshop on Applications of Natural Language for Information Systems

(NLDB'01). Madrid. June, 2001.

10. Fernández-López, M.; Gómez-Pérez, A. “Overview and analysis of methodologies for

building ontologies”. Knowledge Engineering Representation (to be published).

11. Fernández-López, M.; Gómez-Pérez, A.; Guarino, N. 2001. “The Methontology &

OntoClean merge”. Technical Report, OntoWeb special interest group on Enterprise-
standards Ontology Environments . Amsterdam. 2001.

12. Fernández-López, M.; Gómez-Pérez, A.; Pazos, J.; Pazos, A. Building a Chemical

Ontology using methontology and the Ontology Design Environment. IEEE Intelligent

Systems and their applications. #4 (1):37-45. 1999.

13. Gómez-Pérez, A. A proposal of infrastructural needs on the framework of the semantic
web for ontology construction and use. FP6 Programme Consultation Meeting 9. April

27
th

, 2001.

14. Gómez-Pérez, A. Evaluation of Ontologies. International Journal of Intelligent Sy stems.

16(3). March, 2001.

15. Gómez-Pérez, A. Some ideas and Examples to Evaluate Ontologies. Technical Report

KSL-94-65. Knowledge System Laboratory. Stanford University. Also in Proceedings of

the 11
th

 Conference on Artificial Intelligence for Applications. CAIA94. 1994.

16. Gómez-Pérez, A. From Knowledge Based Systems to Knowledge Sharing Technology:

Evaluation and Assessment. Technical Report. KSL-94-73. Knowledge Systems

Laboratory. Stanford University. December 1994.

17. Gangemi, A., Guarino, N., Masolo, C., and Oltramari, A. 2001. Understanding top-level

ontological distinctions. Proc. of IJCAI 2001 workshop on Ontologies and Information

Sharing .

18. Grüninger, M.; Fox, M. S. 1995. “Methodology for the design and evaluation of

ontologies.” Workshop on Basic Ontological Issues in Knowledge Sharing. Montreal

(Canada).

19. Guarino, N. and Welty, C. 2002. "Evaluating Ontological Decisions with OntoClean".

Communications of the ACM, 45(2): 61-65.

20. Guarino, N. and Welty, C. 2000. A Formal Ontology of Properties. In R. Dieng and O.

Corby (eds.), Knowledge Engineering and Knowledge Management: Methods, Models

and Tools. 12th International Conference, EKAW2000. Springer Verlag: 97-112.

21. Hermenegildo, M., Bueno, F., Cabeza, D., Carro, M., García, M., López, P., Puebla, G.

The Ciao Logic Programming Environment. International Conference on Computational

Logic (CL2000). July, 2000.

22. Y.Kalfoglou, D.Robertson. "Managing Ontological Constraints", In Proceedings of the

IJCAI-99 workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm,

Sweden, August 1999.

23. Y.Kalfoglou, D.Robertson,"Use of Formal Ontologies to Support Error Checking in

Specifications" In Proceedings of the 11th European Workshop on Knowledge

Acquisition, Modelling and Management (EKAW99), Dagsthul, Germany, May 1999.

24. Staab, S.; Schnurr, H.-P.; Studer, R.; Sure; Y. “Knowledge Processes and Ontologies”,

IEEE Intelligent Systems, 16(1), January/February 2001.

25. Uschold, M. King, M. 1995. “Towards a Methodology for Building Ontologies”.

Workshop held in conjunction with IJCAI on Basic Ontological Issues in Knowledge
Sharing.

26. Welty, C.; Guarino, N. Supporting Ontological Analysis of Taxonomic Relationships. Data

and Knowledge Engineering. September 2001.

