
Evaluating Ontology-Mapping Tools:
Requirements and Experience

Natalya F. Noy and Mark A. Musen

Stanford Medical Informatics, Stanford University
251 Campus Drive, Stanford, CA 94305, USA

{noy, musen}@smi.stanford.edu

Abstract. The appearance of a large number of ontology tools may
leave a user looking for an appropriate tool overwhelmed and uncertain
on which tool to choose. Thus evaluation and comparison of these tools
is important to help users determine which tool is best suited for their
tasks. However, there is no “one size fits all” comparison framework for
ontology tools: different classes of tools require very different comparison
frameworks. For example, ontology-development tools can easily be com-
pared to one another since they all serve the same task: define concepts,
instances, and relations in a domain. Tools for ontology merging, map-
ping, and alignment however are so different from one another that direct
comparison may not be possible. They differ in the type of input they
require (e.g., instance data or no instance data), the type of output they
produce (e.g., one merged ontology, pairs of related terms, articulation
rules), modes of interaction and so on. This diversity makes comparing
the performance of mapping tools to one another largely meaningless.
We present criteria that partition the set of such tools in smaller groups
allowing users to choose the set of tools that best fits their tasks. We
discuss what resources we as a community need to develop in order to
make performance comparisons within each group of merging and map-
ping tools useful and effective. These resources will most likely come as
results of evaluation experiments of stand-alone tools. As an example of
such an experiment, we discuss our experiences and results in evaluating
PROMPT, an interactive ontology-merging tool. Our experiment pro-
duced some of the resources that we can use in more general evaluation.
However, it has also shown that comparing the performance of different
tools can be difficult since human experts do not agree on how ontolo-
gies should be merged, and we do not yet have a good enough metric for
comparing ontologies.



1 Ontology-Mapping Tools Versus Ontology-Development
Tools

Consider two types of ontology tools: (1) tools for developing ontologies and (2)
tools for mapping, aligning, or merging ontologies. By ontology-development
tools (which we will call development tools in the paper) we mean ontology
editors that allow users to define new concepts, relations, and instances. These
tools usually have capabilities for importing and extending existing ontologies.
Development tools may include graphical browsers, search capabilities, and con-
straint checking. Protégé-2000 [17], OntoEdit [19], OilEd [2], WebODE [1], and
Ontolingua [7] are some examples of development tools. Tools for mapping,
aligning, and merging ontologies (which we will call mapping tools) are the
tools that help users find similarities and differences between source ontologies.
Mapping tools either identify potential correspondences automatically or provide
the environment for the users to find and define these correspondences, or both.
Mapping tools are often extensions of development tools. Mapping tool and algo-
rithm examples include PROMPT[16], ONION [13], Chimaera [11], FCA-Merge
[18], GLUE [5], and OBSERVER [12].

Even though theories on how to evaluate either type of tools are not well artic-
ulated at this point, there are already several frameworks for evaluating ontology-
development tools. For example, Duineveld and colleagues [6] in their comparison
experiment used different development tools to represent the same domain on-
tology. Members of the Ontology-environments SIG in the OntoWeb initiative1

designed an extensive set of criteria for evaluating ontology-development tools
and applied these criteria to compare a number of projects. Some of the aspects
that these frameworks compare include:

– interoperability with other tools and the ability to import and export on-
tologies in different representation languages;

– expressiveness of the knowledge model;
– scalability and extensibility;
– availability and capabilities of inference services;
– usability of the tools.

Let us turn to the second class of ontology tools: tools for mapping, aligning,
or merging ontologies. It is tempting to reuse many of the criteria from evaluation
of development tools. For example, expressiveness of the underlying language is
important and so is scalability and extensibility. We need to know if a mapping
tool can work with ontologies from different languages. However, if we look at the
mapping tools more closely, we see that their comparison and evaluation must be
very different from the comparison and evaluation of development tools. All the
ontology-development tools have very similar inputs and the desired outputs: we
have a domain, possibly a set of ontologies to reuse, and a set of requirements
for the ontology, and we need to use a tool to produce an ontology of that
domain satisfying the requirements. Unlike the ontology-development tools, the
1 http://delicias.dia.fi.upm.es/ontoweb/sig-tools/



ontology-mapping tools vary with respect to the precise task that they perform,
the inputs on which they operate and the outputs that they produce.

First, the tasks for which the mapping tools are designed, differ greatly. On
the one hand, all the tools are designed to find similarities and differences be-
tween source ontologies in one way or another. In fact, researchers have suggested
a uniform framework for describing and analyzing this information regardless of
what the final task is [3, 10]. On the other hand, from the user’s point of view
the tools differ greatly in what tasks this analysis of similarities and differences
supports. For example, Chimaera and PROMPT allow users to merge source
ontologies into a new ontology that includes concepts from both sources. The
output of ONION is a set of articulation rules between two ontologies; these
rules define what the similarities and differences are. The articulation rules can
later be used for querying and other tasks. The task of GLUE, AnchorPROMPT
[14] and FCA-Merge is to provide a set of pairs of related concepts with some
certainty factor associated with each pair.

Second, different mapping tools rely on different inputs: Some tools deal
only with class hierarchies of the sources and are agnostic in their merging al-
gorithms about slots or instances (e.g., Chimaera). Other tools use not only
classes but also slots and value restrictions in their analysis (e.g., PROMPT).
Other tools rely in their algorithms on the existence of instances in each of the
source ontologies (e.g., GLUE). Yet another set of tools require not only that in-
stances are present, but also that source ontologies share a set of instances (e.g.,
FCA-Merge). Some tools work independently and produce suggestions to the
user at the end, allowing the user to analyze the suggestions (e.g., GLUE, FCA-
Merge). Some tools expect that the source ontologies follow a specific knowledge-
representation paradigm (e.g., Description Logic for OBSERVER). Other tools
rely heavily on interaction with the user and base their analysis not only on the
source ontologies themselves but also on the merging or alignment steps that the
user performs (e.g., PROMPT, Chimaera).

Third, since the tasks that the mapping tools support differ greatly, the
interaction between a user and a tool is very different from one tool to another.
Some tools provide a graphical interface which allows users to compare the source
ontologies visually, and accept or reject the results of the tool analysis (e.g.,
PROMPT, Chimaera, ONION), the goal of other tools is to run the algorithms
which find correlations between the source ontologies and output the results to
the user in a text file or on the terminal–the users must then use the results
outside the tool itself.

The goal of this paper is to start a discussion on a framework for evaluating
ontology-mapping tools that would account for this great variety in underlying
assumptions and requirements. We argue that many of the tools cannot be com-
pared directly with one another because they are so different in the tasks that
they support. We identify the criteria for determining the groups of tools that
can be compared directly, define what resources we need to develop to make such
comparison possible and discuss our experiences in evaluating our merging tool,
PROMPT, as well as the results of this evaluation.



2 Requirements for Evaluating Mapping Tools

Before we discuss the evaluation requirements for mapping tools, we must answer
the following question which will certainly affect the requirements: what is the
goal of such potential evaluation? It is tempting to say “find the best tool.”
However, as we have just discussed, given the diversity in the tasks that the tools
support, their modes of interaction, the input data they rely on, it is impossible
to compare the tools to one another and to find one or even several measures to
identify the “best” tool.

Therefore, we suggest that the questions driving such evaluation must be
user-oriented. A user may ask either what is the best tool for his task or whether
a particular tool is good enough for his task. Depending on what the user’s source
ontologies are, how much manual work he is willing to put in, how important
the precision of the results is, one or another tool will be more appropriate.
Therefore, the first set of evaluation criteria are pragmatic criteria. These
criteria include but are not limited to the following:2

Input requirements What elements from the source ontologies does the tool
use? Which of these elements does the tool require? This information may
include: concept names, class hierarchy, slot definitions, facet values, slot
values, instances. Does the tool require that source ontologies use a particular
knowledge-representation paradigm?

Level of user interaction Does the tool perform the comparison in a “batch
mode,” presenting the results at the end, or is it an interactive tool where
intermediate results are analyzed by the user, and the tool uses the feedback
for further analysis?

Type of output What is the result of working with the tool? Is it a set of
articulation rules? Is it a merged ontology? Is it an (instantiated) ontology
representing the mappings? Is it a list of pairs of related concepts (possibly
with a certainty factor associated with them)?

Content of output Which elements of the source ontologies are correlated in
the output? These elements can include relations between classes, slots, val-
ues, or instances.

There is no single “best” set of answers to these questions. If the user’s
ontologies include instance data, the tools that use this data in their analysis
will provide more precise suggestions. However, if the instance data is not avail-
able, these tools are inappropriate. Similarly, if the user needs only approximate
mappings between the sources, the tools that provide less precise mappings but
require less interaction may be what the user is looking for. In other words, if we
create a comparison matrix of tools and their features (as most current compar-
isons of the tools do), the best tool is not the tool that gets the largest number
of checkmarks in the matrix. Rather, the best tool is the tool whose set of check-
marks best matches the user’s conditions. From a practitioner’s point of view,
2 This list is a summary of many of the parameters used in the OntoWeb initiative
for comparing mapping tools.



existing comparison frameworks have perhaps over-emphasized the importance
of getting as many features in a single tool as possible (e.g., [9]).

These pragmatic criteria will help a user identify a group of tools that will
be useful to him. Within a group of tools that use the same type of input data
and produce similar types of outputs with similar level of interaction, which one
should the user choose? At this point the quality of comparison algorithms comes
into play. All other things being equal, it is the tool that produces “better” sug-
gestions that will be most beneficial to us. Therefore, we need to define what
“better” is in this context and how to find which tool is indeed better accord-
ing to this performance criterion. Defining what “better” is, is fairly easy:
the tool with better recall and precision wins. We can define recall as the frac-
tion of correct matches that the algorithm identifies. We can define precision
as the fraction of correct matches among the matches that the tool identifies.
These notions of recall and precision are similar to recall and precision used
in information retrieval: recall measures how much of the useful information
the tools finds; precision measures how much of the information that the tool
finds is useful. Therefore, we can perform experiments comparing the tools in
the same group directly to one another to determine the quality of the com-
parison algorithms. Ontology-mapping tools employ a variety of techniques to
compare source ontologies. Some tools use machine learning (e.g., GLUE and
FCA-Merge), others analyze graph structure (e.g., AnchorPROMPT, ONION),
yet other tools use heuristic-based analyzers (e.g., ONION, PROMPT).

To compare the tools within one group, we as a community need to develop
the following resources:

Source ontologies We need (preferably several sets of) pairs of ontologies cov-
ering similar domains. We would like to have sets of ontologies of different
sizes, with different levels of overlap, some of them complicated and some of
them close to simple hierarchies.

Benchmark results For each pair of the source ontologies, we need human-
generated correspondences between them. Again, we would like to have these
correspondences at different levels and in different forms: pairs of related
concepts, logic rules showing more complex transformations, ontologies rep-
resenting the mappings.

Metrics for comparing the performance of the tools For the tools that
produce a list of correspondences between concepts in the source ontologies,
we can use the measures of recall and precision that we defined earlier. For
the tools that result in new merged ontologies, we must compare the result-
ing ontologies with the benchmark ones. Therefore, we need some precise
measure of the “distance” between ontologies. There are several proposals
on measuring distance between individual concepts. However, we need dis-
tance between ontologies as a whole. As an alternative to measuring distance
between ontologies, we can consider evaluating the ontologies resulting from
experiments based on analysis of taxonomic relationships proposed by Guar-
ino and Welty [8]. We can use the information on essence, rigidity, and other



properties defined in the benchmark results to determine whether these prop-
erties hold in the ontologies resulting from the experiments.

Last but not least, when we perform the comparison experiments, we must be
careful to maintain a set of experiment controls: level of the users’ expertise
with a particular tool and with the mapping process in general, the amount of
training the users get, the documentation that is available, and so on. The more
uniform these controls are, the more valid the experiments will be.

Ideally, researchers that do not have a vested interest in any of the tools
should create the resources that we have listed. Otherwise, the selection of re-
sources and the benchmarks will inevitably be skewed towards one or the other
tool. However, in practice, this approach may not be possible, unless there is
specific funding to create the resources. Therefore, realistically, these resources
are most likely to come initially as results of stand-alone evaluation experiments
of specific tools. These experiments evaluate whether a particular tool is “good
enough” for the user’s task. To perform these individual experiments, researchers
will need to find source ontologies covering the same domain. They will need
to create manually a gold-standard ontology to serve as a benchmark. Alterna-
tively, the merged ontologies that the experiment participants will produce could
also serve as benchmarks. In the experiment, the researchers will likely need to
compare the resulting ontologies, thus developing some metric of the distance.
Therefore, many of the resources for future comparative evaluation of different
tools can come as results of such stand-alone experiment. We performed such an
experiment evaluating PROMPT—an ontology-merging tool developed in our
laboratory [16]. We describe the experiment in the rest of this paper.

3 PROMPT Evaluation

PROMPT [16] is a tool for interactive ontology merging. It is a plugin for
Protégé-2000.3 PROMPT leads the user through the ontology-merging process,
identifying possible points of integration, and making suggestions for operations
that should be done next, what conflicts need to be resolved, and how to resolve
them. The tool compares names of concepts, relations among them, constraints
on slot values, and instances of concepts to make its suggestions.

We evaluated the quality of the suggestions that the tool provides by asking
several users to merge two source ontologies using PROMPT. We recorded their
steps, which suggestions they followed, which suggestions they did not follow,
and what the resulting ontology looked like.

3.1 Source ontologies

In order to evaluate the performance of the PROMPT merging tool, we chose
two ontologies that were developed independently by two teams in the DAML
project.4 We imported two ontologies from the DAML ontology library [4]:
3 http://protege.stanford.edu
4 http://www.daml.org



1. An ontology for describing individuals, computer-science academic depart-
ments, universities, and activities that occur at them developed at the Uni-
versity of Maryland (UMD), and

2. An ontology for describing employees in an academic institutions, publica-
tions, and relationships among research groups and projects developed at
Carnegie Mellon University (CMU).

These two ontologies constituted a good target for the merging experiment be-
cause on the one hand, they covered similar subject domains (research organi-
zations and projects, publications, etc.) and on the other hand, their developers
worked completely independent of one another and therefore there was no in-
tensional correlation among terms in the ontologies. In addition, the domain is
easy to understand for everyone.

Figure 1 presents snapshots of the two hierarchies. Note that many of the
concepts in the two ontologies are similar, but they are represented by different
terms: Industrial org versus CommercialOrganization,Governmental org ver-
sus GovernmentOrganization, Student versus Students, Organisation versus
Organization. The structure of the hierarchy is also different: In the CMU hier-
archy, for example, Students, Faculty, Management are subclasses of the class
Employment Categories, whereas in the UMD hierarchy these types of classes
are subclasses of Person. Even though the CMU hierarchy has a class Person,
its only subclass is Employee.

Given these differences in the sources, the merged ontologies produced by
different users will inevitably be different: There are many design decisions that
could go either way. For example, will the Organization class in the merged on-
tology be at the top level, as it is in the CMU hierarchy, or will it be a subclass of
SocialGroup, as it is in the UMD hierarchy? Are the classes Employment Catego-
ries from the CMU ontology and Employee from the UMD ontology essentially
the same classes? The easiest way to answer these questions is to have the de-
signers of the two original ontologies get together and merge them. However,
in practice this scenario is unrealistic. Therefore, if our task requires that we
merge the two ontologies producing one uniform ontology, the user perform-
ing the merge will have to make these decisions and different users may make
different decisions.

3.2 Experiment setup

We asked users to use the PROMPT tool to merge the two ontologies described
in the previous section. All the users were previously familiar with Protégé,
but have not tried to use PROMPT before. None of the users has addressed
the problem of merging ontologies prior to the experiment. There were four
participants in the experiment—all of them students at the Stanford Medical
Informatics who answered our call for participation. Each participant received a
package containing:

– the PROMPT software



Fig. 1. Snapshots of the class hierarchies in the two source ontologies for the experi-
ment.



– documentation of the tool
– a detailed tutorial
– a tutorial example
– materials for the evaluation

The users performed the evaluation at their convenience on their own computers.
We asked each participant to install the tool, to read the tutorial and to follow
the examples in the tutorial using the tutorial ontologies. We suggested that
they may then look through the documentation to get additional insights. After
that the participants were to perform the evaluation itself by merging the two
source ontologies. After they were done, they sent back the resulting ontology
and the log files for our analysis.

In order to minimize differences in the results, we arbitrarily set up the CMU
ontology to be the preferred one. That is, if the users were merging two classes
with different names, the name from the CMU ontology was used.

3.3 Using PROMPT: Experiment Results

The primary goal of our experiment was to evaluate the quality of PROMPT’s
suggestions. In addition, to experiment with metrics for finding a distance be-
tween ontologies, we compared the ontologies that the participants have pro-
duced.

Quality of PROMPT’s suggestions To evaluate the quality of PROMPT’s
suggestions, we evaluated the precision and recall measures that we have de-
scribed in Section 2: Precision is the fraction of the tool’s suggestions that the
users decided to follow. Recall is the fraction of the operations that the users
performed that were suggested by the tool. In our experiments, the average pre-
cision was 96.9% and the average recall was 88.6%. The precision was in fact
a lot higher than we expected. There are several possible explanations for this
remarkable result. First, the users were not experts in ontology merging and
did not have any particular task in mind when merging the ontologies. As a
result, they found it easier simply to follow the tools suggestions, as long as they
seemed reasonable rather than explore the ontologies deeper and come up with
their own operations. Second, there was a significant overlap in the content and
structure of the source ontologies, which made automatic generation of correct
suggestions easier.

Some of the lower recall figures (it was 49% for merge operations in one
of the experiments) result from questionable choices that the users made. For
example, one user merged Publication and DocumentRepresentation classes,
EMail and ElectronicDocument, ProjectScientist and Research Assistant;
slots publisher and publishDate. PROMPT also did not identify such pairs of
related classes as Academic org and EducationOrganization or Industrial org
and CommercialOrganization.

Even though we did not formally evaluate usability, the fact that all the users
were able to use the tool and completely merge the source ontologies after a brief



handout tutorial, indicates that the tool is fairly easy to use. Even though we
told the participants that while they were still going through the tutorial, they
could ask questions about the tool and about the process, only one of them
ended up asking a question.

Resulting ontologies In addition to comparing the recall and precision of
PROMPT’s suggestions, we looked at the resulting ontologies. Since we did not
have a benchmark ontology (we pulled both ontologies from the Internet from an
ontology library), we could compare the ontologies resulting from the experiment
only to one another.

We have noted in Section 2 that we need a distance measure between on-
tologies. We can treat the ontologies resulting from the experiment as versions
of the same ontology—after all, they all result from merging the same ontolo-
gies. Therefore, we can use the notion of diff between versions to find a distance
between two ontologies. In our earlier work [15], we defined the notion of a
structural diff between two versions of the same ontology.

Definition 1 (Structural diff). Given two versions of an ontology O, V1 and
V2, a structural diff between V1 and V2, D(V1, V2), is a set of frame pairs 〈F1,
F2〉 where:
– F1 ∈ V1 or F1 = null; F2 ∈ V2 or F2 = null
– F2 is an image of F1 (matches F1), that is, F1 became F2. If F1 or F2 is

null, then we say that F2 or F1 respectively does not have a match.
– Each frame from V1 and V2 appears in at least one pair.
– For any frame F1, if there is at least one pair containing F1, where F2 �= null,
then there is no pair containing F1 where F2 = null (if we found at least one
match for F1, we do not have a pair that says that F1 is unmatched). The
same is true for F2.

Note that the definition implies that for any pair of frames F1 and F2, there is
at most one entry 〈F1, F2〉.

The structural diff describes which frames have changed from one version
to another. However, for a diff to be more useful to the user, it should include
not only what has changed but also some information on how the frames have
changed. A PromptDiff table provides this more detailed information [15].

Definition 2 (PromptDiff table). Given two versions of an ontology O,
V1 and V2, the PromptDiff table is a set of tuples 〈F1, F2, rename value,
operation value, mapping level〉 where:
– There is a tuple 〈F1, F2, rename value, operation value, mapping level〉
in the table iff there is a pair 〈F1, F2〉 in the structural diff D(V1, V2).

– rename value is true if frame names for F1 and F2 are the same; rename value
is false otherwise.

– operation value ∈ OpS, where OpS = {add, delete, split, merge, map}
– mapping level ∈ MapS, whereMapS = {unchanged, isomorphic, changed}.



u1-u2 u1-u3 u1-u4 u2-u3 u2-u4 u3-u4

Frames in ontology 1 251 251 251 253 253 216
Frames in ontology 2 253 216 232 216 232 232
Unmatched entries from ontology 1: 3 37 19 39 22 11
Unmatched entries from ontology 2: 5 2 0 2 1 27
Changed rows in the table: 30 50 46 48 54 45
Difference (in number of frames) 38 89 65 89 77 83

Difference (in %) 14.8% 35.2% 25.9% 34.9% 30.3% 34.2%

Table 1. The difference between pairs of ontologies in the experiment. There were four
users, u1, u2, u3, and u4. Each column represents a comparison of ontologies that each
pair of users produced.

The operations in the operation set OpS indicate to the user how a frame has
changed from one version to the other: whether it was added or deleted, whether
it was split in two frames, or whether two frames were merged. We assign a
map operation to a pair of frames if none of the other operations applies. The
mapping level indicates how different the two frames are from each other. If
the mapping level is unchanged, then the user can safely ignore the frames—
nothing has changed in their definitions. If two frames are isomorphic, then their
corresponding slots and facet values are images of each other, but not necessarily
identical images. The mapping level is changed if the frames have slots or facet
values that are not images of each other.

Therefore, we can measure the distance between two ontologies by considering
the number of frames in each ontology and the number of rows in the Prompt-
Diff table that have add, delete, or changed in their operation or mapping-level
column. In other words, the “difference” between two ontologies is comprised by
the frames that either do not have matches or have changed significantly: classes
have different superclasses, metaclasses, or slots; slots are attached to different
classes or have different facet values. Table 1 presents the results of this compar-
ison. For the four users in the experiment, there are six pairs of ontologies. It is
interesting that even with the tool that may have been “steering” the users in
a certain direction, the resulting ontologies differed by about 30%. This result
indicates that even when human experts are merging ontologies, there is very
little agreement and users make very different design decisions. This observation
has serious implication for the possibility of even having a benchmark ontology
(something that we said is needed to compare merging tools fairly). Consider the
Employment Categories and Employee classes from Figure 1. Some users de-
cided to merge the class Employment Categories with the Employee classes in
both ontologies, creating one class out of three. Others kept the distinction that
was present in the CMU hierarchy. In one ontology, Proceedings is a subclass of
Book and in the other it is a subclass of Publication. Even though most users
merged the two Publication classes, the two Proceedings classes, and the two
Book classes, they made different decisions on where to place the Proceedings
class in the merged ontology.

Our approach to measuring the distance may also be inflating the actual
distance. For example, if two users both merged the classes GraduateStudent



and UndergraduateStudent but did not merge their superclasses, then both
GraduateStudent and UndergraduateStudent will appear as “changed” when
we compare the merged ontologies: their superclasses are different. Therefore, a
better measure may be some sort of weighted measure reflecting how much the
concepts have changed.

4 Concluding Remarks

Our evaluation experiment was not ideal. We were limited by available resources
and, in some cases, by circumstances. We had four participants in the exper-
iment. The number of users was still too small and the variability in user’s
expertise with Protégé too large to get meaningful estimates on whether the
tool really saves time. If we had more users performing the experiment, the time
data would have been one of the interesting points to compare.

Such an experiment however would still have answered only one of the pos-
sible user’s questions that we discussed in Section 2: is the PROMPT tool good
enough. And even that answer assumes that recall and precision figures taken
in isolation from other tools, are meaningful. What we really need is a larger-
scale experiment that compares tools with similar sets of pragmatic criteria. For
example, we would then compare PROMPT with other tools that use classes,
slots, facets, and instances in their analysis and that produce suggestions about
merging all these knowledge-base elements. In general, it is pointless to compare
performance of PROMPT and FCA-Merge for example: FCA-Merge requires
that source ontologies not only have instance data but also share the instances.
PROMPT does not have such a requirement. Therefore, if a user’s ontology does
not have instance data, FCA-Merge will be unusable.

In order to help users sort through existing tools and find the right ones for
his task, we as a community need to develop the resources that would allow us
to perform meaningful experiments comparing different tools:

– Create a library of ontologies covering similar domains. Many ontologies in
the DAML ontology library can serve this purpose.

– Manually define mapping between concepts in these ontologies to create
consensus benchmark ontologies. Ideally, get the authors of the original on-
tologies involved in the process of creating mappings.

– Define formal metrics for comparing the distance between ontologies, allow-
ing experimenters to compare the ontologies produced by participants to one
another and to the benchmark ontology.

– Define experimental protocols with fixed controls that will make the results
of different evaluations comparable.

Our evaluation of PROMPT produced one pair of ontologies that could be
used in the library of ontologies for other experiments. Also, since PROMPT is
an interactive tool and human experts validate the merged ontologies, we have a
set of benchmark ontologies that result from merging the two source ontologies.
However, these ontologies differ significantly, which means that there may not be



a single “correct” merged ontology. Our evaluation has also produced an initial
metric for comparing ontologies resulting from different experiments. All these
resources will be useful in a more general evaluation comparing the performance
of different ontology-mapping tools.

In addition to developing these resources, we need to answer many research
questions. These questions include but are not limited to the following questions:

– Which pragmatic criteria are most helpful to users in finding the best tool
for their task?

– For the ontologies in the repository, how to we develop a benchmark ontol-
ogy? Does this ”gold standard” mapping even exist for many of the ontolo-
gies?

– How do we measure how close to the gold standard is the analysis that the
tools produce?

– Can we use some of the metric and analysis approaches that are being de-
veloped for evaluating ontologies themselves in our evaluation of ontologies
resulting from the tool’s analyses?

5 Acknowledgments

We would like to thank Monica Crubézy for her thoughtful comments on the
paper. We are very grateful to the students at Stanford Medical Informatics
who participated in the experiment. The National Cancer Institute provided the
funding for our work on ontology merging and management.

References

1. J.C. Arṕırez, O. Corcho, M. Fernández-López, and A. Gómez-Pérez. WebODE:
a scalable workbench for ontological engineering. In KCAP-01, Victoria, Canada,
2001.

2. S. Bechhofer, I. Horrocks, C. Goble, and R. Stevens. OILEd: a reason-able ontol-
ogy editor for the semantic web. In KI2001, Joint German/Austrian conference
on Artificial Intelligence, volume LNAI Vol. 2174, pages 396–408, Vienna, 2001.
Springer-Verlag LNAI Vol. 2174.

3. P. A. Bernstein, A. Y. Halevy, and R. A. Pottinger. Model management: Managing
complex information structures. SIGMOD Record, 29(4):55–63, 2000.

4. DAML. DAML ontology library, 2001.
5. A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to map between

ontologies on the semantic web. In The Eleventh International WWW Conference,
Hawaii, US, 2002.

6. A. J. Duineveld, R. Stoter, M. R. Weiden, B. Kenepa, and V. R. Benjamins. Won-
dertools? a comparative study of ontological engineering tools. International Jour-
nal of Human-Computer Studies, 52(6):1111–1133, 2000.

7. A. Farquhar, R. Fikes, and J. Rice. The Ontolingua server: a tool for collabora-
tive ontology construction. In Tenth Knowledge Acquisition for Knowledge-Based
Systems Workshop, Banff, Canada, 1996.



8. N. Guarino and C. Welty. Ontological analysis of taxonomic relationships. In
A. Laender and V. Storey, editors, ER-2000: The 19th International Conference
on Conceptual Modeling. Springer-Verlag, 2000.

9. M. Klein. Combining and relating ontologies: an analysis of problems and solutions.
In IJCAI-2001 Workshop on Ontologies and Information Sharing, pages 53–62,
Seattle, WA, 2001.

10. J. Madhavan, P. A. Bernstein, P. Domingos, and A. Halevy. Representing and
reasoning about mappings between domain models. In Eighteenth National Con-
ference on Artificial Intelligence (AAAI’2002), Edmonton, Canada., 2002.

11. D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. An environment for merging
and testing large ontologies. In A. G. Cohn, F. Giunchiglia, and B. Selman, editors,
Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh
International Conference (KR2000). Morgan Kaufmann Publishers, San Francisco,
CA, 2000.

12. E. Mena, A. Illarramendi, V. Kashyap, and A. Sheth. OBSERVER: An ap-
proach for query processing in global information systems based on interoperation
across pre-existing ontologies. Distributed and Parallel Databases—An Interna-
tional Journal, 8(2), 2000.

13. P. Mitra, G. Wiederhold, and M. Kersten. A graph-oriented model for articulation
of ontology interdependencies. In Proceedings Conference on Extending Database
Technology 2000 (EDBT’2000), Konstanz, Germany, 2000.

14. N. F. Noy and M. A. Musen. Anchor-PROMPT: Using non-local context for se-
mantic matching. In Workshop on Ontologies and Information Sharing at the Sev-
enteenth International Joint Conference on Artificial Intelligence (IJCAI-2001),
Seattle, WA, 2001.

15. N. F. Noy and M. A. Musen. PromptDiff: A fixed-point algorithm for comparing
ontology versions. In Eighteenth National Conference on Artificial Intelligence
(AAAI-2002), Edmonton, Alberta, 2002.

16. N.F. Noy and M.A. Musen. PROMPT: Algorithm and tool for automated on-
tology merging and alignment. In Seventeenth National Conference on Artificial
Intelligence (AAAI-2000), Austin, TX, 2000.

17. Protege. The Protégé project, http://protege.stanford.edu, 2002.
18. G. Stumme and A. Mädche. FCA-Merge: Bottom-up merging of ontologies. In

7th Intl. Conf. on Artificial Intelligence (IJCAI ’01), pages 225–230, Seattle, WA,
2001.

19. Y. Sure, M. Erdmann, J. Angele, S. Staab, R. Studer, and D. Wenke. OntoEdit:
Collaborative ontology engineering for the semantic web. In International Semantic
Web Conference 2002 (ISWC 2002), Sardinia, Italia, 2002.


