
DomoBuilder: A MultiAgent Architecture for Home
Automation

Andrea Addis
Dept. of Electrical and Electronical Engineering

University of Cagliari
Email: addis@diee.unica.it

Giuliano Armano
Dept. of Electrical and Electronical Engineering

University of Cagliari
Email: armano@diee.unica.it

Abstract—Current technologies permit people to make use of
various systems able to fulfill most of their needs while being
at home. However, their use is often not intuitive and they are
also difficult to integrate. In this paper we propose a solution
to these issues, together with a pragmatical demonstration of
its effectiveness. The architectural solution we devised, called
DomoBuilder, is aimed at abstracting hardware (i.e., electronic
devices) and software (i.e., applications, systems), with specific
emphasis on the ability of simplifying human interaction while
combining heterogeneous devices within the same application.
In so doing, system integration is promoted, making it easier
to devise complex devices that implement new behaviors while
preserving ease of use. A case study has also been devised
and implemented, which highlights the great potential of the
DomoBuilder architecture.

I. INTRODUCTION

The new technological era has given birth to more and more
powerful automatic devices for home automation, providing
a huge amount of innovative devices and services. However,
such systems are often not intuitive, or impossible to use,
without a training phase (e.g., using a TV set typically
requires to access decoders, recorders, remote controls, and
configuration panels). Even a simple MP3 reader typically
requires reading a short manual before beign able to use it.

Human beings feel more comfortable with describing an
object throughout its properties; in fact, problems that occur
with new devices and their use are often due to an imperfect
or missing description of the corresponding properties.

In principle a property can be read, set, or modified.
However, properties can be different in their meaning and
usage. For instance, some are required to describe the internal
state of a device without the need of exporting them to the user
(e.g., different parameters can be checked by a car for security
purposes, but the driver does not need to know them), some
are made available to the user in “read-only” mode (e.g., the
temperature shown by a thermostat), and others are directly
changeable by the user (e.g., the state of a lamp).

In the Object Oriented paradigm, the scope of a property
can be controlled with access modifiers. The visual develop-
ment approach, in which complex components export just the
features required for their usage, uses the so-called Properties,
Methods, Events (PME) model[9]. In PME, properties describe
a component, methods allow to use it (modifying properties
and/or its state), and events allow the system to be informed

about occurring changes. Properties can be made read-only to
protect them by accidental access, while methods can be used
to change them, or a collection of them, including the state of
the component in hand.

The simplest way to describe a device consists of exporting
and clearly depicting the set of properties deemed useful for
the final user [7]. Encapsulating and combining those proper-
ties allows to build new interfaces and components, so that the
system can be enriched with more powerful functionalities.

From a software engineering point of view, the Agent-
Oriented Software Engineering (AOSE) paradigm [13] allows
to embed heterogeneous devices in the same architecture,
also providing useful supports for communication, persistence,
pro-activeness, and mobility. In particular, there are many
evidences of the advantages in using MultiAgent Systems
(MAS) for Home Automation (aka Domotics) and Ambient
Intelligence (AmI).

Sánchez et al. [11] point out that AmI investigates ubiq-
uitous computer-based services, based on a variety of objects
and devices, so that their intelligent and intuitive interfaces act
as mediators through which people can interact with the am-
bient environment. The authors also highlight that research in
context-aware systems has been moving towards reusable and
adaptable architectures for managing more advanced human-
computer interfaces.

Acampora and Loia [1] highlight the capability of AmI to
deal with a new world, where computing devices are spread
everywhere to improve the quality of the interaction between
human beings and information technology and to put together
a dynamic computational ecosystem capable of satisfying the
user requirements. They show how the design of AmI systems
depends upon psychological- and social-science aspects, able
to describe and analyze the status of a human being during
the process of decision making performed by a system.

Also device coordination during the execution of services
in AmI systems is of paramount importance, as focused in [6],
where planning capabilities for MAS in the AmI context are
analyzed.

According to Bergenti and Poggi [3], a real load of works
presents the usefulness of the AmI in the health care context.
These applications can take outstanding advantage of the
intrinsic characteristics of MAS thanks to notable features that
most healthcare applications share: (i) they are composed of



loosely coupled (complex) systems; (ii) they are realized in
terms of heterogeneous components and legacy systems; (iii)
they dynamically manage distributed data and resources; and
(iv) they are often accessed by remote users in (synchronous)
collaboration.

Further approaches for service-oriented architectures [12],
independent from a specific environment [5], or aggregators
of technologies, for domestic health purposes [8], are also
proposed in the literature.

This work presents DomoBuilder, a multiagent architecture
for home automation, together with a case study aimed at
showing how a complex system for AmI purposes can be
easily built with it.

A major issue with this work is to provide really simple hu-
man interfaces. In fact, in the 21th century, human beings are
expected to communicate with devices and systems mimicking
the way they communicate with each other, e.g., throughout
natural speech and/or gestures. People that are clueless when
it comes to computer technology should be taken as target,
our goal being to make the system usable also to people
that are not familiar even to simple operations like selecting,
dragging and clicking items with a mouse. For this reason,
DomoBuilder represents every single component of the system
by its properties and shows in natural language a description
of the operations it can perform.

The rest of the paper is organized as follows: Section
II illustrates the DomoBuilder architecture and Section III
describes its “internals”. The case study is then presented in
Section IV. Conclusions and future work (Section V) end the
paper.

II. DOMOBUILDER BUILDING BLOCKS

DomoBuilder is a multiagent architecture for home au-
tomation, which promotes the abstraction of any software or
hardware device. Furthermore, it allows to centralize their
control and to make uniform their interface, so that interacting
with them becomes very easy, also thanks to the integration
of special devices explicitly devised for handling human
interfaces. According to [10], in DomoBuilder each device is
intended as the building block of a system –i.e., a resource or
tool that has describable properties and can encapsulate some
kind of functions. Moreover, thanks to a centralized control, it
is possible to connect devices for building complex systems.

A. Devices

Let us take as examples of device a light bulb and an mp3
player. The former has one property that describes its state
(i.e., on/off), and a method that allows to turn on and off (i.e.,
toggle) the light, whereas the latter can: (i) store the track
loaded, (ii) store its state (i.e., it is playing/stopped/paused),
(iii) play a particular track, (iv) search for a track, and (v)
trigger an event –e.g., when a track or a playlist is finished.
Other examples of common devices used in Home Automation
are a thermostat, a sensor, a microwave, and a washing-
machine.

The ability of mashing up heterogeneous devices and of
combining their functionalities permits to give rise to complex
systems. Let us consider some trivial –though clarifying–
examples that highlight this concept: (1) “when the room
temperature is low and the sensor detects a movement, turn
on the heat pump” and (2) “when the current mp3 playlist
has been played, turn lights on”. To this end, DomoBuilder
provides a support for defining devices, for combining events,
and for triggering method calls from a device to another. As
a result, devices can be connected together to implement new
behaviors.

B. Interfaces

Interfaces can be seen as a particular kind of device, aimed
at permitting the user to interact with the system. Due to a
reflective behavior performed on top of devices, interfaces
in DomoBuilder can dynamically retrieve information about
features of other devices. Furthermore, each device can store
visual information about its appearance and its position in the
environment, thus permitting to build a 3D-like visualization
of the structure of a system in terms of its embedded devices.

This approach makes it also easier to ask a device how it
can be useful for our purposes. 1

C. Agents

Since every device hosted by DomoBuilder must be au-
tonomous and must natively integrate social abilities to interact
with the other devices, the AOSE paradigm has been adopted,
as Domobuilder has been built upon the agent framework
JADE [2].

In particular, DomoBuilder devices are in fact Jade agents.
To define a specific kind of device one should extend the
Device class of DomoBuilder, setting name, description and
properties. This is the only information required to allow the
user and (instances of) other devices to communicate with it
(i.e., with an instance of the device being defined).

A special agent called Kernel (see section III-C) has been
defined –aimed at controlling the life cycle of devices and at
handling system events. In fact, according to[4], it is really
useful to delegate a particular kind of agent to centralize
the knowledge about the network of components embedded
by a system. A GUI called Panel is also available when
a DomoBuilder system starts, together with a Clock device
useful to temporize actions. In DomoBuilder, devices can be
added and activated at run-time. The Kernel handles the life
on the system and its persistence.

D. Containers

In general, a device wraps and controls the corresponding
hardware or software device. It can communicate within the

1 See for example http://www.alice.org/. Alice is an innovative 3D pro-
gramming environment that makes it easy to create an animation for telling a
story, playing an interactive game, or a video to share on the web. Alice is a
teaching tool for introductory computing. It uses 3D graphics and a drag-and-
drop interface to facilitate a more engaging, less frustrating first programming
experience.



system and move across JADE containers. The containers be-
longing to the main platform are two: (i) the “Core” container,
which hosts the Kernel, and (ii) the “Devices” container, which
hosts the Panel and other devices. When additional machines
want to connect to the system, they must connect their own
JADE container to the main platform2 (see Figure 1).

Fig. 1. The system at a glance

E. General-Purpose Transducers

As DomoBuilder is expected to deal with heterogeneous
hardware devices, a general-purpose transducer, called Moret-
tillo, has been devised and implemented (see Figure 2).
Morettillo is a small plug-and-play hardware device equipped
with radio switches, which allows to interact with up to 5
output (wired or wireless) and 7 input channels. It is endowed
with a transmission channel compatible with switches working
on radio frequencies 433.92MHz x 1000W max, which are
commonly used and not expensive (about 7 Euros x plug).
Connected via USB and auto-powered, Morettillo is automat-
ically recognized by MS Windows.

III. DOMOBUILDER INTERNALS

At the first start, a default configuration is created, which
includes a Panel and a Clock device. The former is a GUI that
allows to interact with the system, whereas the latter is useful
to create temporized rules (e.g., alarms or time events).

A. Communication

Since devices are JADE agents, it is possible to communi-
cate with them using ACL performatives according to a given
ontology.

2 A batch file is provided to quickly and easily start a new platform.

Fig. 2. Morettillo, a panel for controlling electronic devices

Fig. 3. The Panel Device

The Panel device (see Figure 3) is a very simple graphical
user interface, which allow to easily communicate with the
other devices, hiding the technical details concerning commu-
nication.

B. Events

Events are handled by the Kernel throughout an instance of
the class EventHandler, which is contained in UltraUnits, a
general purpose library that has been implemented to provide
a suite of tools for handling common data structures, operating
system components, data sources, and multimedia. An instance
of the EventHandler class is generated according to the single-
ton pattern, yielding the eventHandler object, which is used to
dispatch asynchronous events if given conditions are reached.
A condition represents the achieved state of one or more
variables. When a condition is reached a corresponding action
is undertaken. It is also possible to define time constraints, and
the number of times an action can be executed.

As an example let us assume that one wants to create the
following rule: “when the thermostat measures less than 18



degrees, the Panel must show the new temperature provided
that the light is on. Activate this rule from December 20th,
2010, at 8pm and only on Monday” we must write:
<id>Thermostat/Light Rule Example</id>
<conditions>Thermostat.Temperature<<18<&& /> Lamp.light==ON
</conditions>
<action>PANEL SHOW The new temperature is %value%.
</action>
<dateconstraint>START 2010-12-20,DAY_OF_WEEK 2
</dateconstraint>
<times>-1
</times>

C. Kernel

The Kernel is aimed at managing (i) the life cycle of the
devices populating the system and (ii) the occurring events. In
order to do this, the Kernel uses the following commands:

1) Commands to Manage Devices:
• KERNEL_DEVICE_ADD: adds a device to the sys-

tem defining its name (e.g., Thermostat), according
to the given class (e.g., domo.devs.Thermostat), and
the name of an existing container (e.g., Devices). On
failure (e.g., when the container does not exist) a
KERNEL_DEVICE_ERROR command is issued.

• KERNEL_DEVICE_REMOVE: removes a device identi-
fied by its name.

• KERNEL_DEVICE_ADDED: informs the Kernel
that a device has been correctly created. Then
the KERNEL_EVENT_TRIGGERED command is
issued (e.g., KERNEL.KERNEL_DEVICE_ADDED ==
Thermostat).

• KERNEL_DEVICE_ERROR: informs the Kernel that an
error has been triggered by a device.

2) Commands to Handle Events:
• KERNEL_EVENT_ADD: adds an event defining its prop-

erties;
• KERNEL_EVENT_REMOVE: removes an event identified

by its id;
• KERNEL_EVENT_TRIGGERED: informs the Kernel that

an event has been triggered (i.e., a device changed its
state).

D. Devices

As already pointed out, devices are agents wrapping
hardware devices into DomoBuilder. Their description is set
during their development by calling the methods:

putDeviceDescription(String deviceDescription)
putDeviceDescription(String deviceDescription,

boolean deviceVisible,
BufferedImage deviceImage,
Point3D devicePosition)

where:
• deviceDescription: a string describing the device;
• deviceVisible (optional): a boolean value indicating

whether the device is visible in the control panel. In
fact, a device can be removed from the Panel if not used
by a user (e.g., a user may not need to interact with a

speech engine, whereas it can be used by other devices
to communicate with the user);

• devicePosition (optional): the physical position of a de-
vice in the environment;

• deviceImage (optional): the image used to represent the
device.

The properties of a device are identified by their name and
can store a string value, optionally with the type of the value.
They can be set calling the method:

putDeviceProperty (String name, String description,
String type, String format,
String initialValue)

where:
• name: the name of the property.
• description: a string that describes the property, in natural

language;
• type: the type of the property (it must be a Java class

name);
• format : the property in an EBNF-like format;
• initialValue: a string representing the initial value (it can

be empty).
The methods applicable to a device are identified by their

name, the parameters of a method (if any) being embedded into
a single string (multiple parameters can also be represented
in XML format). A method can be attached to a device as
follows:

putDeviceMethod (String name, String description,
String type, String format)

where:
• name: the name of the method;
• description: the description of the method in natural

language;
• type: the type of the property, i.e., the name of a Java

class;
• format : the property in an EBNF-like format.

A device can handle the following commands:
• DEVICE_METHOD: executes a method with its parame-

ter;
• DEVICE_MOVE: moves the device to another container;
• DEVICE_DIE: turns off and remove a device from the

list of devices.

E. Requesting Information

Requests on different topics can be made to the Ker-
nel or to a device by sending the message “INFORMA-
TION REQUEST”. The corresponding reply will be given
throughout the message “INFORMATION INFORM”.

The list of topics, with the corresponding parameters and
answers, follows:

• TOPIC_DESCRIPTION: requests the description to a
device (parameters = none, answer = the description
of the device in text format);

• TOPIC_PROPERTY: requests a specific property to a de-
vice (parameters = the name of the property, answer
= the name of the property and its value);



• TOPIC_EVENTS: requests the list of the events to the
Kernel (parameters = none, answer = the system
events in text format).

• TOPIC_DEVICELIST: requests the list of the device
names to the Kernel (parameters = none, answer
= the name of the devices in text format, one for each
line).

To give the reader the flavor of how an information request
is issued, let us consider the following examples:

> Kernel INFORMATION REQUEST TOPIC EVENTS

> Thermostat INFORMATION REQUEST
TOPIC PROPERTY Temperature

The answer is issued by the device to which the request has
been addressed throughout the overridden method:

onAnswer(String senderLocalName, String topic, String an-
swer).

IV. CASE STUDY

The case study (called DomoPro) developed in the field of
home automation consists of:

• Panel: A GUI for the system
• HiFi: An mp3 Reader
• Clock: A system clock with alarm
• Pyrotz: A device that can understand commands in nat-

ural language
• Movimentio: A movement sensor that exploit a computer

webcam
• Nabaztag: A device to control the Nabaztag Tag3, a Wi-

Fi enabled ambient electronic device in the shape of a
rabbit

• Skype: A device that interfaces the system with the Skype
messenger

• Talker: A text to speech synthesizer
• MailReader: A device able to read e-mails
• Morettillo: A device that controls the homonym general-

purpose hardware device
• Piantana: A device that controls a lamp
• Scaldabagno: A device that controls a house water heater
Thanks to the portability of DomoBuilder and to the plug-

and-play capability of Morettillo, a new installation of the
above set of useful home automation functionalities can be
performed in less than 10 minutes.

A. Starting DomoPro

When DomoBuilder starts for the first time, a new con-
figuration file (i.e., domo.xml) is created; then the Kernel,
the Panel, and the Clock start running. The properties and
methods of these devices can be easily inspected throughout
the graphical interface of the Panel (see Figure 4). In order to
do this, the user must click the button with the name of the

3 See Nabaztag on Wikipedia.

device to inspect. Upon clicking, the properties of the device,
together with the corresponding values, will be listed on the
left, whereas the method buttons will appear on the right side
of the Panel.

B. Building a New Device

To create a device, one must extend the domo.Device
DomoBuilder class. To describe the device, together with its
properties and methods, the putDeviceDescription, putDevi-
ceProperty, putDeviceMethod must be called as described in
section III-D.

For the sake of simplicity, let us take a look at the Clock
device, which is actually already available in DomoBuilder. As
we can see from Figure 4, the final device ought to have three
properties and three methods. An example of code follows:

Fig. 4. The Panel shows the Clock properties

public Clock() {
putDeviceDescription("A timer with alarm");
[...]
putDeviceProperty("Time", "The Actual Time", ...
[...]
putDeviceMethod("setAlarmTime", "Set the Alarm Time"’, ...
[...]

timer.start(999);
}

Note that the device timer has been instantiated to run an
action each second; i.e., every second the overridden method
onTimer() will be called. In this particular case, the onTimer()
method will (i) update the time of the clock and (ii) check
whether the alarm sound has to be played.

At this point, the system knows the description of this
device, its readable properties, and its callable methods. To
better illustrate what happens when a user or a device in the
system calls a method, let us report the following Java code,
which overrides the default onMethod() method:
@Override
public void onMethod(String name, String value) {

if (name.equals("setAlarmTime")) {
// Example of changing a property
set("AlarmTime", value);

}
if (name.equals("playAlarm")) {

// Example of calling an inner method
soundAlarm();

}
[...]

}

http://en.wikipedia.org/wiki/Nabaztag


In so doing, our Clock device is ready.

C. Adding Further Devices to DomoPro

The Kernel can be asked at any time to add further devices.
For the sake of brevity, let us describe how to add the
Morettillo device.

The following command must be sent to the Kernel through
the Panel command box4:
KERNEL KERNEL_DEVICE_ADD
<name>Morettillo</name>
<class>domo.ultra_devices.Morettillo</class>
<container>Devices</container>

After that, the Morettillo button will appear on the panel,
close to the buttons of other devices. Please note that this
operation could be made completely automatic, being the
device recognized and activated as soon as its class (e.g., jar
file) is added to the program folder.

D. Analysing Some Relevant Devices of DomoPro

1) Pyrotz: We prototyped Pyrotz, a device which permits
to communicate with the system using natural language.
We can communicate with Pyrotz by sending the com-
mand message DEVICE_METHOD device.user Hear
Hello my friend!5 as well as writing Hello my Friend!
in the big yellow text field on the Panel. It will write the
answer in the small yellow panel below (see Figure 5).

Fig. 5. Saying hello to Pyrotz

Pyrotz can understand natural language, so, it is able to
translate sentences like: “turn on the light”, “please could
you turn the lights on?”, “it is too dark, make light”, with,
Piantana DEVICE_COMMAND Switch ON.

Thanks to the event-triggering mechamism, when Pyrotz
says something the Talker will speech it.

2) Skype: The system can be interfaced with the Web by
wrapping any kind of Internet application. For instance, thanks
to the Skype device, we can (i) directly send commands to
DomoPro or (ii) chat with Pyrotz. Using an external voice
recognition software it is also possible to talk to DomoPro.

In principle, everybody can talk and receive answers from
Pyrotz, even if for obvious security reasons, only selected
Skype users are allowed to send command to the house in
which the system has been installed.

4 Opening the command box, a list of command templates is given.
5 The parameter device.user identifies the sender, e.g., domo.Panel. This

prevents other devices to communicate with it; “Hear” is the method name,
and the rest is the parameter of the command, or the sentence in this case

E. Adding Events to DomoPro

All DomoPro devices can be used in isolation. For instance,
the talker could be asked to say “Hello”, the house lights
can be turned on and off (even from an Internet computer
connected with Skype). More interesting is when DomoPro
automatically undertakes decisions and executes complex be-
haviors (i.e., behaviors that involve different devices). Some
examples of complex behaviors follows:

1) When Pyrotz utters or answers something, should Talker
synthesize it.

2) When somebody wakes up in the morning, turn on the
mp3 reader

3) When somebody gets back home in the afternoon, read
the emails

4) When somebody leaves the room, turn off the lights
5) If somebody touches the ears of the Nabaztag, ask him

to stop doing it

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed and illustrated DomoBuilder,
an architectural solution aimed at abstracting hardware and
software, with specific emphasis on the ability of simplifying
human interaction while combining heterogeneous devices
within the same application. A case study has also been
illustrated, which highlights the great potential of the Do-
moBuilder architecture. With DomoBuilder, it is very easy
to devise, implement, and install easy-to-use and low-cost
systems for Home Automation, also thanks to the uderlying
multiagent architecture that facilitates the integration of, and
the interaction among, heterogenous devices.

ACKNOWLEDGMENTS

We would like to thank Marco Lai (aka Moretti) for his help
in developing the Morettillo hardware device and Eloisa Vargiu
for her useful suggestions about the DomoBuilder architecture.

REFERENCES

[1] G. Acampora and V. Loia. A dynamical cognitive multi-agent system
for enhancing ambient intelligence scenarios. In FUZZ-IEEE’09: Pro-
ceedings of the 18th international conference on Fuzzy Systems, pages
770–777, Piscataway, NJ, USA, 2009. IEEE Press.

[2] F. Bellifemine, A. Poggi, and G. Rimassa. Developing multi-agent
systems with JADE. In ATAL ’00: Proceedings of the 7th International
Workshop on Intelligent Agents VII. Agent Theories Architectures and
Languages, pages 89–103, London, UK, 2001. Springer-Verlag.

[3] F. Bergenti and A. Poggi. Multi-agent systems for e-health: Recent
projects and initiatives. In 10th Workshop dagli Oggetti agli Agenti
(WOA 2009), 2009.

[4] W.-H. Chen and W.-S. Tseng. A novel multi-agent framework for the
design of home automation. Information Technology: New Generations,
Third International Conference on, 0:277–281, 2007.

[5] G. Fiol, D. Arellano, F. J. Perales, P. Bassa, and M. Zanlongo. The
intelligent butler: a virtual agent for disabled and elderly people assis-
tance. International Symposium on Distributed Computing and Artificial
Intelligence 2008 (DCAI 2008), 2009.

[6] N. Gatti, F. Amigoni, and M. Rolando. Multiagent technology solutions
for planning in ambient intelligence. In WI-IAT ’08: Proceedings of the
2008 IEEE/WIC/ACM International Conference on Web Intelligence and
Intelligent Agent Technology, pages 286–289, Washington, DC, USA,
2008. IEEE Computer Society.

[7] G. G. Márquez. Cien años de soledad. 1967.



[8] C. Munoz, D. Arellano, F. J. Perales, and G. Fontanet. Perceptual and
intelligent domotics system for disabled people. In Proceedings of the
Sixth IASTED International Conference, 2006.

[9] K. Reisdorph and H. Ken. Borland C++ Builder. Apogeo, 1997.
[10] A. Ricci, M. Viroli, and A. Omicini. Give agents their artifacts: the

A&A approach for engineering working environments in MAS. In E. H.
Durfee, M. Yokoo, M. N. Huhns, and O. Shehory, editors, AAMAS, 6th
International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2007), Honolulu, Hawaii, USA, May 14-18, 2007, page
150. IFAAMAS, 2007.

[11] N. Sanchez, E. Mangina, J. Carbs, and J. M. Molina. Multi-agent system
(mas) applications in ambient intelligence (ami) environments. Trends
in Practical Applications of Agents and Multiagent Systems, 2010.

[12] N. I. Spanoudakis and P. Moraitis. An ambient intelligence application
integrating agent and service-oriented technologies. In SGAI Conf.,
pages 393–398, 2007.

[13] F. Zambonelli and A. Omicini. Challenges and research directions in
agent-oriented software engineering. Journal of Autonomous Agents and
Multiagent Systems, 9:253–283, 2004.


	Introduction
	DomoBuilder Building Blocks
	Devices
	Interfaces
	Agents
	Containers
	General-Purpose Transducers

	DomoBuilder Internals
	Communication
	Events
	Kernel
	Commands to Manage Devices
	Commands to Handle Events

	Devices
	Requesting Information

	Case study
	Starting DomoPro
	Building a New Device
	Adding Further Devices to DomoPro
	Analysing Some Relevant Devices of DomoPro
	Pyrotz
	Skype

	Adding Events to DomoPro

	Conclusions and Future Work
	References

