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Abstract

This paper presents a first attempt to bridge the gap between logical and cognitive treat-
ments of strategic reasoning in games. The focus of the paper is backward induction, a prin-
ciple which is purported to follow from common knowledge of rationality by Zermelo’s the-
orem. There have been extensive formal debates about the merits of principle of backward
induction among game theorists and logicians. Experimental economists and psychologists
have shown that human subjects, perhaps due to their bounded resources, do not always fol-
low the backward induction strategy, leading to unexpected outcomes. Recently, based on
an eye-tracker study, it has turned out that even human subjects who produce the outwardly
correct ‘backward induction answer’ use a different internal reasoning strategy to achieve it.
This paper presents a formal language to represent different strategies on a finer-grained level
than was possible before. The language and its semantics may lead to precisely distinguishing
different cognitive reasoning strategies, that can then be tested on the basis of computational
cognitive models and experiments with human subjects.

1 Introduction

Strategic reasoning in games concerns the plans or strategies that information-processing agents
have for achieving certain goals. Strategy is one of the basic ingredients of multi-agent interaction.
It is basically the plan of action an agent (or a group of agents) considers for its interactions, that
can be modelled as games. From the game-theoretic viewpoint, a strategy of a player can be de-
fined as a partial function from the set of histories (sequences of events) at each stage of the game
to the set of actions of the player when it is supposed to make a move [OR94]. Agents devise their
strategies so as to force maximal gain in the game.

In cognitive science, the term ‘strategy’ is used much more broadly than in game theory. A
well-known example is formed by George Polya’s problem solving strategies (understanding the
problem, developing a plan for a solution, carrying out the plan, and looking back to see what can
be learned) [Pol45]. Nowadays, cognitive scientists construct fine-grained theories about human
reasoning strategies [Lov05, JT07], based on which they construct computational cognitive mod-
els. These models can be validated by comparing the model’s predicted outcomes to results from
experiments with human subjects [And07].

Every finite extensive form game with perfect information [OR94] played by rational players
has a sub-game perfect equilibrium and backward induction is a popular technique to compute
such equilibria. The backward induction strategy, which employs iterated elimination of weakly
dominated strategies to obtain sub-game perfect equilibria, is a common strategy followed by
rational players with common knowledge (belief) of rationality. We provide below an explicit de-
scription of the backward induction algorithm in extensive form game trees [Jon80]. We are only
considering strictly competitive games played between two players.
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Consider a finite extensive form game with perfect information G played between two players
E and A, say. In game G, each player i is associated with a utility function ui which maps each
leaf node of the tree to the set {0,1}. The backward induction procedure BI�G, i� takes as input
such a game G and a player i. It decides whether player i has a winning strategy in G and if
so, computes the winning strategy. The procedure proceeds as follows. Initially all nodes are
unlabelled.

Step 1: All leaf nodes l are labelled with ui�l�.

Step 2: Repeat the following steps till the root node r is labelled: Choose a non-leaf
node t which is not labelled, but all of whose successors are labelled.

a) If it is i’s turn at t and there exists a successor t� of t which is labelled 1,
then label t with 1 and mark the edge (t, t�) which gives the best response
at that stage.

b) If it is the opponent’s turn at t and every successor t� is labelled 1, then
label t with 1.

Player i will have a winning strategy in the game G if and only if the root node r is labelled
with 1 by the backward induction procedure BI�G, i�.

One important critique of this backward induction procedure is that it ignores information,
and such ignorance is hardly consistent with a broad definition of rationality. Under backward
induction, the fact that a player ends up in one particular subgame rather than another subgame is
never considered information for the player. The past moves and reasoning of the players are not
taken into consideration. Only what follows is reasoned about. That is, the backward induction
solution ignores any forward induction reasoning [Per10].

Before proceeding further we should mention here that there have been numerous debates sur-
rounding the backward induction strategy from various angles. The paradigm discussion concerns
the epistemic conditions of backward induction. Here, Aumann [Aum95] and Stalnaker [Sta96]
have taken conflicting positions regarding the question whether common knowledge of rationality
in a game of perfect information entails the backward induction solution. Researchers such as
Binmore have argued for the need for richer models of players, incorporating irrational as well as
rational behavior [Bin96]. For more details on these issues see [Bic88, ACB07, Bra07, BSZ09,
HP09, Art09].

From the logical point of view, various characterisations of backward induction can be found
in modal and temporal logic frameworks [Bon02, HvdHMW03, vW03, JvdH04, BSZ09]. There
are also critical voices around backward induction arising from logical investigations of strategies.
While discussing large (perfect information) games played by resource-bounded players, Ramanu-
jam and Simon emphasize that strategizing follows the flow of time in a top-down manner rather
the bottom-up one advocated by the backward induction algorithm [RS08] .

Critique of a different flavor stems from experimental economics [Cam03]. As sketched above,
the game-theoretic perspective assumes that people are rational agents, optimizing their gain by
applying strategic reasoning. However, many experiments have shown that people are not com-
pletely rational in this sense. For example, McKelvey and Palfrey [MP92] have shown that in a
traditional centipede game participants do not behave according to the Nash equilibrium reached
by backward induction. In this version of the game, the payoffs are distributed in such a way that
the optimal strategy is to always end the game at the first move. However, in McKelvey and Pal-
frey’s experiment, participants stayed in the game for some rounds before ending the game: in fact,
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only 37 out of 662 games ended with the backward induction solution. McKelvey and Palfrey’s
explanation of their results is based on reputation and incomplete information. They compare the
complete information dynamic centipede game to an incomplete information game, the iterated
prisoner’s dilemma as investigated by Kreps et al. [KMRW82]. McKelvey’s and Palfrey’s main
idea is that players may believe that there is some possibility that their opponent has payoffs dif-
ferent from the ‘official ones’: for example, they might be altruists, i.e., they give weight to the
opponent’s payoff. Another interpretation of this result is that the game-theoretic perspective fails
to take into account the reasoning abilities of the participants. That is, perhaps, due to cognitive
constraints such as working memory capacity, participants are unable to perform optimal strategic
reasoning, even if in principle they are willing to do so.

In conclusion, we find two very different bodies of work on players’ strategies in centipede-like
games: on the one hand we find idealized logical studies on games and strategies modelling inter-
active systems, and on the other there are experimental studies on players’ strategies and cognitive
modelling of their reasoning processes. Both streams of research have been rather disconnected
so far.

To the best of the knowledge of the authors, this article presents a first attempt to bridge the gap
between the experimental studies, cognitive modeling, and logical studies of strategic reasoning.
In particular, we investigate the question whether a logical model can be used to construct better
computational cognitive models of strategic reasoning in games. In the next section we discuss
some experimental studies on second-order reasoning of players and cognitive models of such
reasoning. Section 3 builds up a logical framework to describe empirical reasoning of players.
Finally, the last section provides a discussion with some pointers towards future work.

2 Marble Drop: experiments and cognitive model

This section presents a brief overview of the experimental work on Marble Drop games described
in [MMRV10], and of the computational cognitive model (in the cognitive architecture ACT-
R [And07]), which was developed in [MV10] to provide a model for second-order social reasoning
in predicting the opponent’s moves in Marble Drop games.

2.1 Higher-order social cognition

One of the pinnacles of intelligent interaction is higher-order theory of mind, an agent’s ability
to model recursively mental states of other agents, including the other’s model of the first agent’s
mental state, and so forth. More precisely, zero-order theory of mind concerns world facts, whereas
k � 1-order reasoning models k-order reasoning of the other agent or oneself. For example, “Bob
knows that Alice knows that he wrote a novel under pseudonym” (KBobKAlicep) is a second-order
attribution. Orders roughly correspond to the modal depth of a formula 1

The authors in [MMRV10, MvRV10] have investigated higher-order social cognition in hu-
mans by means of two experiments. They conducted a behavioral experiment to investigate how
well humans are able to apply first- and second-order reasoning. Even though behavioral measures
can shed some light on the usage of strategies (see e.g. [HZ02]), they are too crude to go into the
details of the actual reasoning steps. Johnson, Camerer, Sen, and Rymon’s study employed a novel
measure to capture those details [JCSR02]. In their sequential bargaining experiment, participants
had to bargain with one other player. The amount to bargain and the participant’s role in every

1We use the term ‘higher-order social cognition’ instead of ‘higher-order theory of mind’. The reason to do this is
that in the philosophical controversy between ‘theory-theory’ and ‘simulation-theory’, the term ‘theory of mind’ carries
the unwanted connotation that ‘theory-theory’ is preferred.
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round was hidden behind boxes. The participants had to click on a box to make elements of this
information visible. This allowed Johnson et al. to record the information regarding what the
participants select at a particular time within the bargaining (i.e., reasoning) process. A potential
problem of this measure is that participants might feel disinclined to repeatedly check sets of in-
formation elements and rather develop an artificial strategy that involves fewer mouse clicks but
puts a higher strain on working memory.

To avoid this problem, Meijering et al. choose to employ eye-tracking technology to investi-
gate the details of higher-order social reasoning. They are currently conducting an eye-tracking
study to investigate the reasoning steps during higher-order social reasoning [MvRV10]. The
findings of this experiment, together with the behavioral results, help to determine the cognitive
bounds on higher-order social reasoning. We give a short overview below and refer the reader to
the full papers for more details.

2.1.1 Marble Drop games

Meijering et al. [MMRV10] presented participants with strategic games to investigate higher-order
social reasoning. In these games, the path of a white marble that was about to drop could be
manipulated by removing trapdoors (Figure 2). Experience with world-physics allowed players to
see easily how the marble would run through a game, and which player could change the path of the
white marble at each decision point in the game. In other words, higher-order social reasoning was
embedded in a context that provided an insightful overview of the decisions and the consequences
of these decisions.

Earlier, Hedden and Zhang [HZ02] and Flobbe et al. [FVHK08] had also presented partic-
ipants with strategic games to investigate higher-order social reasoning, but the performance in
those games was far from optimal with approximately 60% - 70% correct. The participants could
either have had difficulties applying higher-order social reasoning or difficulties understanding the
games.

The matrix games (Figure 1) presented in [HZ02] were very abstract, which could have made
the games difficult to understand. Embedding the games in a context could have alleviated this
problem. Some studies have shown that non-social reasoning can be facilitated by embedding
it in a context. For example, for Wason’s selection task it has been stated that a social rule-
breaking context helps [WS71]; but see [MO91, SvL04]. More convincingly, subjects have been
shown to win the game of tic-tac-toe more easily than its equivalent, Number Scrabble [Mic67,
Sim79, Wei84]). The role of context and ecological validity in decision making also plays an
important role in the work on ‘simple heuristics that make us smart’ [GT99]. Higher-order social
reasoning, which seemed to be very demanding in matrix games, might also benefit from a context
embedding.

Flobbe et al. [FVHK08] found some indirect evidence of a facilitative effect of embedding
higher-order social reasoning in a context. However, the performance in their experiment was only
slightly better than that in Hedden and Zhang’s experiments. Flobbe et al. embedded Hedden and
Zhang’s matrix games in the context of a road game. The road games were played on a computer.
The participants were presented with roads that had three junctions, which corresponded with the
cell-transitions in the matrix games. At each junction either the participant or the computer decided
to move ahead (i.e., continue the game) if there was a higher payoff to attain further in the game,
or to turn right (i.e., end the game) if there was no higher payoff to attain further in the game. The
participant and the computer alternately took seat in the driver’s position; the one in the driver’s
seat made the decision.

The performance in the road games might not have been optimal because of the unnatural char-
acteristic of the context in these games. The participants (and the computer) alternately changed
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Figure 1: A schematic overview of a matrix game [HZ02]. The first number in each cell is Player
1’s payoff, the second Player 2’s payoff. The goal is to attain the highest possible payoff. Partici-
pants first had to predict what the other player would do at cell B before making a decision what to
do at cell A: to stay and stop the game, or to move to cell B. In this example, Player 1 would have
to predict that Player 2 will stay, because Player 1 will move to cell D if given a choice at cell C,
leading to a lower payoff for Player 2, namely 2 instead of 4. Consequently, the rational decision
for Player 1 is to move to cell B in the first move.

driver’s seat, which is not common practice in everyday life. Because this unnatural characteristic
necessitates some (additional) explanation, the context in the road games was not insightful at first
glance.

Meijering et al. [MMRV10] expected that the performance could be improved much further
by embedding higher-order social reasoning in their context of a marble game, which was more
intuitive and required less explanation. Importantly, these so-called Marble Drop games were
game-theoretically equivalent to the matrix games of [HZ02] and the road games of [FVHK08].
All game types have the same extensive form, namely that of the Centipede game [Ros81] (see
http://www.ai.rug.nl/ leendert/Equivalence.pdf). Consequently, an improvement in performance
can be attributed to a context effect.

In Marble Drop games, the payoffs are color-graded marbles, instead of payoff numbers. Mei-
jering et al. presented color-graded marbles instead of numbers to minimize the usage of numeric
strategies other than first- and second-order reasoning. The color-graded marbles can easily be
ranked according to preference, lighter marbles being less preferred than darker marbles. The
ranking makes it possible to have payoff structures similar to those in matrix and road games. The
sets of trapdoors in Marble Drop games correspond to the transitions, from one cell to another, in
matrix games [HZ02], and to the junctions in road games [FVHK08].

Figure 2 depicts example games of Marble Drop. The goal is to let the white marble end up
in the bin with the darkest color-graded marble of one’s own target color (orange or blue). Note
that, for illustrative purposes, the color-graded marbles are replaced with codes: a1 - a4 represent
the participant’s color-graded marbles and b1 - b4 represent the computer’s color-graded marbles
(which are of another color); 1 - 4 being light to dark grades. (See http://www.ai.rug.nl/

˜meijering/MarbleDrop.html for the original Marble Drop games.) The diagonal lines
represent the trapdoors.

In the example game in Figure 2a, participants need to remove the right trapdoor to attain
the darkest color-graded marble of their color (a2). The game in Figure 2a is a zero-order game,
because there is no other player to reason about. In first-order games (Figure 2b) participants
need to reason about another player, the computer. The computer is programmed to let the white
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Figure 2: A zero-order (a), first-order (b) and second-order (c) Marble Drop game. The partici-
pant’s payoffs are represented by a1 - a4, the computer’s by b1 - b4, both in increasing order of
value. The goal is to let the white marble end up in the bin with the highest attainable payoff. The
diagonal lines represent trapdoors. At the first set of trapdoors, the participant decides which of
both trapdoors to remove, at the second set the computer decides, and at the third set the participant
again decides. The dashed lines represent the trapdoors that both players should remove to attain
the highest payoff they can get.

marble end up in the bin with the darkest color-graded marble of its target color, which is different
from the participant’s target color. Participants need to reason about the computer, because the
computer’s decision at the second set of trapdoors affects at what bin a participant can end up.

In the example game in Figure 2b, if given a choice at the second set of trapdoors, the com-
puter will remove the left trapdoor, because its marble in the second bin (b2) is darker than its
marble in the third bin (b1). Consequently, the participant’s darkest marble in the third bin (a3)
is unattainable. The participant should therefore remove the left trapdoor (of the first set of trap-
doors), because the marble of their target color in the first bin (a2) is darker than the marble of
their target color in the second bin (a1).

In a second-order game (Figure 2c) there is a third set of trapdoors at which the participants
again decide which trapdoor to remove. They need to apply second-order reasoning, that is, rea-
son about what the computer, at the second set of trapdoors, thinks that they, at the third set of
trapdoors, think.

In Marble Drop games, half of the participants first had to predict what the opponent would
do (at the second set of trapdoors) before deciding what to do at the first set of trapdoors. The
participants were instructed that the opponent was rational, as were the participants in Hedden and
Zhang’s and Flobbe et al.’s experiments2.

Similar to the supporting role of scaffolding in the construction of a building, (instructional)
scaffolding provides a supporting structure to learn a new concept or skill that is beyond the in-
dependent efforts of a student [WBR76]. Asking participants to make a prediction about the
opponent before making a decision was thought to support second-order social reasoning, as de-
cisions should be based on predictions, and making a prediction involves thinking about what the
opponent thinks that the participant thinks. In matrix and road games, all the participants first had
to give their prediction of what the opponent would do before making their own decision. Mei-
jering et al. [MMRV10] set out to investigate whether embedding higher-order social reasoning
in a context that allows for an insightful overview of the decisions and the consequences of these
decisions might render such scaffolding obsolete.

2One group of participants in Hedden and Zhang’s experiments [HZ02] knew they were playing against a computer
whereas another group did not. Hedden and Zhang found no difference in performance for the two groups.
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2.2 Results

Twenty first-year Psychology students participated in exchange for course credit. The mean age
of the included participants (12 female) was 21.15 years (SE = 0.36).

Whereas the participants in the matrix games [HZ02], and the road games [FVHK08] had
difficulties applying second-order reasoning, in Marble Drop games [MMRV10], participants per-
formed almost at ceiling: in 94% of the games, participants correctly applied second-order reason-
ing. In the former two game types, the performance ranged between 60 - 70%.

Figure 3: Mean proportion of games in which participants correctly applied second-order reason-
ing, presented separately for the PD-D and D-D groups in the experimental manipulation block
and the test block. The standard errors are depicted above and below the means.

According to the results in [MMRV10], there is no need to scaffold second-order reasoning,
given that it is embedded in an ecologically valid context. The performance of the participants
that had to make a prediction before making a decision (the PD-D group) was slightly better in the
first half (the experimental manipulation block) of the experiment, but in the second half (the test
block), the participants that had to make a prediction (the PD-D group) and the participants that
did not (the D-D group) performed equally well (Figure 3).

In sum, [MMRV10] demonstrated that adolescents are able to apply second-order reasoning
if it is embedded in an ecologically valid context, and that such an embedding renders scaffold-
ing unnecessary. Currently, [MvRV10] are doing an eye-tracking study to elaborate the steps in
second-order reasoning during Marble Drop games. We will come back to this discussion in Sec-
tion 2.5.

2.3 Computational cognitive models of game reasoning

A different perspective, that focuses on cognitive validity in developing formal models, is that of a
cognitive architecture [And07]. Cognitive models developed within this framework aim to explain
certain aspects of cognition by assuming only general cognitive principles. However, the current
cognitive models that describe social interactions do not take higher-order strategic reasoning into
account. For example, cognitive models of simple games exist in which it is important to know
the opponent’s behavior [LWW00, WLB06]. These cognitive models demonstrate that declarative
memory is important in playing strategically. In [MV10] however, the authors are less interested
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in how people adapt their strategy to an opposing strategy, but rather in studying the cognitive
limitations of explicit second-order reasoning.

To provide a full model of second-order social reasoning, [MV10] implemented their model
in the cognitive architecture ACT-R [And07]. ACT-R aspires to explain all of cognition using
one theoretical framework. To achieve this, the heart of ACT-R consists of a procedural memory
system, which contains condition-action pairs known as production rules. Besides the procedural
module, ACT-R has designated modules for specific types of information. For example, the visual
module processes visual information, whereas the declarative memory module processes declar-
ative or factual information. Each module has a buffer that may contain one unit of information
at a time. If the current contents of all buffers in the system match the conditions of a particular
production rule, that rule fires and its actions are executed. Each action may refer to an operation
in one of the modules.

Two modules of ACT-R deserve extra attention in the light of the model of second-order social
reasoning in [MV10]: the declarative memory module and the problem state module. The declar-
ative memory module represents long-term memory and stores information encoded in so-called
chunks (i.e., knowledge structures). Each chunk in declarative memory has an activation value that
determines the speed and success of its retrieval. Whenever a chunk is used, the activation value
of that chunk increases. As the activation value increases, the probability of retrieval increases and
the latency of retrieval decreases. Anderson [And07] provided a formalization of the mechanism
that produces the relationship between the probability and speed of retrieval. If the activation value
drops below a certain minimal value (the retrieval threshold), the related information is no longer
accessible. In that case, the system will report a retrieval failure after a constant time factor. If the
activation value is above the retrieval threshold, the information is accessible. Then, the higher
the activation value, the faster the retrieval will be. As soon as a chunk is retrieved, it is put into
the retrieval buffer. Each ACT-R module has a buffer that may contain one chunk at a time. On a
functional level of description, the chunks that are stored in the various buffers are the knowledge
structures the cognitive architecture is aware of.

The problem state module (sometimes referred to as the imaginal module) contains a buffer in
which information can be temporarily stored. Typically, this information contains a subsolution to
the problem at hand. In the case of a social reasoning task, this may be the outcome of a reasoning
step that will be relevant in subsequent reasoning. Storing information in the problem state buffer
is associated with a time cost (typically 200ms). The model that we present in Section 2.4 relies on
the combination of the declarative module and the problem state buffer. That is, the model retrieves
relevant information from memory and moves that information to the problem state buffer if new
information is retrieved from memory that needs to be stored in the retrieval buffer.

2.4 A computational cognitive model of the Marble drop game

The ACT-R model proposed by [MV10] follows a backward induction strategy to predict the
opponent’s moves further on in the game. Hedden and Zhang [HZ02] provide a decision tree
analysis of this process for their matrix version of the game. The model has knowledge on how
to solve Marble Drop games for all possible distributions of payoffs over the bins of the marble
run game. That is, the model stores chunks containing information on which payoffs to compare
at each step. In addition, chunks representing the magnitudes of the payoff shades are stored
in declarative memory, as well as chunks representing the location of the payoffs on the screen.
Finally, chunks representing ordinal information are stored in declarative memory. This means that
the model contains knowledge on the relative magnitudes of each combination of payoff values.

Because Van Maanen et al. implemented the backward induction strategy, the model starts a
second-order game by comparing its own payoff values in bins 3 and 4. First, the model retrieves
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Figure 4: Flow-chart of the ACT-R model for solving Marble Drop game (figure from [MV10])

from declarative memory where the first of two payoffs is located on the screen (i.e., bin 4). If
the model retrieves the location of bin 4, it attends bin 4 and tries to retrieve the value of the
observed payoff. At the same time, the model frees the retrieval buffer for the upcoming payoff
value and stores a chunk in the problem state buffer to represent the comparison that is currently
made. Next, the model retrieves the location information for the other of the two payoffs that are
currently compared. Again, the model frees the retrieval buffer (for the upcoming payoff value)
and the payoff value of the first of two payoffs is stored in the problem state buffer. The problem
state buffer can hold only one chunk at the same time and consequently the chunk that represents
the current comparison is cleared from the problem state buffer. The location of the other payoff
(i.e. bin 3) is attended and the corresponding value is retrieved from memory. Finally, the two
payoff values are compared. The model tries to retrieve from declarative memory a chunk with
the ordinal representation of both payoff values. Based on the outcome of this retrieval the model
retrieves a next comparison.

For example, if the model’s payoff value in bin 4 is greater than the model’s payoff value
in bin 3, the model will next compare the opponent’s payoffs in bins 4 and 2. If the model’s
payoff value in bin 4 was less than the model’s payoff value in bin 3, the model will next compare
the opponent’s payoffs in bins 3 and 2. The model continues to compare payoffs following the
decision tree [HZ02] until it reaches the root of this tree. There, it decides its action based on the
final comparison.

The model was tested against data from a Marble Drop task described by [MMRV10]. In the
experiment the participants were asked to solve zero-order, first-order, and second-order Marble
Drop problems. In all these conditions, participants were instructed to indicate the optimal first
move as quickly as possible. That is, even in second-order games participants had to make only
one choice. However, because the opponent always played rationally (and the participants were
informed of this), there was always only one optimal choice.

As illustrated by figure 5, it turned out that the fit on the response time is very good (R2 =
1.0; RMSE = 0.42 s). The fit on the accuracy data is slightly less (RMSE = 0.067, R2 = 0.2),
but this may be attributed to lack of data, making the estimated means less reliable. The model
shows a very high proportion of correct responses, similar to the data of [MMRV10] (but contrary
to [FVHK08]).

As the order of theMarble Drop reasoning problems increases, the model requires more time to
respond. This is because more comparisons have to be made, and therefore more information has
to be retrieved from declarative memory and stored in the problem state buffer. These steps take
time, increasing the response time for higher-order reasoning problems. Because of the similar
behavioral patterns between model and data, this study supports the view that participants in this
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Figure 5: Model fit to data from [MMRV10]. Left: response time. Right: Accuracy (figure
from [MV10]

task follow the same reasoning steps as the model does. That is, the hypothesis is supported that
participants in a social reasoning game follow a decision tree to make the correct decision.

Another good validation of the model is to compare the sequence of spatial locations it attends
with actual eye movements of participants during second-order social reasoning. Sequences of
eye-movements (and more generally actions) help to determine the cognitive strategies involved
in a task, and the similarity between the predicted and observed eye movements are indicative of
the model’s validity [SA01].

2.5 Eye movements during second-order reasoning

Game-theoretically, participants are expected to use backward induction [OR94, Ros81]. In Mar-
ble Drop games, this would yield eye movements from right to left. However, the preliminary
results from the eye-tracking study of [MvRV10] show opposite patterns: initially, participants
seem to reason from left to right; they fixate at bins 1, 2, 3, and 4, in that order. Also, Figure 6
clearly shows that at position 1, the mean proportion of fixations is higher in bins 1 and 2, which
correspond with the areas of interest (AOIs) A and B rather than in bins 3 and 4, which correspond
with the AOIs C and D.

Accordingly, second-order reasoning seems to be context-driven. There is an evident left to
right orientation in the Marble Drop context, as the white marble will run from left to right through
a game for as long as both players continue the game, and the eye movements seem to follow that
orientation.

Another finding that corroborates the idea of context-driven reasoning is that the proportion
trends differ for some of the payoff structures (Figure 3). If participants had used backward induc-
tion, the eye movements would not vary, and occur independent of payoff structure. Differential
proportion trends do fit context-driven reasoning, as it is susceptible to a bottom-up influence of
orientation (left to right) and probably also features such as color-saliency (i.e., payoff value).

After an initial exploration of the context, participants will have to make some additional,
backward comparisons if the intermediate reasoning steps have not yielded an optimal outcome
(i.e., there is a darker, attainable marble in another bin than the bin that is the outcome of the last
decision). Consider the payoff structure 3:1 (bin 1), 4:3 (bin 2), 1:2 (bin 3), and 2:4 (bin 4), with
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Figure 6: Mean proportion of fixations in bins 1 - 4, which correspond with the areas of interest
(AOIs ) A - D, as a function of position in the fixation sequence. The proportion trends differ for
games in which a rational opponent would end the game and a rational participant would continue
the game (a) and games in which both players would continue the game (b).

the first payoff value that of the participant and the second that of the opponent. A participant
could reason forwardly: “I would go right (i.e., remove the right trapdoor) if the opponent ends
the game at bin 2 (i.e., removes the left trapdoor)” and then “the opponent would end the game if
I do not to continue the game from bin 3 to bin 4”. However, as the reasoning continues with “I
would go to the right from bin 3 to bin 4”, a participant would have to reason backwards: “thus
the opponent will not stop the game at bin 2” and therefore “if the value of my first payoff (at bin
1) is higher than that of my last payoff (at bin 4) I will stop the game, otherwise I will continue the
game”.

3 A logical study

Following the lines of work in [RS08, PRS09], we now propose a language specifying strategies of
players. This provides an elegant way to describe the empirical reasoning of the participants of the
Marble Drop game (cf. Section 2.1.1), that has been found by the eye-tracking study in [MvRV10].

The basic ingredient that is needed for a logical system to model empirical reasoning of human
agents, is to forego the usual assumption of idealised agents, but rather consider agents with limited
computational and reasoning abilities. Though players with limited rationality are much more
realistic to consider, for the time being, we only focus on perfectly rational players, whose only
goal is to win the game. To model strategic reasoning of such resource-bounded players, we should
note that these players are in general forced to strategize locally by selecting what part of the past
history they choose to carry in their memory, and to what extent they can look ahead in their
analysis. We consider the notion of partial strategies (formalised below) as a way to model such
resource-bounded strategic reasoning.

3.1 Preliminaries

In this subsection, representations for extensive form games, game trees and strategies are pre-
sented, similar to those in [RS08, PRS09]. On the basis of these notations, reasoning strategies
can be formalized in Subsection 3.2.
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3.1.1 Extensive form games

Extensive form games are a natural model for representing finite games in an explicit manner. In
this model, the game is represented as a finite tree where the nodes of the tree correspond to the
game positions and edges correspond to moves of players. For this logical study, we will focus on
game forms, and not on the games themselves, which come equipped with players’ payoffs at the
leaf nodes of the games. We present the formal definition below.

Let N denote the set of players; we use i to range over this set. For the time being, we restrict
our attention to two player games, i.e. we take N � �1, 2�. We often use the notation i and ı to
denote the players where ı � 2 when i � 1 and ı � 1 when i � 2. Let Σ be a finite set of action
symbols representing moves of players, we let a, b range over Σ. For a setX and a finite sequence
ρ � x1x2 . . . xm � X�, let last�ρ� � xm denote the last element in this sequence.

3.1.2 Game trees

Let T � �S,�, s0� be a tree rooted at s0 on the set of vertices S and � : �S � Σ� � S be a
partial function specifying the edges of the tree. The tree T is said to be finite if S is a finite set.

For a node s � S, let
�
s� �s� � S � s

a
�s� for some a � Σ�. A node s is called a leaf node (or

terminal node) if
�
s� �.

An extensive form game tree is a pair T � �T, �λ� where T � �S,�, s0� is a tree. The
set S denotes the set of game positions with s0 being the initial game position. The edge function
� specifies the moves enabled at a game position and the turn function �λ : S � N associates
each game position with a player. Technically, we need player labelling only at the non-leaf nodes.
However, for the sake of uniform presentation, we do not distinguish between leaf nodes and non-
leaf nodes as far as player labelling is concerned. An extensive form game tree T � �T, �λ� is said
to be finite if T is finite. For i � N , let Si � �s � �λ�s� � i� and let frontier�T� denote the set of
all leaf nodes of T .

A play in the game T starts by placing a token on s0 and proceeds as follows: at any stage, if
the token is at a position s and �λ�s� � i then player i picks an action which is enabled for her at s,

and the token is moved to s� where s
a
�s�. Formally a play in T is simply a path ρ : s0a0s1 � � � in

T such that for all j � 0, sj�1
aj
�sj . Let Plays�T � denote the set of all plays in the game tree T .

3.1.3 Strategies

A strategy for player i is a function µi which specifies a move at every game position of the
player, i.e. µi : Si � Σ. For i � N , we use the notation µi to denote strategies of player i and
τ ı to denote strategies of player ı. By abuse of notation, we will drop the superscripts when the
context is clear and follow the convention that µ represents strategies of player i and τ represents
strategies of ı. A strategy µ can also be viewed as a subtree of T where for each node belonging to
player i, there is a unique outgoing edge and for nodes belonging to player ı, every enabled move
is included. Formally we define the strategy tree as follows: For i � N and a player i’s strategy
µ : Si � Σ, the strategy tree Tµ � �Sµ,�µ, s0, �λµ� associated with µ is the least subtree of T
satisfying the following property:

• s0 � Sµ

• For any node s � Sµ,

– if �λ�s� � i then there exists a unique s� � Sµ and action a such that s
a
�µs

�.

– if �λ�s� � i then for all s� such that s
a
�s�, we have s

a
�µs

�.
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LetΩi�T � denote the set of all strategies for player i in the extensive form game treeT . A play
ρ : s0a0s1 � � � is said to be consistent with µ if for all j � 0 we have sj � Si implies µ�sj� � aj .
A strategy profile �µ, τ� consists of a pair of strategies, one for each player.

3.1.4 Partial strategies

A partial strategy for player i is a partial function σi which specifies a move at some (and, not all)
game positions of the player, i.e. σi : Si � Σ. Let Dσi denote the domain of the partial function
σi. For i � N , we use the notation σi to denote partial strategies of player i and πı to denote partial
strategies of player ı. When the context is clear, we refrain from using the superscripts. A partial
strategy σ can also be viewed as a subtree of T where for some nodes belonging to player i, there
is a unique outgoing edge and for other nodes belonging to player i as well as nodes belonging
to player ı, every enabled move is included. Formally we define a partial strategy tree as follows:
For i � N and a player i (partial) strategy σ : Si � Σ the strategy tree Tσ � �Sσ,�σ, s0, �λσ�
associated with σ is the least subtree of T satisfying the following property:

• s0 � Sµ

• For any node s � Sµ,

– if �λ�s� � i and s � Dσ then there exists a unique s
� � Sµ and action a such that s

a
�µs

�.

– if (�λ�s� � i and s � Dσ) or �λ�s� � i then for all s� such that s
a
�s�, we have s

a
�µs

�.

A partial strategy can be viewed as a set of total strategies. Given a partial strategy tree Tσ for
a partial strategy σ for player i, a set of trees �Tσ of total strategies can be defined as follows. A
tree T � �S,�, s0, �λ� � �Tσ if and only if

• if s � T then for all s� �
�
s , s� � T implies s� � Tσ

• if �λ�s� � i then there exists a unique s� � Sσ and action a such that s
a
�σs

�.

Note that any total strategy is also viewed as a partial strategy, where the corresponding set of
total strategies becomes a singleton set.

3.2 Strategy specifications

We now propose a syntax for specifying partial strategies and their compositions in a structural
manner involving simultaneous recursion. The main case specifies, for a player, what conditions
she tests for before making a move. The pre-condition for the move depends on observables that
hold at the current game position as well as some simple finite past-time conditions and some
finite look-ahead that each player can perform in terms of the structure of the game tree. Both the
past-time and future conditions may involve some strategies that were or could be enforced by the
players.

Below, for any countable set X , let BPF �X� (the boolean, past and future combinations of
the members of X) be sets of formulas given by the following syntax:

BPF �X� :� x � X � �ψ � ψ1 � ψ2 � �a��ψ � �a��ψ.

where a � Σ.
Formulas in BPF �X� are interpreted at game positions. The formula �a��ψ (respectively,

�a��ψ) talks about one step in the future (respectively, past). It asserts the existence of an a
edge after (respectively, before) which ψ holds. Note that future (past) time assertions up to any
bounded depth can be coded by iteration of the corresponding constructs. The “time free” fragment
of BPF �X� is formed by the boolean formulas over X . We denote this fragment by Bool�X�.
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3.2.1 Syntax

Let P i � �pi
0, p

i
1, . . .� be a countable set of observables for i � N and P �

�
i�N P i. The syntax

of strategy specifications is given by:

Strat i�P i� :� �ψ �� a�i � η1 � η2 � η1 � η2.

where ψ � BPF �P i�.
The idea is to use the above constructs to specify properties of strategies as well as to combine

them to describe a play of the game. For instance the interpretation of a player i’s specification
�p �� a�i where p � P i, is to choose move “a” at every game position belonging to player i where
p holds. At positions where p does not hold, the strategy is allowed to choose any enabled move.
The strategy specification η1 � η2 says that the strategy of player i conforms to the specification
η1 or η2. The construct η1 � η2 says that the strategy conforms to specifications η1 and η2.

Let Σ � �a1, . . . , am�, we also make use of the following abbreviation.

• null i � �� �� a1� � � � � � �� �� am�.

It will be clear from the semantics (which is defined shortly) that any strategy of player i conforms
to null i, or in other words this is an empty specification. The empty specification is particularly
useful for assertions of the form “there exists a strategy” where the property of the strategy is not
of any relevance.

3.2.2 Semantics

Let M � �T , V � where T � �S,�, s0, �λ� is an extensive form game tree and V : S � 2P a
valuation function. The truth of a formula ψ � BPF �P � at the state s, denoted M, s �� ψ, is
defined as follows:

• M, s �� p iff p � V �s�.

• M, s �� �ψ iffM, s ��� ψ.

• M, s �� ψ1 � ψ2 iffM, s �� ψ1 orM, s �� ψ2.

• M, s �� �a��ψ iff there exists a s� such that s
a
�s� andM, s� �� ψ.

• M, s �� �a��ψ iff there exists a s� such that s�
a
�s andM, s� �� ψ.

Strategy specifications are interpreted on strategy trees of T . We assume the presence of
two special propositions turn1 and turn2 that specify which player’s turn it is to move, i.e. the
valuation function satisfies the property

• for all i � N , turni � V �s� iff λ�s� � i.

One more special proposition root is assumed to indicate the root of the game tree, that is the
starting node of the game. The valuation function satisfies the property

• root � V �s� iff s � s0.

Recall that a partial strategy σ of player i can be viewed as a set of total strategies of the player
and each such strategy is a subtree of T .

The semantics of the strategy specifications are given as follows. Given the game tree T �
�S,�, s0, �λ� and a partial strategy specification η � Strat i�P i�, we define a function ���T :

Strat i�P i� � 2Ωi�T �, where each partial strategy specification is associated with a set of total
strategy trees.

For any η � Strat i�P i�, ���T is defined inductively as follows:
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• ��ψ �� a�i�T � Υ � 2Ωi�T � satisfying: µ � Υ iff µ satisfies the condition that, if s � Sµ is
a player i node thenM, s �� ψ implies outµ�s� � a.

• �η1 � η2�T � �η1�T � �η2�T

• �η1 � η2�T � �η1�T � �η2�T

Above, outµ�s� is the unique outgoing edge in µ at s. Recall that s is a player i node and therefore
by definition there is a unique outgoing edge at s.

3.2.3 Response and future planning of players

Modelling a player’s response to the opponent’s play is one of the basic notions that we need to
deal with while describing reasoning in games. To this end, we introduce one more construct
in our language of pre-conditions BPF �X�. The idea is to model the phenomenon that if player ı
has played according to π in the history of the game, player i responds following some strategy σ,
say. We may also describe that since player ı may play according to π at a certain future point of
the game (if it so happens that the game reaches that point), in anticipation to which player i can
now play according to σ.

To model such scenarios we introduce the formula ı?ζ in the syntax ofBPF �P i�. The intuitive
reading of the formula is “player ı is playing according to a partial strategy conforming to the
specification ζ at the current stage of the game”, and the semantics is given by,

• M, s �� ı?ζ iff �T � such that T � � �ζ�T and s � T �.

Note that this involves simultaneous recursion in the definitions of BPF �X� and Strat i�P i�.
The framework introduced by Ramanujam and Simon [RS08] has a more simpler version of
BPF �P i�, where only past formulas are considered, but they introduce an additional construct
in the syntax of strategy specifications, viz. π � σ, which says that at any node player i plays
according to the strategy specification σ if on the history of the play, all the moves made by ı
conforms to π. The introduction of the formula ı?ζ in the language of BPF �P i� empowers us to
model notions expressed by the specification π � σ. We leave the detailed technicalities involv-
ing our proposal as well as the comparative discussion with the related framework of [RS08] for
future work.

3.3 Marble Drop game: a test case

We are now well-equipped to express the empirical reasoning performed by the participants of
the Marble drop game described in Section 2.1.1. The game form is structurally equivalent to the
Centipede game tree given in Figure 7.

Using the strategy specification language introduced in Section 3.2, we express the different
reasoning methods of participants that have been validated by the experiments described in Section
2.5. The reasoning is carried out by an outside agent (participant) regarding the question:

How would the players 1 and 2 play in the game, under the assumptions that both
players are rational (thus will try to maximize their utility), and that there is common
knowledge of rationality among the players.

In particular, we encode three different types of reasoning. Note that we are not talking about
why the players reason in some way, i.e. what considerations lead them to such reasoning, (e.g. in
the marble drop game, the darker marble may lie at the first bin itself or may be at the third bin)
but rather how they can go about playing the game. Combining the “why” and “how” at this level
is something we leave for future work:

15

29



s, 1

l

����
��

��
�� r

����
��

��
��

o t, 2

l

����
��

��
��

�
r

����
��

��
��

o u, 1
l

����������
r

���
��

��
��

�

o o

Figure 7: Centipede game tree

• forward reasoning: ��1?�root�turn1 �� r�1��r��root�turn2 �� r�2, �2?��r��root�
turn2 �� r�2 � �r���r��root � turn1 �� l�1�.

if player 1 makes the move r at the root node, player 2 will respond with playing
r, and if player 2 behaves like that, player 1 would play l.

• backward reasoning: ��1?��r���r��root�turn1 �� r�1�turn2 �� r�2, �2?��r��root�
turn2 �� r�2 � root � turn1 �� l�1�.

if player 1 makes the move r at the u node (if the game reaches there) , player 2
will play r when her turn comes, and if player 2 behaves like that, player 1 would
play l at the start node.

• combined reasoning: ��root � turn1 �� r�1, �1?��r���r��root � turn1 �� r�1 �
�r��root � turn2 �� r�2�.

player 1 would play l at the root node, and then player 2 will play r after that,
since if the game reaches the u node, player 1 will play r.

The partial strategy profiles of the two players describe in each case what sort of reasoning
players 1 and 2 might perform in the course of the game so as to gain maximum benefits. As
apparent from the descriptions of such reasoning, this really captures the arbitrary as well as me-
thodical reasoning that humans can do when confronted with such games, as exemplified (to a
certain extent) in Section 2.5. In fact, the combined reasoning suggests that player 1 might make
an arbitrary move at the beginning, which can often be the case in reality. As found in the eye-
tracking study of [MvRV10], the human participants follow different procedures of reasoning (in
particular, first a forward scan of the context, followed if necessary by backward reasoning), rather
than the backward induction strategy prescribed by game theorists. These reasoning procedures
are adequately described by the (partial) strategy specification language proposed in Section 3.2.
This formal representation can provide the building blocks for a better cognitive model based on
the ACT-R architecture, in order to construct precise computational cognitive models for the varied
thought processes of human agents.

4 Discussion and future work

To put this first attempt at bridge-building between logic and experimental work on games and
strategies into perspective, it may be fruitful to keep in mind the three levels of inquiry for cognitive
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science that David Marr characterized [Mar82]:

• identification of the information-processing agents task as an input - output function: the
computational level;

• specification of an algorithm which computes the function: the algorithmic level;

• physical/neural implementation of the algorithm specified: the implementation level.

Researchers aiming to answer the question what logical theories may contribute to the study
of resource-bounded strategic reasoning could be disappointed when it turns out that logic is not
the best vehicle to describe such reasoning at the implementation level. Still, logic surely makes
a contribution at Marr’s first computational level by providing a precise specification language
for cognitive processes. Quite possibly, logic may also have a fruitful role to play in theories of
resource-bounded strategic reasoning at the algorithmic level, in the construction of computational
cognitive models in ACT-R. A first step in this direction was made in the previous subsection.

Future work would be to distinguish several possible reasoning strategies for resource-bounded
agents in games. For example, Van Maanen et al. propose a new ACT-R model that predicts how
humans perform in experiments with a dual task done in parallel to theMarble Drop game [MV10].
That ACT-R model presumes a reasoning strategy following the decision tree analysis of Hedden
and Zhang [HZ02]. It would be interesting to also test the predictions of alternative models that
correspond to different reasoning strategies, for example, the forward, backward and combined
ones introduced in the previous section.

It would also be interesting to define reasoning strategies for games that consist of many more
steps and construct corresponding ACT-R models to drive new experimental work.

The great advantage of coupling a strategy logic to ACT-R is that ACT-R already implements
very precise, experimentally validated theories about human memory and cognitive bounds on
reasoning processes. Thus, there is no need to add (possibly arbitrary) resource bounds in the
logical language. The combined strengths of logic, coupled with cognitive modeling and ACT-R,
will hopefully lead to an improved understanding of human resource-bounded reasoning in games.

From the logical perspective, providing a sound and complete system for strategic reasoning
that models empirical human reasoning will be the essential next step. We would need to take
players’ preferences into consideration as well as intentions of other players. Evidently, reason-
ing about intentions is essential for forward induction and solution concepts like extensive-form
rationalizability and refinements of sequential equilibrium.
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