

Abstract— Although some of the most important works on

multi-agent systems focused on interoperating multi-agent

systems with legacy applications, the main results consisted in the

definition of two agent communication languages, i.e., KQML

and FIPA ACL, and a set of specifications, i.e., the FIPA

specifications, for the realization of interoperable multi-agent

systems. Nowadays, web services are the primary mean to

provide interoperability with legacy applications and the large

part of multi-agent applications have been realized without any

strong requirement for the interoperability with other multi-

agent applications. This paper presents the HDS software

framework, which provides a software infrastructure to realize

multi-agent applications that either take advantage of the

specifications for agent-to-agent interoperability or are

implemented for optimizing their performance, reducing their

development cost and/or simplifying their interaction with some

specific legacy applications. Typed messages and message filters

are the elements that mainly characterize such a software

framework. Besides describing the main features of such a

software framework, this paper introduces two different

application scenarios designed to exploit HDS features: i) a

prototype framework for distributed constraint satisfaction

algorithms and ii) a distributed social network system.

Index Terms—software framework, multi-agent systems, typed

messages, composition filters, Java.

I. INTRODUCTION

OME of the most important works on multi-agent systems

considered them the solution to provide and maintain the

interoperability among legacy applications [1][2][3]. This

expectation motivated researchers to work on the problem of

proving interoperability both between agents and legacy

applications and among agents that are realized by different

people and with different software tools. The main results of

such works were not related to the interoperability between

agents and legacy applications, but consisted in the definition

of two agent communication languages, i.e., KQML and FIPA

ACL, [4][5][6] and a set of specifications, i.e., the FIPA

Manuscript received June 7, 2010

Federico Bergenti is with the Dipartimento di Matematica, Università degli

Studi di Parma, Viale G.P. Usberti, 53/A, 43124 Parma, Italy (e-mail:

federico.bergenti@unipr.it).

Enrico Franchi is with the Dipartimento di Ingegneria dell’Informazione,

Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124

Parma, Italy (e-mail: efranchi@ce.unipr.it).

Agostino Poggi is with the Dipartimento di Ingegneria dell’Informazione,

Università degli Studi di Parma, Parco Area delle Scienze 181/A, 43124

Parma, Italy (e-mail: poggi@ce.unipr.it).

specifications [7], for the realization of interoperable multi-

agent systems. Nowadays, the solution for providing the

interoperability among legacy applications has been identified

in the Web services technologies and the large part of multi-

agent applications have been realized without any strong

requirement for the interoperability with other multi-agent

applications.

In this paper, we present a software framework, called HDS

whose goal is to simplify the realization of multi-agent system

by taking advantage of typed messages and message filters

and avoiding to be constrained by the use of a specific ACL

and by the rules of any specification for the realization of

multi-agent systems.

We are not concerned with non-agent based software

frameworks; among the agent based software frameworks

(Jade, AgentFactory [8]) the dominant approach is using FIPA

ACL, whose focus is on interoperability. However, in FIPA

based frameworks the communication time is almost always

dominated by the parsing and construction times of FIPA

messages [9][10]. On the other hand, HDS approach permits

to shift the focus on performance, without hindering

interoperability by design.

Section II gives a short introduction to HDS framework

architecture; Section III presents the three models that concur

to the definition of the architecture of a HDS application,

while Section IV presents some details on the implementation

of HDS. Section V and VI discuss two experimentations

where HDS has been used to study distributed constraint

solving algorithms and to design distributed social network

systems. Eventually, section VII concludes the paper

sketching some future research directions.

II. SOFTWARE FRAMEWORK OVERVIEW

HDS (Heterogeneous Distributed System) is a software

framework that has the goal of simplifying the realization of

distributed applications by merging the client-server and the

peer-to-peer paradigms and by implementing all the

interactions among all the processes of a system through the

exchange of messages.

This software framework allows the realization of systems

based on two types of processes: actors and servers. Actors

have their own thread of execution and perform tasks by

interacting, if necessary, with other processes through

synchronous and asynchronous messages. Servers perform

tasks on request of other processes by composing, if

necessary, the services offered by other processes through

Using HDS for Realizing Multi-Agent

Applications

Federico Bergenti, Enrico Franchi, Agostino Poggi

S

62

synchronous messages. Moreover, while both servers and

actors may directly take advantage of the services provided by

other kinds of application, only the servers can provide

services to external applications by simply providing one or

more public interfaces.

Actors and servers can be distributed on a (heterogeneous)

network of computational nodes (thereafter called runtime

nodes) for the realization of different kinds of application. In

particular, actors and servers are grouped into some runtime

nodes that realize a platform. An application can be obtained

by combining some preexistent applications by realizing a

federation.

III. APPLICATION ARCHITECTURE MODEL

The software architecture of a HDS application can be

described through the three different models:

• the concurrency model, which describes how the processes

of a runtime node can interact and share resources.

• the runtime model, which describes the services available

for managing the processes of an application.

• the distribution model, which describes how the processes

of different runtime nodes can communicate.

A. The concurrency model

The concurrency model is based on seven main elements:

process, description, description selector, mailer, message,

content and message filter.

A process is a computational unit able to perform one or

more tasks taking, if necessary, advantage of the tasks

provided by other processes. To facilitate the cooperation

among processes, a process can advertize itself making

available to the other processes its description. The process

identifier and the process type represent the default

information contained in a description; however, a process

may introduce some additional information in its description.

A process can be either an actor or a server. An actor is an

active process that can have an active behavior and so can start

the execution of some tasks without the request of other

processes. A server is a passive process that is only able to

perform tasks in response of the request of other processes.

A process can interact with the other processes through the

exchange of messages based on one of the following three

types of communication:

• synchronous communication, the process sends a message

to another process and waits for its answer;

• asynchronous communication, the process sends a message

to another process, performs some actions and then waits

for its answer;

• one-way communication, the process sends a message to

another process, but it does not wait for an answer.

In particular, while an actor can start all the three previous

types of communication with all the other processes, a server

can only respond to the requests of the other processes it

serves them, composing the services provided by other

processes through synchronous communications. Moreover, a

server can respond to a request through more than one answer

(e.g., when it acts as a broker in a publisher subscriber system)

and can forward a request to another server for its execution.

A process has also the ability of discovering the other

processes of the application. In fact, it can both get the

identifiers of the other mailers of the systems and check if an

identifier is bound to another mailer of the system taking

advantage of the registry service provided by HDS

middleware. Moreover, a process can take advantage of some

special objects, called description selectors, for requiring the

listing of specific subsets of mailer identifiers. In fact, a

description selector allows the definition of some constraints

on the information maintained by the process descriptions

(e.g., the process must be of a specific type, the process

identifier must have a specific prefix and the process must be

located in a specific runtime node) and the registry service is

able to apply their constraints on the information of the

registered descriptions for building the required subsets of

identifiers.

A process does not exchange directly messages with the

other processes, but delegates this duty to a mailer. In fact, a

mailer provides a complete management of the messages of a

process: it receives messages from the mailers of the other

processes, maintains them up to the process requests theirs

processing and, finally, sends messages to the mailers of the

other processes.

In a way similar to a process, a mailer can be either an actor

mailer or a server mailer. Of course, it depends on the fact

that, as described above, an actor and a server can assume a

different set of roles in message exchanging.

A message contains the typical information used for

exchanging data on the net, i.e., some fields representing the

header information, and a special object, called content, that

contains the data to be exchanged. In particular, the content

object is used for defining the semantics of messages (e.g., if

the content is an instance of the Ping class, then the message

represents a ping request and if the content is an instance of

the Result class, then the message contains the result of a

previous request).

Normally, a mailer can communicate with all the other

mailers and the sending of messages does not involve any

operation that is not related to deliver messages to the

destination; however, the presence of message filters can

modify the normal delivery of messages.

A message filter is a composition filter [11] whose primary

scope is to define the constraints on the reception/sending of

messages; however, it can also be used for manipulating

messages (e.g., their encryption and decryption) and for the

implementation of replication and logging services.

Each mailer has two lists of message filters: the ones in the

first list (input message filters) are applied to the input

messages and the others (output message filters) are applied to

the output messages (Fig 1 shows the flow of the messages

from the input message filters to the output message filters).

When a new message arrives or is be sent, the message filters

of the appropriate list are applied in sequence until a message

filter fails; therefore, such a message is stored in the input

queue or is sent only if all the message filters have success.

63

Figure 1. Flow of the messages from the input to the output message filters.

Message filters are not only used for customizing the

reception and sending of messages, but are also used by the

processes for asking their mailer for the input messages they

need for completing their current task. In fact, as described

above, a message filter allows to define the constraints that are

necessary to identify a specific message and a mailer is able to

use it for selecting the first message in the input queue that

satisfies its constraints (e.g., the reply to a message sent by the

process, a message sent by a specific process and a message

with a specific kind of content).

B. The runtime model

The runtime model defines the basic services provided by

the middleware to the processes of an application. This model

is based on four main elements: registry, processer, filterer and

porter.

A registry is a runtime service that allows the discovery of

the processes of the application. In fact, a registry provides the

binding and unbinding of the processes with their identifiers,

the listing of the identifiers of the processes and the retrieval

of a special object, called reference, on the basis of the process

identifier.

A reference is a proxy of the process that makes transparent

the communication respect to the location of the process.

Therefore, when a process wants to send a message to another

process, it must obtain the reference to the other process and

then use it for sending the message.

A processer is a runtime service that has the duty of creating

new processes in the local runtime node. Of course, an

important side effect of the creation of a process is the creation

of the related mailer. The creation is performed on the basis of

the qualified name of the class implementing the process, a list

initialization parameters.

The processes cannot directly modify the lists of message

filters, but they can take advantage of a filterer to do it. A

filterer is a runtime service that allows the creation and

modification of the lists of message filters associated with the

processes of the local runtime node. Therefore, a process can

use such a service for managing the lists of its message filters,

but also for modifying the lists of message filters associated

with the other processes of the local runtime node.

Finally, a porter is a runtime service that has the duty of

creating some special objects, called ports, that allows an

external application to use the services implemented by a

server of the local runtime node. In particular, a port is a

wrapper that encapsulates a server for limiting the access to

the functionalities of the process by masquerading the use of

some its services and by adding some constraints on the use of

some other its services.

C. The distribution model

The distribution model has the goal of defining the software

infrastructure that allows the communication of a runtime

node with the other nodes of an application possibly through

different types of communication supports, guaranteeing a

transparent communication among their processes. This model

is based on three kinds of element: distributor, connector and

connection.

Figure 2. An HDS application based on three runtime nodes connected

through RMI and JMS technologies.

A distributor has the duty of managing the connections with

the other runtime nodes of the application. This distributor

manages connections that can be realized with different kinds

of communication technology through the use of different

connectors (see Figure 2). Moreover, a pair of runtime nodes

can be connected through different connections.

A connector is a connections handler that manages the

connections of a runtime node with a specific communication

technology allowing the exchange of messages between the

processes of the accessible runtime nodes that support such a

communication technology.

A connection is a mono-directional communication channel

that provides the communication between the processes of two

runtime nodes through the use of remote references. In

particular, a connection provides a remote lookup service

offering the listing of the remote processes and the access to

their remote references.

IV. SOFTWARE FRAMEWORK IMPLEMENTATION

The HDS software framework has been realized taking

advantage of the Java programming language. The application

architecture model has been defined through the use of Java

interfaces and its implementation has been divided in two

modules.

The first module contains the software components that

define the software infrastructure and that are not directly used

by the developer, that is, all the software components

necessary for managing the lifecycle of processes, the local

and remote delivery of messages and their filtering. In

particular, the remote delivery of messages has been provided

mailer

 process

input filters output filters

RMI connectors

connections

JMS connectors

distributor

64

through both Java RMI [12] and JMS [13] communication

technologies.

The second module contains both the software components

that application developers extend, implement or, at least, use

in their code, and the software components that help them in

the deployment and execution of the realized applications. The

identification of such software components can be easily done

by analyzing what application developers need to realize: i)

the actor and server classes used for the implementation of the

processes involved in the application, ii) the description of

selector classes used for the discovery of the processes

involved in common tasks, iii) the message filter classes used

for customizing the communication among the processes, iv)

the typed messages used in the interaction among the

processes, and v) the artifacts (i.e., Java classes and/or

configuration files) for the deployment of the runtime nodes

and of the communication channels among runtime nodes, and

for the startup of the initial sets of processes and message

filters.

The above items imply that such a module needs to contain;

i) some software components for simplifying the realization of

actors, servers, description selectors and message filters

(realized through four abstract classes called AbstractActor,

AbstractServer, AbstractSelector and AbstractFilter), ii) a set

of abstract and concrete typed messages useful for realizing

the typical communication protocols used in distributed

applications, and iii) a software tool that allows the

deployment of a HDS software application through the use of

a set of configuration files (realized through a concrete class

called Launcher).

In regard to type messages and the related communication

protocols, the software framework provides the basis

interfaces and classes for realizing application dependent

client-server protocols and the basic interfaces and classes for

supporting the interaction among processes through the use of

communication language derived by the agent communication

language (ACL) defined in the FIPA specifications [7].

In particular, besides realizing an implementation of the

FIPA ACL, that completely satisfies the FIPA specifications

and uses the SL language for the content, we used some of the

FIPA ACL performatives as top layer interfaces for the

definition of typed message classes that combines the

semantics of the performative with the semantics of the ACL

content in a particular ontology (e.g., the typed message, Sell,

is sent to another process for requiring it to sell something to

the requester; of course, typed messages are usually

specialized for an application domain and it can be easily done

grouping the typed messages related to a domain ontology in

a Java package. In a similar way, we provided an abstract

implementation of some interaction protocols (i.e. the English

and Dutch auction protocols, the Contracted Net and the

iterated Contract Net protocols and the brokering and the

recruiting protocols) that derive from the interaction protocols

defined in the FIPA specifications [7]. This implementation

replaces the ACL messages with typed messages and

delegates to the application developer only the duty of writing

the code for processing the content of the messages, selecting

the messages to be sent and building their content.

For example, the abstract implementation of the iterated

Contract Net protocol is based on two abstract classes, that

describe the two roles involved in the protocol, i.e., the

initiator and the participant, and an interface, called Contract,

used in the content of the exchanged messages for maintaining

the information about both the task to be executed and the bids

of the participants.

The abstract class that represents the initiator role defines

three main methods; the first method sends an “offer” message

to the list of processes acting as participants. The second

method is an abstract method whose implementation must

select the participant to which send either an “accept” or

another “offer” message. Finally, the third method is an

abstract method whose implementation must process the

message containing the results of the execution of the required

task.

The abstract class, that represents the participant role,

defines two main methods. The first method is an abstract

method whose implementation must decide to propose a bit

for the task described by the “offer” message or to refuse it.

The second message must decide to execute the task and then

must send the information about the results of its execution.

Therefore, using the iterated Contract Net protocol inside an

application requires: i) the definition of concrete class

implementing the Contract interface, ii) the definition of a

concrete class that extend the initiator abstract class

implementing the methods for accepting, refusing or sending

an updated contract and for processing the result received by

the participant(s) to which the contract(s) have been assigned,

and iii) the definition of at least a concrete class that extend

the participant abstract class implementing the methods for

accepting or refusing an offer and for performing the task

associated with the contract.

V. HDS FOR DISTRIBUTED CONSTRAINT SATISFACTION

Recently we used HDS to develop a Java framework for

prototyping and evaluating distributed constraint satisfaction

algorithms. A brief introduction to distributed constraint

satisfaction is needed to better explain the role of HDS; see

[14] for an in-depth introduction to the subject and for a

discussion of possible application scenarios.

Distributed Constraint Satisfaction Problems (DCSPs) are a

very general class of problems that extend Constraint

Satisfaction Problems (CSPs) to the realm of distributed

computing; the literature defines DCSPs as a distributed and

decentralized generalization of CSPs.

A CSP consists of (i) n variables <x1, x2, … , xn>, whose

values are taken from finite, discrete domains <D1, D2, … ,

Dn>, respectively, and (ii) a set of constraints on such

variables. In very general terms, a constraint is defined by a

relation on a subset of the Cartesian product D1 x Dk2 x …

x Dn that holds for certain assignments of values to variables.

Solving a CSP is equivalent to finding an assignment of values

to all variables such that all constraints are satisfied. Since

constraint satisfaction is NP-complete in general, a trial-and-

error exploration of alternatives is inevitable.

65

A DCSP is a CSP in which variables and constraints are

distributed among agents; each agent has some owned

variables and it tries to determine their values. Agents

independently try to find assignments to their variables and the

problem is solved when all variables are assigned consistent

values.

More precisely, when dealing with DCSP, we take the

following assumptions:

1. No central orchestration is allowed and the problem is

solved by peer agents in cooperative/competitive

ways.

2. Agents communicate by means of directed messages.

3. Each agent has a unique identifier and an agent can

send messages to other agents if and only if it knows

the unique identifiers of the receiving agents.

4. The delay in delivering a message is finite, though

unknown and possibly random.

5. For the transmission between any pair of agents,

messages are received in the order in which they were

sent.

6. Each agent has exactly one variable and it knows all

constraint predicates relevant to its variable.

7. All constraints are binary.

It is worth noting that although algorithms for solving

DCSPs are similar to parallel/distributed processing methods

for solving CSPs (see, e.g., [15] [16]), the applicability of both

approaches is fundamentally different. The primary concern in

parallel/distributed processing is efficiency, and we can

choose any type of parallel/distributed computer architecture

for solving a given problem efficiently. In contrast, in a DCSP,

there already exists a situation where knowledge about the

problem is distributed among agents and no central

orchestration is available. This is the case, e.g., of sensor

networks where nodes interact independently and strive to

coordinate with no central master. If all knowledge about the

problem could be gathered into a single master agent, such an

agent could solve the problem more effectively alone by using

every day, centralized constraint satisfaction algorithms.

The Asynchronous Backtracking Algorithm (ABT) is one of

the algorithms, that we developed using HDS. This algorithm

is a distributed, asynchronous version of a backtracking

algorithm. The main message types communicated among

agents are ok?, to communicate the current assigned value,

and nogood to communicate a new constraint.

In the ABT algorithm, the priority order of agents is

predetermined, and each agent communicates its tentative

value assignment to neighboring agents via ok? messages. An

agent changes its assignment if its current value assignment is

not consistent with the assignments of higher priority agents.

If there exists no value that is consistent with the higher

priority agents, the agent generates a new constraint, called a

nogood, and it communicates the nogood to a higher priority

agent; thus the higher priority agent changes its value.

A nogood is a subset of an agent view, i.e., the current value

assignment of other agents from its viewpoint, where the agent

is not able to find any consistent value with the subset. Ideally,

generated nogood should be minimal, i.e., no subset of them

should be a nogood. However, since finding minimal nogoods

requires certain computation costs, an agent can do with non-

minimal nogoods and, in the simplest case, it could use its

entire agent view as a valid nogood.

It must be noted that since each agent acts asynchronously

and concurrently and agents communicate by sending

messages, the agent view may contain obsolete information.

Therefore, if xi does not have a consistent value with the

higher priority agents according to its agent view, we cannot

use a simple control method such as xi orders a higher priority

agent to change its value, since the agent view may be

obsolete. Each agent needs to generate and communicate a

new nogood, and the receiver of the new nogood must check

whether the nogood is actually violated based on its own agent

view.

The potential growth of the size of nogoods is a severe issue

that went often unnoticed and that we identified during our

initial experiments on solving Sudoku puzzles; this was the

main reason why we switched our initial implementation from

JADE to HDS. Moreover, we found HDS ideal for the

implementation of this kind of algorithms because:

1. Performances are important as all such algorithms are

typically demanding in terms of communication

throughput;

2. Most of such algorithms are expressed in terms of

reactions to typed messages; and

3. Composition filters allow instrumenting code with no

modifications to developed algorithms, thus enabling

performance measurement, debugging and fine tuning.

Finally, it is worth noting that HDS gave us a new dimension

for experimentations, i.e., the impact of the underlying

transport mechanism on the performances of algorithms.

Actually, distributed constraint satisfaction algorithms use

messages with very diverse sizes, ranging from few bytes in

initial stages of the process to megabytes when agents send

entire agent views across the network. We noted that different

transport protocol exhibit different performances with

massage sizes with strange and unforeseen behaviors.

VI. USING HDS IN SOCIAL NETWORK SYSTEMS

Moreover, we are using HDS for the realization of an agent

based support layer for the interaction among users in a social

network (SN). In particular, we associate an agent with each

user and such an agent can also proactively act on her/his

behalf by taking advantage the information contained in the

profile of the user.

The agent has two main roles: i) it mediates access to the

profile information, allowing or refusing queries from other

agents; ii) it uses information in the profile in order to discover

new friendships and acquaintances on his owner's behalf.

While the first role does not need a full-fledged software

agent, since a simple rule-based strategy suffices, the second

role exhibits a typical proactive behavior, as agents actively

pursue their owner's goal, without direct human intervention.

Currently available SNs are implemented with centralized

systems where information is stored on a logical central server

and users simply connect to that server. The system as a whole

66

has proactive behavior proposing the users new acquaintances,

but its monolithic structure places the system outside the

multi-agent paradigm. Moreover, the system has access to

every piece of information users provided: this both raises

security and privacy concerns and simplifies the proposal of

new friendships.

We have designed a system where independent multiple

proactive agents exchange minimal sets of data in order to

discover relationship suggested by the user profiles. For

example, if two users work in the same company, it is likely

they know each other, thus they are to be connected in the SN.

Data are distributed among the agents and are protected by

the agents themselves, since every access to a datum is

mediated through an agent. Thus, privacy is not an issue.

The system supports “typed” connections, where the parts

involved are aware they are connected, for example, because

both attended to the same University or worked in the same

company. In order to store data in the profile, we use FOAF

[17] and DOAC [18] and the “type” of the connections is

derived from those RDF descriptions. However, we do not

detail the semantics of connections in order to focus the

system presentation from a multi-agent modeling point of

view.

The HDS framework is used as the foundation of our

system because of its high efficiency and built-in support for

typed messages, which are of paramount importance in

expressing our connection negotiation algorithm.

Since the HDS framework distinguishes between active

processes (actors) and servers, and since our agents feature

both proactive and passive behavior, we decided to model the

abstract agents with more than one concrete HDS process.

Essentially, the agent discovery algorithm can be decomposed

in three main tasks: i) search new connections and friendships

according to the data available; ii) broker connections between

possibly mutual friends iii) accept/refuse connections

proposed by some other agent performing function i and ii.

Tasks i) and ii) are clearly proactive, since the agent has to

actively contact other agents, thus both tasks are implemented

through HDS actors. Although task iii) is not proactive, and

can be modeled with a server process. A passive server

process mediates access to the profile and this can be seen as a

fourth task.

Since agents are implemented through multiple processes,

they are essentially only logical entities in the system, the only

indication of their existence being a unique id in the system

(such as, e.g., their owner's username) and rules granting full

access among processes implementing the same agent.

We use capital letters to refer to the agents ids (e.g., A), and

the same capital letter with a subscript (A1, A2, A3, A4) to refer

to the HDS ids of the processes implementing the agent, e.g.,

A1 implements the first task and so on.

In the following paragraphs we describe the connection

discovery algorithm (Fig. 3), which is the component in our

system that more heavily exploits HDS typed messages.

Figure 3. A sequence diagram presenting the connection discovery algorithm.

In order to describe the algorithm, we assume agent A

wants to find new friends. As the first step, actor A1 sends a

GetConnections message to A4 to obtain the list of

connections. Each entry in the lists consists of an agent id and

an RDF payload specifying the type of connection. Of course,

the same pair of agents may be connected through multiple

connections.

Let B an identifier in the list: A sends some

FindConnection(LT, EL) messages to B2, where each

message has a different link type LT (derived from the types

of links connecting A and B). B2 is then entitled to share

pieces of information derived from LT with every agent C that

is connected with B through a LT connection and not present

in the exclude list EL. EL contains both the ids of agents A is

already connected with and the ids of agents A does not want

to connect with.

Essentially B2 acts as a broker between A and C, since

mailer filters are configured not to accept connections from

processes implementing unknown agents and consequently A

and C cannot communicate directly. Notice that A determines

the exact amount of information it wants to use in order to find

new friends. B is not allowed to use information on A to find

new friends for A or for himself until A allows usage of

information contained in LT sending the FindConnection(LT,

EL) message. For example, the link type is “attended

University of Parma”. C already knows that both he and B

attended the University of Parma: A allowed B to inform C

that A attended that University as well.

The next step consists in B2 sending C3 a

RequestConnection(A, LT) message. If C3 answers with a

RefuseConnection(A, LT), B will not tell A that he is

connected with C (and not even C existence). If C wants to be

connected with A, C3 sends an AcceptConnection(A, LT) to

B2 and consequently B2 sends an AcceptedConnection(C, LT)

message to A3.

A can confirm the connection to C or refuse it. In the former

situation, A4 will be notified it is allowed to share some

information with C and a direct negotiation between A and C

67

is started in order to establish further connections (or more

specific connections, e.g. attended the University of Parma

between 2002 and 2005, in place of the simple “attended

University of Parma”).

VII. CONCLUSION

This paper presented the HDS software framework, with the

goal of simplifying the realization of distributed applications

by merging the client-server and the peer-to-peer paradigms

and by implementing the interactions among all the processes

of a system through the exchange of typed messages.

HDS is implemented by using the Java language and its use

simplify the realization of systems in heterogeneous

environments where computers, mobile and sensor devices

must cooperate for the execution of tasks. Moreover, since

different protocols can be used to exchange messages between

processes of different computational nodes, it is possible to

use multiple implementations of the HDS framework for

different languages in the same application as long as there are

some shared protocols; this way it is possible to integrate

hardware and software platforms without Java support.

HDS can be considered a software framework for the

realization of any kind of distributed system. Some of its

functionalities derive from the one offered by JADE [19][20],

a software framework that can be considered one of the most

known and used software framework for the developing of

multi-agent systems. This derivation does not depend only on

the fact that some of the people involved in the development

of the HDS software framework were involved in the

development of JADE too, but because HDS proposes a new

view of multi-agent systems where the respect of the FIPA

specifications are not considered mandatory and ACL

messages can be expressed in a way that is more usable by

software developers outside the multi-agent system

community. This work may be of interest not only for

enriching other theories and technologies with some aspects of

multi-agent system theories and technologies, but also for

providing new opportunities for the diffusion of both the

knowledge and use of multi-agent system theory and

technologies.

HDS is a suitable software framework for the realization of

pervasive applications. Some of its features introduced above

(i.e., the java implementation, the possibility of using different

communication protocols and the possibility a multi-language

implementation) are fit for such kinds of application.

However, the combination of multi-agent and aspect-oriented

techniques [21] might be one of the best solutions for

providing an appropriate adaptation level in a pervasive

application. In fact, this solution allows to couple the power of

multi-agent based solutions with the simplicity of

compositional filters solutions guaranteeing both a good

adaptation to the evolution of the environment and a limited

overhead to the performances of the applications.

Current and future research activities are dedicated, besides

to continue the experimentation and validation of the HDS

software framework in the realization of collaborative services

for social network, to the improvement of the HDS software

framework. In particular, current activities are dedicated to: i)

the automatic creation of the Java classes representing the

typed messages from OWL ontologies taking advantage of the

O3L software library [22], and iii) the extension of the

software framework with a high-performance software library

to support the communication between remote processes, i.e.,

MINA [23].

REFERENCES

[1] Genesereth, M.R., Ketchpel, S.P. Software agents. Communications of

ACM, 37(7): 48-53, 1994.

[2] Genesereth, M.R. An agent-based framework for interoperability. In J.

M. Bradshaw (Ed.). Software Agents, pp. 317-345. MIT Press,

Cambridge, MA, 1997.

[3] O'Brien, P.D., Nicol, R.C. FIPA - Towards a Standard for Software

Agents. BT Technology Journal, 16(3):51-59. 1998.

[4] Finin, T., Fritzson, R., McKay, D. McEntire, R. KQML as an agent

communication language. In Proc. of the 3rd Int. Conf. on information

and Knowledge Management, pp. 456-463, Gaithersburg, MD, 1994.

[5] Labrou, Y., Finin, T., Peng, Y. Agent Communication Languages: The

Current Landscape. IEEE Intelligent Systems, 14(2):45-52, 1999.

[6] Singh, M.P. Agent Communication Languages: Rethinking the

Principles. IEEE Computer, 31(12):40-47, 1998.G. O. Young,

“Synthetic structure of industrial plastics (Book style with paper title and

editor),” in Plastics, 2nd ed. vol. 3, J. Peters, Ed. New York: McGraw-

Hill, 1964, pp. 15–64.

[7] FIPA Consortium. FIPA Specifications. Available from

http://www.fipa.org.

[8] Collier, R.: Agent Factory: An Environment for the Engineering of

Agent-Oriented Applications. Ph.D. Thesis, University College Dublin,

Ireland, 2001

[9] Mulet, L., Such, J. M., and Alberola, J. M. 2006. Performance

evaluation of open-source multiagent platforms. Proceedings of the Fifth

international Joint Conference on Autonomous Agents and Multiagent

Systems, Hakodate, Japan, , 2006.

[10] G. Vitaglione, F. Quarta, and E. Cortese, "Scalability and performance

of jade message transport system," 2002.

[11] Bergmans, L., Aksit, M. Composing crosscutting concerns using

composition filters. Communications of ACM, 44(10):51-57, 2001.

[12] Pitt, E. McNiff, K. Java.rmi: the Remote Method Invocation Guide.

Addison-Wesley, 2001.

[13] Monson-Haefel, R. Chappell, D. Java Message Service. O'Reilly &

Associates, 2000.

[14] Yokoo, M., Katsutoshi, H. Algorithms for Distributed Constraint

Satisfaction: A Review, Procs. Int’l Conf. Autonomous Agents and

Multiagent Systems, Vol. 3, pp. 185-207, 2000.

[15] Zhang, Y., Mackworth, A. Parallel and distributed algorithms for finite

constraint satisfaction problems. Procs. 3rd IEEE Symposium on Parallel

and Distributed Processing. 394-397, 1991.\

[16] Collin, Z., Dechter, R. , Katz S. On the Feasibility of Distributed

Constraint Satisfaction. Procs. 12th Int’l Joint Conference on Artificial

Intelligence. 318-324, 1991.

[17] D. Brickley and L. Miller, http://www.foaf-project.org

[18] R. Antonio, http://ramonantonio.net/doac

[19] Bellifemine, F., Poggi, A., Rimassa, G. Developing multi agent systems

with a FIPA-compliant agent framework. Software Practice &

Experience, 31:103-128, 2001.

[20] Bellifemine, F., Caire, G., Poggi, A., Rimassa, G.. JADE: a Software

Framework for Developing Multi-Agent Applications. Lessons Learned.

Information and Software Technology Journal, 50:10-21, 2008.

[21] Kiczales, Gregor; John Lamping, Anurag Mendhekar, Chris Maeda,

Cristina Lopes, Jean-Marc Loingtier, and John Irwin (1997). "Aspect-

Oriented Programming". Proceedings of the European Conference on

Object-Oriented Programming, vol.1241. pp. 220.242. The paper

generally considered to be the authoritative reference for AOP.

[22] Poggi, A. Developing Ontology Based Applications with O3L. WSEAS

Trans. on Computers, 8(8):1286-1295, 2009

[23] Apache Foundation. MINA software. Web site. Available from:

http://mina.apache.org.

68

