Generating Executable Multi-Agent System
Prototypes from SONAR Specifications

Michael K&hler-Bufmeier, Matthias Wester-Ebbinghaus, Daniel Moldt

University of Hamburg, Department for Informatics
Vogt-Kolln-Str. 30, D-22527 Hamburg

(koehler,wester ,moldt)@informatik.uni-hamburg.de

Abstract. This contribution presents the MULAN4SONAR middleware
and its prototypical implementation for a comprehensive support of or-
ganisational teamwork, including aspects like team formation, negotiation,
team planning, coordination, and transformation. Organisations are mod-
elled in SONAR, a Petri net—based specification formalism for multi-agent
organisations. SONAR models are rich and elaborated enough to auto-
matically generate all necessary configuration information for the Mu-
LAN4SONAR middleware.

1 Introduction

Organisation-oriented software engineering is a discipline which incorporates re-
search trends from distributed artificial intelligence, agent-oriented software en-
gineering, and business information systems (cf. [1, 2] for an overview). The basic
metaphors are built around the interplay of the macro level (i.e. the organisation
or institution) and the micro level (i.e. the agent). Organisation-oriented software
models are particularly interesting for self- and re-organising systems since the
system’s organizing principles (structural as well as behavioral) are taken into
account explicitly by representing (in terms of reifying) them at run-time.

The following work is based on the organisation model SONAR (Self-Organising
Net Architecture) which we have presented in [3,4]. In this paper we turn to a
middleware concept and its prototypical implementation for the complete organ-
isational teamwork that is induced by SONAR.

First of all we aim at a rapid development of our middleware prototype. There-
fore we need a specification language that inherently supports powerful high-level
features like pattern matching and synchronisation patterns. The second require-
ment is a narrow gap between the specification and implementation of the mid-
dleware prototype. Ideally, middleware specifications are directly executable. As
a third requirement, we are interested in well established analysis techniques to
study the prototype’s behaviour. As a fourth requirement we want the middle-
ware specifications to be as close as possible to the supported SONAR-model of
an organization. Related to this, the fifth requirement results as the possibility to
be able to directly generate the middleware specifications from the SONAR-model
automatically. The sixth requirement is that we want an easy translation of the
prototype into an agent programming language.

82

Since SONAR-models are based on Petri nets we have chosen high-level Petri
nets [5] as the specification language for our middleware prototype. This choice
meets the requirements stated above: We can reuse SONAR-models by enrich-
ing them with high-level features, like data types, arc inscription functions etc.
Petri nets are well known for their precise and intuitive semantics and their
well established analysis techniques, including model checking or linear algebraic
techniques. We particularly choose the formalism of reference nets, a dialect of
high-level nets which supports the nets-in-nets concept [6] and thus allows to im-
mediately incorporate (“program”) micro-macro dynamics into our middleware.
Reference nets receive tool support with respect to editing and simulation by the
RENEW tool [7]. Additionally, RENEW has been extended by the agent-oriented
development framework MULAN [8, 9], which allows to program multi-agent sys-
tems in a language that is a hybridisation of reference nets and Java. We make
use of MULAN and provide a middleware for SONAR-models. Consequently, our
middleware is called MULAN4SONAR and we present a fully-functional prototype
in this paper.

The paper is structured as follows: Section 2 briefly sketches our formal spec-
ification language for organisational models, called SONAR. Section 3 addresses
our MULAN4SONAR middleware approach on a rather abstract and conceptual
level. It illustrates the structure of our target system: SONAR-models are com-
piled into a multi-agent system consisting of so called position agents, i.e. agents
that are responsible for the organisational constraints. Section 4 describes our im-
plemented middleware prototype in detail. It is generated from SONAR-models.
The middleware serves integration and control of all organisational activities, like
team formation, negotiation, team planning, coordination, and transformation.
We consider related work in Section 5 before we close the paper with a conclusion
in Section 6.

2 The Underlying Theoretical Model: SONAR

In the following we give a short introduction into our modelling formalism, called
SONAR. A SONAR-model encompasses (i) a data ontology, (ii) a set of interaction
models (called distributed workflow nets, DWFs), (iil) a model, that describes the
team-based delegation of tasks (called role/delegation nets), (iv) a network of or-
ganisational positions, and (v) a set of transformation rules A detailed discussion
of the formalism can be found in [3], its theoretical properties are studied in [4].

In SONAR a formal organisation is characterised as a delegation network of
sub-systems, called positions. Each position is responsible for the execution or del-
egation of several tasks. Figure 1 illustrates the relationship between the SONAR
interaction model, the delegation model and the position network — i.e. the as-
pects (ii) to (iv).! The left side of the figure describes the relationship between the
positions (here: broker, virtual firm, requester, etc.) in terms of their respective
roles (here: Producer, Consumer etc.) and their associated delegation links. In

! To keep the model small we we have omitted all data-related aspects and transfor-
mation rules — i.e. the aspects (i) and (v) — in this figure.

83

broker
i I
Prod @
virtual requester LN
PC [pc_] PC d
: ZERN //v
fir CGoroa> — Cprotz>———
PC3 PC3
firm1 firm2
\

Organisation Net

DWF Net (interaction protocol)

Fig. 1. A simplified SONAR-Model

this scenario, we have a requester and two suppliers of some product. Coupling
between them is provided by a broker.? From a more fine-grained perspective,
the requester and one of the suppliers consist of delegation networks themselves.
For example, in the case of the virtual firm supplier, we can identify a manage-
ment level and two subcontractors: firm 1 firm 2. The two subcontractors may
be legally independent firms that integrate their core competencies in order to
form a virtual enterprise (e.g. separating fabrication of product parts from their
assembly). The coupling between the firms constituting the virtual enterprise is
apt to be tighter and more persistent than between requester and supplier at the
next higher system level, which provides more of a market-based and on-the-spot
connection.

SONAR relies on the formalism of Petri nets. Each task is modelled by a place p
and each task implementation (delegation/execution) is modelled by a transition
t. Each task place is inscribed by the set of roles which are needed to implement it,
e.g. the set {Prod, Cons} for the place in the position requester. Each transition
t is inscribed by the DWF net D(t) that specifies the interaction between the
roles. In the example we have two inscriptions: PC' and PC8 where the former is
show on the right of Figure 1. Positions are the entities which are responsible for
the implementation of tasks.® Therefore, each node in P U T is assigned to one
position O.*

% Note that for this simplified model brokerage is an easy job, since there are only two
producers and one consumer. In general, we have several instances for both groups
with a broad variety of quality parameters, making brokerage a real problem.

3 The main distinction between roles and position is that positions — unlike roles — are
situated in the organisational network, they implement roles and are equipped with
resources.

4 Organisation nets can be considered as enriched organisation charts. Organisation
nets encode the information about delegation structures — similar to charts — and
also about the delegation/execution choices of tasks, which is not present in charts.

84

So far we have used only the static aspects of Petri nets, i.e. the graph struc-
ture. But SONAR also benefits from the dynamic aspects of Petri nets: Team
formation can be expressed in a very elegant way. If one marks one initial place
of an organisation net Org with a token, each firing process of the Petri net mod-
els a possible delegation process. More precisely, the token game is identical to
the team formation process (cf. Theorem 4.2 in [4]). It generates a teamn net (the
team’s structure) and a tearmn DWF, i.e. the team’s behavior specification.

As another aspect, SONAR-models are equipped with transformation rules.
Transformation rules describe which modifications of the given model are allowed.
They are specified as graph rewrite rules [10]. As a minimal requirement the
rules must preserve the correctness of the given organisational model. In SONAR
transformations are not performed by the modeller they are part of the model
itself. Therefore we assume that a SONAR model is stratified by models of different
levels. The main idea is that the activities of DWF nets that belong to the level
n are allowed to modify those parts that belong to levels k < n but not to higher
ones.

3 Organisational Position Network Activities

We now elaborate on the activities of a multi-agent system behaving according
to a SONAR-model.

3.1 Conceptual Overview

The basic idea is quite simple: With each position of a SONAR-model we asso-
ciate one dedicated agent, called an organisational position agent (OPA). This is
illustrated in Figure 2 where the OPAs associated with a SONAR-model together
embody a middleware layer.

@poroty Multi-Agent System @ oo
Organisation & oo
% o Formal Organisation) Sul>-OrerTisaiien @A orgmsatons

~ Executive i Coordinator @ holon pro;
~ L - - nd
- = - ' ’ . P ‘
; .
;

external agent

/

@ L /' i ~—|—" Charly Peborah informal channel
= — — T | operator A Operdtor B @

Bob (o P @ B —__ organisational

membership

formal channel

Fig. 2. An Organisation as an OPA/OMA Network

An OPA network embodies a formal organisation. An OPA represents an or-
ganisational artifact and not a member/employee of the organisation. However,

If one fuses all nodes of each position into one single node, one obtains a graph
which represents the organisation’s chart. Obviously, this construction removes all
information about the organisational processes.

85

each OPA represents a conceptual connection point for an organisational member
agent (OMA). An organisation is not complete without its OMAs. Each OMA
actually interacts with its OPA to carry out organisational tasks, to make deci-
sions where required. OMAs thus implement /occupy the formal positions.® Note
that an OMA can be an artificial as well as a human agent. An OPA both enables
and constrains organisational behaviour of its associated OMA. Only via an OPA
an OMA can effect the organisation and only in a way that is in conformance
with the OPA’s specification. In addition, the OPA network as a whole relieves
its associated OMAs of a considerable amount of organisational overhead by au-
tomating coordination and administration. To put it differently, an OPA offers
its OMA a “behaviour corridor” for organisational membership. OMAs might of
course only be partially involved in an organisation and have relationships to
multiple other agents than their OPA (like Alice and Bob in Figure 2) or even
to agents completely external to the organisation (like Alice and Dorothy). From
the perspective of the organisation, all other ties than the OPA-OMA link are
considered as informal connections.

To conclude, an OPA embodies two conceptual interfaces, the first one between
micro and macro level (one OPA versus the complete network of OPAs) and the
second one between formal and informal aspects of an organisation (OPA versus
OMA). We can make additional use of this twofold interface. Whenever we have
a system of systems setting with multiple scopes or domains of authority (e.g.
virtual organisations, strategic alliances, organisational fields), we can let an OPA
of a given (sub-)organisation act as a member towards another OPA of another
organisation. This basically combines the middleware perspective with a holonic
perspective (cf. [11]).

3.2 Organisational Teamwork

SoNAR-models of organisations induce teamwork activities. We distinguish be-
tween organisational teamwork activities of first- and of second-order. First-order
activities target at carrying out “ordinary” business processes to accomplish busi-
ness tasks.

— Team Formation: Teams are formed in the course of an iterated delegation
procedure in a top-down manner. Starting with an initial organisational task
to be carried out, successive task decompositions are carried out and sub-
tasks are delegated further. A team net according to Section 2 consists of the
positions that were involved in the delegation procedure.

— Team Plan Formation/Negotiation: After a team has been formed, a compro-
mise has to be found concerning how the corresponding team DWF net (cf.
Section 2) is to be executed as it typically leaves various alternatives of going

5 Note that from a technical point of view, the OPA network is already a complete
MAS. This MAS is highly non-deterministic since a SONAR-model specifies what is
allowed and what is obligatory, so many choices are left open. Conceptually, the OPA
network represents the formal organisation while the OMASs represent its informal
part which in combination describe the whole organisation.

86

one way or the other. A compromise is found in a bottom-up manner with
respect to the team structure. The “leat” positions of the team net tell their
preferences and the intermediary, inner team positions iteratively seek com-
promises between the preferences/compromise results of subordinates. The
final compromise is a particular process of the team DWF net and is called
the team plan.

— Team Plan Ezecution: As the team plan is a DWF net process that describes
an interaction between team positions, team plan execution follows straight-
forward.®

— Hierarchic propagation: If a holonic approach as illustrated in Figure 2 is
chosen, team activities that span multiple organisations are propagated ac-
cordingly.

Second-order activities reorganisation efforts.

— Fuvaluation: Organisational performance is monitored and evaluated in or-
der to estimate prospects of transformations. To estimate whether an or-
ganisational transformation would improve organisational performance, we
introduce metrics that assign a multi-dimensional assessment to a formal or-
ganisation. In addition to the Petri net-based specifications of the previous
section, there may exist additional teamwork constraints and parameters that
may be referred to. How to measure the quality of an organisational structure
is generally a very difficult topic and highly contingent. We will not pursue
it further in this paper.

— Organisational Transformations: As described in Section 2, transformations
can either be applied to a formal organisation externally or be carried out by
the positions themselves as transformation teams (cf. exogenous versus en-
dogenous reorganisation [12]). In the latter case, transformations are typically
triggered by the above mentioned evaluations. But it might also be the case
that a new constraint or directive has been imposed and the organisation has
to comply.

3.3 Organisation Agents

As shown in Figure 2 all the OPAs of an organisation are within the context of an
organisation agent which represents the OPA network as a whole. The organisa-
tion agent is responsible for the management of the organisational domain data
(e.g. customer databases etc.) but also for the management of the organisational
meta date which includes the data ontology, the interaction protocols (i.e. the
process ontology), and also a representation of the SONAR-model itself. This is
illustrated in the top half of Figure 3.

Additionally, the organisation agent is responsible for the network wide fram-
ing of the organizational teamwork efforts, i.e. team formation, negotiation, and

5 For the time being, we do not address the topic that team plan execution might fail
and what rescue efforts this might entail.

87

= | | organisation }—\
lextend extend

interaction : organisational organisational
o ontology o protocols cmeta description c data
transform update
. OMAs OPAs teams
. S S ™

resign mediate

adjust /team

O™ .

negotiate

ctealm plans

Fig. 3. The Organisation Agent

team plan execution (as illustrated in the bottom half of Figure 3). The organi-
sation agent is responsible for monitoring the abstract aspects on the teamwork
(i.e. the OPA network perspective), while the OPAs are respounsible for the con-
crete decisions (i.e. the OPA perspective).” For example, the organisation agent
abstractly specifies that during the team formation the OPA O may delegate
some task to another agent which must belong to a certain set of OPAs,® but the
concrete choice for a partner is left to the OPA O which in turn coordinates its
decision with its associated OMA.

In our architecture the concrete choices of the OPAs are framed by the so called
team cube (cf. Figure 3). The notation cube is due to the fact that we have three
dimension of teamwork: team formation, negotiation, and team plan execution.
For each dimension we can choose between several mechanisms. For example in
the team formation phase the delegation of tasks to subcontractors can either be
implemented by a market mechanism (i.e. choosing the cheapest contractor), by a
round-robin scheduling (i.e. choosing contractors in cyclic order), or even by some
kind of “affection” between OPAs/OMAs. Given a concrete situation that initiates
a teamwork activities, the organisation chooses an appropriate mechanism for

" Note that the existence of a single agent representing the organisation has not to
be confused with a monolithic architecture. The main benefit of the existence of
an organisation agent is that it allows to provide a network-wide view on the team
activities.

The abstract aspects could as well be implemented by the OPAs themselves and
thus be totally distributed. In fact the concurrency semantics of Petri nets perfectly
reflects this aspect: In the mathematical sense the processes of an organisation agent
are in fact distributed, even if generated from one single net.

& This set of possible delegation partners is calculated from the SONAR-model.

88

each of the three dimensions. During the execution phase of the team plans the
team cube evaluates the process to improve the assignment of mechanisms.

4 The MULAN4SONAR Middleware

Each position of a SONAR-organisation consists of a formal part (the OPA as an
organisational artifact) and an informal part (the OMA as a domain member).
An organisation together with the OPA network relieves its associated OMAs of
a great part of the organisational overhead by automation of administrative and
coordination activities. It is exactly the generic part of the teamwork activities
from Section 3.2 that is automated by the organisation/OPA network: Team
formation, team plan formation, team plan execution always follow the same
mechanics and OMAs only have to enter the equation where domain actions have
to be carried out or domain-dependent decisions have to be made.

4.1 Compilation of SONAR Specifications into MULAN4SONAR

In the following we demonstrate the compilation of an organisational SONAR-
model into the MULAN4SONAR middleware layer for automated teamwork sup-
port. A SONAR-model is semantically rich enough to provide all necessary in-
formation to allow an automated generation/compilation. The aspects of this
compilation and the resulting prototypical middleware are discussed using the
organisation example introduced above in Figure 1. The prototypical middleware
layer generated from this SONAR-model is specified by a high-level Petri net,
namely a reference net. This is beneficial for two reasons: (1) the translation
result is very close to the original specification, since the prototype directly in-
corporates the main Petri net structure of the SONAR-model; (2) the prototype is
immediately functional as reference nets are directly executable using the open-
source Petri net simulator RENEW [7] and we can easily integrate the prototype
into MULAN [8,9], our developing and simulation system for MAS based on Java
and reference nets. Therefore we have chosen to implement the compiler as a
RENEW-plugin.

The plugin implements a compiler that is based on graph rewriting. The com-
piler searches for a net fragment in the SONAR-model that matches the pattern on
the left hand side of a rewrite rule and translates it into a reference net fragment
which is obtained as the instantiation of the rule’s right hand side. An exam-
ple rule with the parameter n is given in Figure 4: The rule attaches a place
for the OPA a to the transition. In the final model this place contains the OPA
that represents the position “position name”. The rule also adds inscriptions that
describe that OPA a is willing to implement the task ¢ (denoted by the inscrip-
tion a:asklmpl("t")) and a list of inscriptions a:askPartner("p;", O;) (one for each
pi, 1 < i < n) describing that a delegates the subtask p; to the OPA O;. The
variable x denotes the identifier of the teamwork process.

We consider teamwork in six phases. For each phase, the original SONAR-model
(in our case the one from Figure 1) is taken and transformation rules generate

89

"position name" "position name"

0
"OPA:_ . a:askimpl(“t");
position Ix,"position namej3:askPartner("p1", O1);

name™
a t !
G ﬁ a:askPartner("pn", On);

[x,01] [x,0n]
pl _n

Sonar Model Prototype

Fig. 4. A transformation rule for Phase 1

an executable reference net fragment. For example, the transformation rule from
Figure 4 is used for the first phase, selection of team members (see below). Finally,
the fragments for the phases 1 to 6 are linked sequentially and the resulting overall
net represents the main (organisation-specific) middleware component that is used
in the (generic) MULAN4SONAR middleware layer to coordinate the organizational
teamwork. The six teamwork phases are the following;:

1. Selection of team members: By agents receiving tasks, refining them and del-
egating sub-tasks, the organisation is explored to select the team agents. This
way, a team tree is iteratively constructed but the overall tree is not globally
known at the end of this phase.

2. Team assembly: The overall team tree is assembled by iteratively putting sub-
teams together. At the end of this phase, only the root agent of the team tree
knows the overall team.

3. Team announcement: The overall team is announced among all team member
agents.

4. Team plan formation: The executing team agents (i.e. the leaves of the team
tree) construct partial local plans related to the team DWF net. These partial
plans are iteratively processed by the ancestors in the team tree. They seek
compromises concerning the (possibly conflicting) partial plans until the root
of the team tree has build a global plan with a global compromise.

5. Team plan announcement and plan localisation: The global team plan is an-
nounced among all team member agents. The executing team agents have to
localise the global plan according to their respective share of the plan.

6. Team plan ezxecution: The team generates an instance of the team DWF net,
assigns all the local plans to it, and starts the execution.

Here, we will only discuss first-order organisational teamwork. However, our
MULAN4SONAR middleware approach features a recursive system architecture in
order to support reorganization, including second-order activities (a presentation
of the whole model can be found in the technical report [13]).

Before the six phases are discussed in more detail, we illustrate how a MULAN
multi-agent system that incorporates our MULAN4ASONAR middleware layer looks
like.

90

4.2 Multi-Agent System with MULAN4SONAR Middleware Layer

In Section 3, we have described our general vision of a multi-agent system that
incorporates SONAR organisations: The formal part of each SONAR organization
is explicitly represented by a distributed middleware layer consisting of OPAs
for each position and one organisation agent as an additional meta-level entity.
In our current prototypical implementation of the MULAN4SONAR middleware
layer, the organisation agent is actually not yet fully included, at least not as an
agent. Instead, the organisation agent of a SONAR organisation manifests itself in
terms of the generated six-phase reference net explained in the previous subsection
(together with possible DWF nets). This concept is illustrated in Figure 5.

Fig. 5. MuLAN4SONAR middleware layer in the current prototype

It is shown that the formal part of a SONAR organisation is embodied by the
generated middleware net and the position agents that are hosted on the agent
places of the net. Here we do not elaborate on the internal structure of the agents
as we would have to go into the details of multi-agent system programming with
MULAN which is out of the scope of the paper. All OPAs share the same generic
OPA architecture (GOPA) that we have presented in [14]. Note that in the current
prototype, the OPAs are directly embedded on the agent places of the middleware
net. This is justified as they are actually reified parts of the formal organisation
and we assume that the whole middleware (and thus the formal organization) is
executed on the same MULAN platform. The OMAs however are external agents
that have chosen to act as members of the organization. Consequently, they can
be hosted on remote platforms and communicate with their respective OPAs via
message passing.

91

For future developments of our MULAN4SONAR middleware we plan to have
the organisation agent to be actually realized as a MULAN agent (see Subsec-
tion 4.4).

4.3 Explanation of the Six Teamwork Phases

As explained in Subsection 4.1, a SONAR-model of an organisation is compiled
into executable reference nets for each of the six teamwork phases. Afterwards, the
reference nets for the phases 1 to 6 are combined in one reference net and linked
sequentially. This linkage is achieved via synchronisation inscriptions. Thus, the
end of a phase is synchronised with the start of the succeeding phase.

The reference nets for the six phases share the same net structure but have
different inscriptions. This reflects the fact that all teamwork is generated from
the same organisational SONAR-specification, but in different phases different in-
formation is needed. Figure 6 shows the generated reference net for the first phase,
selection of team members.’

Before any teamwork can occur, the system setup has to be carried out. Six
position agents (OPAs) one for each position are initialized and registered.
The position agents are hosted on the agent places of the generated middleware
net. After this step the initialisation is finished and teamwork may ensue.

For our given SONAR-model we have only one position that is able to start a
team, namely Oy since it is the only position having a place with an empty preset
(i.e. the place pp). Whenever the position agent Oy decides to begin teamwork,
it starts the first phase, team member selection. The only possibility for task pg
is to delegate it to O1. Here, O; has only one implementation possibility for this
task, namely t;. This entails to generate the two subtasks p; and ps. O7 selects
the agents these subtasks are delegated to. For ps there is the only possibility Oy
but for p; there is the choice between Oy and Os. Partner choices occur via the
synchronisation a:askPartner(p, O) between the middleware net and the position
agents: Agent a provides a binding for the partner O when the task p has to be
delegated. Assume that the agent O; decides in favour of Os, then the control
is handed over to O3 which has a choice how to implement the task: either by
to or by t5. This decision is transferred between position agents and middleware
net via the synchronisation a:asklmpl(¢) which is activated by the agent a only if
t has to be used for delegation/implementation.

After this iterated delegation has come to an end — which is guaranteed for
well-formed SONAR-models — all subtasks have been assigned to team agents and
the first phase ends. At this point the agents know that they are team members,
but they do not know each other yet. To establish such mutual knowledge the
second phase starts.

We cannot cover every phase in detail. The general principle has been shown
for phase one, namely enriching the original SONAR model of an organisation
with (1) connections to position agents and (2) execution inscriptions along the
purpose of the respective teamwork phase.

9 Note that the rule from Figure 4 has been applied several times.

92

Alquiasse wea] (7

120M (10

o)

[20'X] 110°'X]

(=)

(uonesiuebio a40|dx3) SsiaqUAW WE) JO UOIII|S (T

Fig. 6. Zoom: First Phase of the MuLAN4SONAR-middleware

93

The purpose of the remaining five phases has been covered in Subsection 4.1.
Here, we want to cover one technical aspect specifically. The description of the
first phase has made clear that it is a top-down phase. Following the delegation
relationships of the original SONAR-model, a team tree is built from the root
down to the leaves. It is also clear that the second phase has to be a bottom-up
phase. The overall team is not yet known to any position agent. Thus, beginning
with the leaves of the team tree and the corresponding "one-man sub-teams",
sub-teams are iteratively assembled until the complete team is finally known at
the root node. Consequently, for the second phase, the direction of the arrows has
to be reversed compared to the original SONAR model. Analogous observations
hold for the remaining four phases. Phases 3 and 5 are top-down phases while
phases 4 and 6 are bottom-up phases.

4.4 Strengths, Weaknesses and Future Work

In this subsection, we give a brief qualitative evaluation of the approach taken in
this paper. SONAR is a formal model of organisations based on Petri nets. It is
often difficult to initially come up with an approach to deploy formal specifications
in a software environment. In the case of the Petri net specifications, one can take
advantage of the inherent operational semantics. In this sense, Petri nets often
allow for a rapid prototyping approach to go from abstract models (requiring
only simple Petri net formalisms) to fully functional, executable models (requiring
high-level Petri net formalism, in our case reference nets). Consequently, our first
approach was to take a SONAR-specification of an organisation and derive an
executable prototype by manually attaching inscriptions and add some auxiliary
net elements.

While manually crafting an executable reference net for each specific SONAR-
model is of course not worthwhile in the long run, it provided us with very early
lessons learned and running systems from the beginning on. The work presented
in this paper was the next step. Based on our experiences from the handcrafted
prototypes we were able to clearly denominate and devise the transformation rules
that were needed for automated generation of executable reference net fragments
from SONAR-models.

Consequently, we see the conceptual as well as operational closeness between
an underlying SONAR-model and its generated middleware net as a crucial advan-
tage for our fast progress in deploying SONAR-organisations. In addition, formal
properties like well-formedness (cf. [3,4]) of a SONAR-model directly carry over
to the implementation level.

However, there are also problems associated with our current approach. Firstly,
organisational specifications at run-time are only available in terms of the refer-
ence net generated from the underlying SONAR-model. This format is not very
suitable for being included in an agent’s reasoning processes. Secondly, reorga-
nization efforts are only achieved via a workaround. Changing only particular
elements of a reference net at runtime is not inherently supported by our envi-
ronment. Thus, for a reorganization of an organization, the whole middleware net
has to be replaced.

94

Because of the mentioned problems, we are working on further improving the
MULAN4SONAR middleware. Current efforts target at keeping the organizational
specification as a more accessible and mutable data structure at the level of the
middleware layer. Although it is no longer necessarily represented as a reference
net itself, the organisational activities and dynamics allowed by the middleware
layer are still directly derived from the underlying Petri net semantics of SONAR.

5 Related Work

Our work is closely related to other approaches that propagate middleware layers
for organisation support in multi-agent systems like S-MOISE™ [15], AMELI [16]
or TEAMCORE/KARMA [17]. The specifics of each middleware layer depends on
the specifics of the organizational model that is supported. What all approaches
have in common is that domain agents are granted access to the middleware
layer via prozies that constrain, guide and support an agent in its function as
a member of the organisation, cf. OrgBoz in S-MOISE™, Governor in AMELLI,
Team Wrapper in TEAMCORE/KARMA. Our organisational position agents,
the OPAs, serve a similar purpose. The are coupled with organisational member
agents, the OMAs, which are responsible for domain-level actions and decisions.

However, in the case of S-MOISET and AMELI, management of organi-
sational dynamics is mainly taken care of by middleware manager agents (the
OrgManager for S-MOISE™ and the institution, scene and transition managers
for AMELI). The proxies mainly route communication between the domain level
agents and the middleware managers. Consequently, middleware management is
to some degree centralised.'® In our case, the OPAs are both proxies and mid-
dleware managers. They manage all six phases of organisational teamwork in a
completely distributed way. This is quite similar to the function of the Team
Wrappers in TEAMCORE/KARMA. The KARMA middleware component can
be compared to the organisational agent in our approach. It is a meta-level entity
that is responsible for setting up the whole system and for monitoring perfor-
mance.

In [19], we additionally study the conceptual fit between different middleware
approaches (in combination with the organisational models they support) and
their application on different levels of a large-scale system of systems.

6 Conclusion

In this paper, we have built upon our previous work SONAR on formalising organ-
isational models for MAS by means of Petri nets [4, 3]. In particular, the paper
is dedicated to a prototypical MULAN4SONAR middleware layer that supports
the deployment of SONAR-models. As SONAR-specifications are formalised with

% However, in the case of S-MOISE™, the new middleware approach ORA4MAS [18]
(organizational artifacts for MAS) has been devised, resulting in a more decentralised
approach.

95

Petri nets, they inherently have an operational semantics and thus already lend
themselves towards immediate implementation. We have taken advantage of this
possibility and have chosen the reference net formalism as an implementation
means. Reference nets implement the nets-in-nets concept [6] and thus allow us
to deploy SONAR-organisations as nested Petri net systems. The reference net
tool RENEW [7] offers comprehensive support, allowing us to refine/extend the
SONAR specifications into fully executable prototypes.

This leaves us with a close link between a SONAR specification of an organi-
sation and its accompanying MULAN4SONAR middleware support. The structure
and behaviour of the resulting software system is directly derived and compiled
from the underlying formal model. For example, we have explicitly shown how the
organisation net of a formal SONAR-specification can be utilised for the middle-
ware support of six different phases of teamwork. In each phase, the original net is
used differently (with different inscriptions and arrow directions). This approach
of deploying SONAR-models does not only relieve the developer of much otherwise
tedious programming. It also allows to preserve desirable properties that can be
proven for the formal model and that now carry over to the software technical
implementation.

Finally, although we have introduced the idea of SONAR-organizations acting
in the context of other SONAR-organizations, we have not addressed the topic in
detail here. We study this subject in [20, 21], but on a more abstract /generic level
than SONAR offers. Nevertheless, we have already begun to transfer the results
to SONAR.

References

1. Carley, K.M., Gasser, L.: Computational organisation theory. In Weif, G., ed.:
Multiagent Systems. MIT Press (1999) 229-330

2. Dignum, V., ed.: Handbook of Research on Multi-Agent Systems: Semantics and
Dynamics of Organizational Models. IGI Global (2009)

3. Kohler-Bufimeier, M., Wester-Ebbinghaus, M., Moldt, D.: A formal model for or-
ganisational structures behind process-aware information systems. Transactions
on Petri Nets and Other Models of Concurrency. Special Issue on Concurrency in
Process-Aware Information Systems 5460 (2009) 98 114

4. Kohler, M.: A formal model of multi-agent organisations. Fundamenta Informaticae
79 (2007) 415 — 430

5. Girault, C., Valk, R., eds.: Petri Nets for System Engineering — A Guide to Modeling,
Verification, and Applications. Springer (2003)

6. Valk, R.: Object Petri nets: Using the nets-within-nets paradigm. In Desel, J.,
Reisig, W., Rozenberg, G., eds.: Advanced Course on Petri Nets 2003. Volume 3098
of LNCS, Springer (2003) 819-848

7. Kummer, O., Wienberg, F., Duvigneau, M., Schumacher, J.; Kéhler, M., Moldt,
D., Rolke, H., Valk, R.: An extensible editor and simulation engine for Petri nets:
Renew. In Cortadella, J., Reisig, W., eds.: International Conference on Application
and Theory of Petri Nets 2004. Volume 3099 of LCNS, Springer (2004) 484 — 493

8. Kohler, M., Moldt, D., Rolke, H.: Modeling the behaviour of Petri net agents. In
Colom, J.M., Koutny, M., eds.: International Conference on Application and Theory
of Petri Nets. Volume 2075 of LNCS, Springer (2001) 224-241

96

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

Cabac, L., Dorges, T., Duvigneau, M., Moldt, D., Reese, C., Wester-Ebbinghaus,
M.: Agent models for concurrent software systems. In Bergmann, R., Lindemann,
G., eds.: Proceedings of the Sixth German Conference on Multiagent System Tech-
nologies, MATES’08. Volume 5244 of LNAI, Springer (2008) 37 48

Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of algebraic graph
transformation. Springer (2006)

Fischer, K., Schillo, M., Siekmann, J.: Holonic multiagent systems: A foundation for
the organization of multiagent systems. In: Holonic and Multi-Agent Systems for
Manufacturing, First International Conference on Industrial Applications of Holonic
and Multi-Agent Systems (HoloMAS). Volume 2744 of LNCS, Springer (2003) 71-80
Boissier, O., Hiibner, J., Sichman, J.S.: Organization oriented programming: From
closed to open organizations. In O’Hare, G., Ricci, A., O’Grady, M., Dikenelli, O.,
eds.: Engineering Societies in the Agents World VII. Volume 4457 of LNCS, Springer
(2007) 86 105

Kohler-Bufimeier, M., Wester-Ebbinghaus, M.: A Petri net based prototype for MAS
organisation middleware. In Moldt, D., ed.: Workshop on Modelling, object, compo-
nents, and agents (MOCA’09), University of Hamburg, Department for Computer
Science (2009) 29-44

Kohler-Bufimeier, M., Wester-Ebbinghaus, M.: Sonar: A multi-agent infrastructure
for active application architectures and inter-organisational information systems. In
Braubach, L., van der Hoek, W., Petta, P., Pokahr, A., eds.: Conference on Multi-
Agent System Technologies, MATES 2009. Volume 5774 of LNAI, Springer (2009)
248 257

Hiibner, J.F., Sichman, J.S., Boissier, O.: S-moise: A middleware for developing
organised multi-agent systems. In: International Workshop on Organizations in
Multi-Agent Systems: From Organizations to Organization-Oriented Programming
(OOOP 2005). (2005) 107-120

Esteva, M., Rodriguez-Aguilar, J., Rosell, B., Arcos, J.: Ameli: An agent-based
middleware for electronic institutions. In Sierra, C., Sonenberg, L., Tambe, M.,
eds.: Proceedings of the 3rd International Joint Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS 2004). (2004) 236-243

Pynadath, D., Tambe, M.: An Automated Teamwork Infrastructure for Hetero-
geneous Software Agents and Humans. In: Autonomous Agents and Multi-Agent
Systems, 7(1-2). (2003) 71-100

Hiibner, J.F., Boissier, O., Kitio, R., Ricci, A.: Instrumenting multi-agent organ-
isations with organisational artifacts and agents: Giving the organisational power
back to the agents. In: Autonomous Agents and Multi-Agent Systems, 20(3). (2010)
369-400

Wester-Ebbinghaus, M., Koéhler-Bufmeier, M., Moldt, D.: From Multi-Agent to
Multi-Organization Systems: Utilizing Middleware Approaches. In: Alexander, A.,
Picard, G., Vercouter, L., eds.: Engineering Societies in the Agents World IX. Vol-
ume 5485 of LNCS, Springer (2008) 46 65

Wester-Ebbinghaus, M., Moldt, D.: Modelling an open and controlled system
unit as a modular component of systems of systems. In Kohler-Bufimeier, M.,
Moldt, D., Boissier, O., eds.: International Workshop on Organizational Modelling
(OrgMod’09), University of Paris (2009) 81-100

Wester-Ebbinghaus, M., Moldt, D.: Structure in threes: Modelling organization-
oriented software architectures built upon multi-agent systems. In: Proceedings of
the 7th International Conference an Autonomous Agents and Multi-Agent Systems
(AAMAS’2008). (2008) 1307-1311

97

