
Topic-based Index Partitions for
Efficient and Effective Selective Search

Anagha Kulkarni and Jamie Callan
Language Technologies Institute

School of Computer Science
Carnegie Mellon University

5000 Forbes Ave, Pittsburgh, PA 15213
anaghak, callan@cs.cmu.edu

ABSTRACT
Indexes for large collections are often divided into shards
that are distributed across multiple computers and searched
in parallel to provide rapid interactive search. Typically, all
index shards are searched for each query. This paper inves-
tigates document allocation policies that permit searching
only a few shards for each query (selective search) without
sacrificing search quality. Three types of allocation poli-
cies (random, source-based and topic-based) are studied. K-
means clustering is used to create topic-based shards. We
manage the computational cost of applying these techniques
to large datasets by defining topics on a subset of the collec-
tion. Experiments with three large collections demonstrate
that selective search using topic-based shards reduces search
costs by at least an order of magnitude without reducing
search accuracy.

Categories and Subject Descriptors
H.3 [INFORMATION STORAGE AND RETRIEVAL]:
Information Search and Retrieval

Keywords
selective searching, federated search, document clustering

1. INTRODUCTION
Traditionally, searching a collection of documents was a

serial task accomplished using a single central index. How-
ever, as the document collections increased in size, it be-
came necessary and a common practice to partition collec-
tions into multiple disjoint indexes (shards) [2, 1]. These
distributed indexes facilitate parallelization of search which
in turn brings down the query processing time. However,
even in this architecture the cost associated with searching
large-scale collections is high. For organizations with mod-
est resources this becomes a challenge and potentially limits
the scale of the collections that they can experiment with.

Copyright c⃝ 2010 for the individual papers by the papers’ authors. Copy-
ing permitted only for private and academic purposes. This volume is pub-
lished and copyrighted by its editors.
LSDS-IR Workshop, July 2010. Geneva, Switzerland.

Our goal is to organize large collections into shards such
that the shards facilitate a search setup where only a subset
of the shards are searched for any query (selective search)
and yet provide a performance that is at par with that pro-
vided by exhaustive search. The amount of work required
per query is naturally much lower in the selective search
setup and thus it does not necessitate availability of large
computing clusters to work with large document collections.

We experiment with three document allocation policies
random, source-based and topic-based to partition the col-
lections into shards (Section 3). One of the main challenges
that we tackle in this work is to scale the organization poli-
cies to be able to process large collections. Some of the above
policies are naturally efficient but for others we propose an
approximation technique that is efficient and can parallelize
the partitioning process. We also establish that the approxi-
mation would not lead to any significant loss in effectiveness.
The other contribution of this work is the introduction of a
simple yet more accurate metric for measuring the search
cost incurred for each query (Section 6.2).

2. RELATED WORK
There have been few other studies that have looked at par-

titioning of collections into shards. Xu and Croft [16] used a
two-pass K-means clustering algorithm and a KL-divergence
distance metric to organize a collection into 100 topical clus-
ters. They also experiment with source-based organization
and demonstrate that selective search performed as well as
exhaustive search, and much better than a source-based or-
ganization. The datasets used in this work are small and
thus it not clear whether the document organization algo-
rithms employed in this work would scale and be effective
for large-scale datasets such as the ones used in our work.
Secondly, it has been a common practice in previous work
to compute search cost by looking at the number of shards
searched for a query which is what is used by Xu and Croft.
However, in most setups the shards are of non-uniform sizes
and thus this formulation of search cost does not enable an
accurate analysis of the trade-off between search cost and
accuracy. We remedy this by factoring in the individual
shard sizes into the search cost formulation.

Larkey et al. [7] studied selective search on a dataset com-
posed of over a million US Patents documents. The dataset
was divided into 401 topical units using manually assigned
patent categories, and into 401 chronological units using
dates. Selective search was more effective using the topi-
cal organization than the chronological organization.

8th Workshop on Large-Scale Distributed Systems for Information Retrieval (LSDS-IR’10)

19

Puppin et al. [12] used query logs to organize a docu-
ment collection into multiple shards. The query log covered
a period of time when exhaustive search was used for each
query. These training queries and the documents that they
retrieved were co-clustered to generate a set of query clusters
and a set of corresponding 16 document clusters. Documents
that could not be clustered because they were not retrieved
by any query (50% of the dataset) were put in a 17th (fall-
back) cluster. Selective search using shards defined by these
clusters was found to be more effective than selective search
using shards that were defined randomly. The number of
shards is relatively very small for a large dataset and the
distribution of documents across the shards using this ap-
proach is skewed. The inability of the algorithm to partition
documents that have not appeared in the query log make this
technique’s performance highly dependent on the query-log
used for the partitioning.

Once the collection has been organized into shards, de-
ciding which index shards to search from the given set of
shards is a type of resource selection problem [3]. In prior
research [4, 14, 13] , the resources were usually indepen-
dent search engines that might be uncooperative. Selec-
tively searching the shards of a large index is however an
especially cooperative federated search problem where the
federated system can define the resources (shards) and ex-
pect complete support from them.

3. DOCUMENT ALLOCATION POLICIES
Our goal is to investigate document allocation policies

that are effective, scalable, and applicable in both research
and commercial environments. Although we recognize the
considerable value of query logs and well-defined categories,
they are not available in all environments, thus our research
assume access only to the document contents to develop the
allocation techniques. This work studies random, source-
based, and topic-based allocation policies.

3.1 Random Document Allocation
The random allocation policy assigns each document to

one of the shards at random with equal probability. One
might not expect a random policy to be effective, but it was
a baseline in prior research [12]. Our experimental results
show that for some of the datasets random allocation is more
effective than one might expect.

3.2 Source-based Document Allocation
Our datasets are all from the Web. The source-based

policy uses document URLs to define shards. The docu-
ment collection is sorted based on document URLs, which
arranges documents from the same website consecutively.
Groups of M/K consecutive documents are assigned to each
shard (M : total number of documents in the collection, K:
number of shards). Source-based allocation was used as a
baseline in prior research [16].

3.3 Topic-based Document Allocation
The Cluster Hypothesis states that closely associated doc-

uments tend to be relevant to the same request [15]. Thus if
the collection is organized such that each shard contains a
similar set of documents, then it is likely that the relevant
documents for any given query will be concentrated in just
a few shards. Cluster-based and category-based document
allocation policies were effective in prior research [16, 12, 7].

We adapt K-means clustering [8] such that it would scale
to large collections and thus provide an efficient approach to
topical sharding of datasets.

Typically, a clustering algorithm is applied to the entire
dataset in order to generate clusters. Although the computa-
tional complexity of the K-means algorithm [8] is only linear
in the number of documents (M), applying this algorithm
to large collections is still computationally expensive. Thus,
we sample a subset (S) of documents from the collection
(|S| << |M |), using uniform sampling without replacement.
The standard K-means clustering algorithm is applied to S
and a set of K clusters is generated. The remaining doc-
uments in the collection (M − S) are then projected onto
the space defined by the K clusters. Note that the process
of assigning the remaining documents in the collection to
the clusters is parallelizable. Using this methodology large
collections can be efficiently partitioned into shards.

We use the negative Kullback-Liebler divergence (Equa-
tion 1) to compute the similarity between the unigram
language model of a document D (pd(w)), and that of a
cluster centroid Ci (pi

c(w)). (Please refer to [11] for the
derivation.) Using maximum likelihood estimation (MLE),
the cluster centroid language model computes to, pi

c(w) =
c(w, Ci)/

∑
w′ c(w′, Ci) where c(w, Ci) is the occurrence

count of w in Ci. Following Zhai and Lafferty [17], we
estimate pd(w) using MLE with Jelinek-Mercer smooth-
ing which gives pd(w) = (1 − λ) c(w, D)/

∑
w′ c(w′, D) +

λ pB(w). The term pB(w) is the probability of the term w
in the background model. The background model is an av-
erage of the K centroid models. Note that the background
model plays the role of inverse document frequency for the
term w.

KL(Ci||D) =
∑

w∈Ci
∩

D

pi
c(w) log

pd(w)

λ pB(w)
(1)

We found this version of KL-divergence to be more effective
than the variant used by Xu and Croft [16].

4. SHARD SELECTION
After index shards are defined, a resource selection algo-

rithm is used to determine which shards to search for each
query. Our research used ReDDE [14], a widely used algo-
rithm that prioritizes shards by estimating a query specific
distribution of relevant documents across shards. To this
end, a centralized sample index, CS, is created, one that
combines samples from every shard R. For each query, a
retrieval from the central sample index is performed and the
top N documents are assumed to be relevant. If nR is the
number of documents in N that are mapped to shard R then
a score sR for each R is computed as sR = nR ∗ wR, where
the shard weight wR is the ratio of size of the shard |R| and
the size of its sample. The shard scores sR are then nor-
malized to obtain a valid probability distribution which is
used to rank the shards. In this work, we used a variation
of ReDDE, which produced better results in preliminary ex-
periments. Rather than weight each retrieved sampled doc-
ument equally, we use the document score assigned by the
retrieval algorithm to weight the document.

Selective search of index shards is a cooperative environ-
ment where global statistics of each shard are readily avail-
able. Thus merging the document rankings generated by
searching the top ranked shards is straightforward.

LSDS-IR’10 Topic-based Index Partitions for Efficient and Effective Selective Search

20

Table 1: Datasets and Query Sets
Number Number Vocabulary Avg Query Avg Avg Number

of of Words Size Doc Set Qry of Rel Docs
Dataset Documents (billion) (million) Len Len Per Qry
Gov2 25,205,179 23.9 39.2 949 701-850 3.1 179 (+/- 149)
Clue-CatB 50,220,423 46.1 96.1 918 TREC09:1-50 2.1 80 (+/- 49)
Clue-CatA-Eng 503,903,810 381.3 1,226.3 757 TREC09:1-50 2.1 114 (+/- 64)

5. DATASETS
Three large datasets were used in this work: Gov2, the

CategoryB portion of ClueWeb09 (Clue-CatB) and the En-
glish portion of ClueWeb09 (Clue-CatA-Eng). The sum-
mary statistics of these datasets are given in Table 1.

The Gov2 TREC corpus [5] consists of 25 million docu-
ments from the US government domains, such as .gov and
.us, and also from government related websites, such as,
www.ncgov.com and www.youroklahoma.com 1. TREC top-
ics 701-850 were used for evaluation with this dataset. The
statistics for these queries are provided in the Table 1.

The ClueWeb09 is a newer dataset that consists of 1 billion
web pages that were crawled between January and February
2009. Out of the 10 languages present in the dataset we use
the English portion in this work. The Clue-CatB dataset
consists of the first 50 million English pages and the Clue-
CatA-Eng consists of all the English pages in the dataset
(over 500 million). For evaluation with both Clue-CatB and
Clue-CatA-Eng datasets we use the 50 queries that were
used in the Web track at TREC 2009.

6. EXPERIMENTAL METHODOLOGY
The three datasets were converted to Indri2 indexes after

stoplisting and stemming with the Krovetz stemmer.

6.1 Sample size and OOV terms
Using a subset instead of the entire collection to learn the

clusters reduces the computational cost however it also in-
troduces the issue of out-of-vocabulary (OOV) terms during
inference. Depending upon the size of the subset (S) that
was used for learning, the remaining documents in the col-
lection are bound to contain terms that were not observed
in S and thus are absent from the learned clusters or topic
models. In such a situation, inference must proceed using
the seen terms and ignore the OOV terms. However, the
inference quality can potentially degrade because of the dis-
counting of the OOV terms. It is important to select a
sample size that leads to a small percentage of OOV terms
per document.

Figure 1 (x-axis in log domain) demonstrates that the av-
erage percentage of OOV terms per document is low even for
small sample sizes. Note that the drop in the average values
isn’t linear in the sample size; as more documents are seen,
the percentage of unseen terms does not decrease propor-
tionately. Heaps’ law [6] offers an explanation for this trend
– when examining a corpus, the rate at which vocabulary is
discovered tapers off as the examination continues. Thus af-
ter a certain point increasing the sample size has little effect
on the percentage of OOV terms per document.

We leverage these observations to make our experimental

1http://www.mccurley.org/trec/
2http://www.lemurproject.org/indri/

0.05 0.1 0.5 1 2.5 5 10
0

2

4

6

8

10

12

14

Sample Size (%)

A
vg

 O
O

V
 T

er
m

s
P

er
 D

oc
 (

%
)

Figure 1: Sample size vs. percentage of OOV
terms per document, on average, for the Clue-CatB
Dataset.

methodology efficient. For Gov2 and Clue-CatB datasets we
sample 0.1% (25K and 50K documents) and for Clue-CatA-
Eng dataset we sample 0.01% (50K documents) of the entire
collection using uniform sampling. These samples are used
by K-means for cluster learning.

6.2 Setup
The Gov2 and Clue-CatB datasets were each partitioned

into 100 shards while the Clue-CatA-Eng dataset was or-
ganized into 500 shards using each of the document alloca-
tion techniques. The top 10 terms for nine of the 100 top-
ical shards of the Clue-CatB dataset are given in Table 2.
These are the terms that explain the majority of the proba-
bility mass in the language models for each of these topical
clusters. For these nine shards and for most of the other
91 shards a semantically coherent topic emerges from these
terms.

A language modeling and inference network based re-
trieval model, Indri [9], was used for our experiments. Mod-
eling dependencies among the query terms has been shown
to improve adhoc retrieval performance [10]. We investigate
if this holds for selective search as well. Thus document re-
trieval was performed using the simple bag-of-words query
representation and also with the full-dependence model
query representation. The Indri query language, which sup-
ports structured queries, was used for the dependence model
queries. For each query the set of shards was ranked us-
ing the variant of ReDDE algorithm described in Section 4
and the top T shards were searched to generate the merged
ranked list of documents.

The precision at rank 10 metric (P10) was used to compare
the search accuracy of exhaustive search with that of selec-
tive search. We define the search cost of a query to be the
percentage of documents that were searched. For exhaustive
search the cost is 100% while for selective search the cost de-
pends on the number of shards that were searched and the
fraction of documents that were present in these shards.

LSDS-IR’10 Topic-based Index Partitions for Efficient and Effective Selective Search

21

Table 2: Top terms from topical shards of the Clue-CatB dataset.
Topic A Topic B Topic C Topic D Topic E Topic F Topic G Topic H Topic I

state policy recipe music game law entertain price health
politics privacy food record play patent com accessory care
election information cook song casino attorney news com center
party terms com album free com sports size service
war service home wikipedia online legal advertise product school
america site new edit com lawyer home clothing child
government rights make rock puzzle www blog item home
vote copyright make com download california list ship program
new return oil band poker home business home educate
president com cup video arcade case search costume parent

Table 3: P10 values for selective search on Gov2 with
bag-of-words query. L denotes significantly worse
P10 than exhaustive search (p < 0.05).
Exhaustive search: P10=0.530, Cost=100%

Rand Source K-means

1 Shard L 0.169 L0.236 0.491
Cost (%) 1.00 1.00 1.24
3 Shards L0.302 L0.419 0.511
Cost (%) 3.00 3.00 3.62
5 Shards L0.338 L0.456 0.520
Cost (%) 5.00 5.00 6.00
10 Shards L0.384 L0.492 0.533
Cost (%) 10.00 10.00 11.38
15 Shards L0.411 0.507 0.530
Cost (%) 15.00 15.00 15.40

7. RESULTS AND DISCUSSION
The selective search results for the Gov2 dataset with bag-

of-words query representation are provided in Table 3.
Selective search on shards defined by K-means provides

search accuracy that is statistically indistinguishable from
that of exhaustive search when the search cost is 1.24% of
that of exhaustive search. For source-based shards the top
15 shards have to be searched to obtain comparable search
accuracy, however, even this leads to an order of magnitude
reduction in search cost.

Recall that the samples that were used to define the
K-means clusters were quite small, 0.1% and 0.01% of the
collection. These results show that an exact clustering solu-
tion that uses the entire collection is not necessary for selec-
tive search to perform at par with the exhaustive search. An
efficient approximation to topic-based techniques can parti-
tion large collection effectively and facilitate selective search.

Table 4 provides selective search results for the Gov2
dataset with dependence model queries. As observed by
Metzler and Croft in [10], the dependence model queries
lead to better search performance than bag-of-words queries
– an improvement of 10% is obtained for exhaustive search
and for many of the selective search settings as well. Se-
lective search proves to be as capable as exhaustive search
in leveraging the information about query term dependence.
The trends observed in Table 4 are similar to those observed
in Table 3 – topic-based shards provide the cheapest setup
for obtaining selective search accuracies that are comparable
to those of exhaustive search. However, the absolute search
cost for the selective search to be statistically indistinguish-

Table 4: P10 values for selective search on Gov2
with dependence model query. L denotes signifi-
cantly worse P10 than exhaustive search (p < 0.05).
Exhaustive search: P10=0.580, Cost=100%

Rand Source K-means

1 Shard L0.165 L0.255 L0.504
Cost(%) 1.00 1.00 1.26
3 Shards L0.304 L0.443 L0.552
Cost (%) 3.00 3.00 3.62
5 Shards L0.357 L0.491 0.575
Cost (%) 5.00 5.00 6.00
10 Shards L0.419 0.556 0.583
Cost (%) 10.00 10.00 11.38
15 Shards L0.442 0.560 0.584
Cost (%) 15.00 15.00 15.63

able from exhaustive search goes up from 1.24% (bag-of-
words) to 6%. Nevertheless, the search cost (6%) is still
an order of magnitude smaller than the cost for exhaustive
search. In the interest of space we report only dependence
model results henceforth, due to their higher accuracy.

Results for the Clue-CatB dataset and the Clue-CatA-Eng
datasets are provided in Tables 5 and 6. The topic-based
technique perform as well as the exhaustive search by search-
ing only the top ranked shard which is less than 2% and
0.5% of the documents for Clue-CatB and Clue-CatA-Eng,
respectively. Searching the top 3 shards provides nearly 10%
and 30% improvement over exhaustive search for Clue-CatB
and Clue-CatA-Eng, respectively, and the latter is found to
be statistically significant. To the best of our knowledge
these results provide an evidence for the first time that selec-
tive search can consistently improve over exhaustive search
while searching a small fraction of the collection.

For both the datasets, selective search loses this advantage
over the exhaustive search by searching more shards. This
indicates that a smaller but tightly focused search space can
be better than a larger search space. This also implies that
searching a fixed number of shards for each query might not
be ideal. This is an interesting topic for future research in se-
lective search. The source-based shards continue to provide
a competitive baseline for both the datasets.

A query-level analysis of the effectiveness of different
methods at minimizing the number of queries harmed by
selective search revealed that 86% or more queries did as
well or improved over exhaustive search accuracy when per-
forming selective search using topic-based shards. While for

LSDS-IR’10 Topic-based Index Partitions for Efficient and Effective Selective Search

22

Table 5: P10 values for selective search on Clue-
CatB with dependence model query. L denotes
significantly worse P10 than exhaustive search and
K denotes significantly better P10 than exhaustive
search (p < 0.05).
Exhaustive search: P10=0.300, Cost=100%

Rand Source K-means

1 Shard L0.080 L0.156 0.302
Cost (%) 1.00 1.00 1.63
3 Shards L0.180 0.244 0.330
Cost (%) 3.00 3.00 4.99
5 Shards L0.212 0.278 0.314
Cost (%) 5.00 5.00 7.85
10 Shards 0.252 0.304 0.292
Cost (%) 10.00 9.80 14.69
15 Shards 0.254 0.306 0.294
Cost (%) 15.00 15.00 21.84

Table 6: P10 values for selective search on Clue-
CatA-Eng with dependence model query. L denotes
significantly worse P10 than exhaustive search and
K denotes significantly better P10 than exhaustive
search (p < 0.05).
Exhaustive search: P10=0.142, Cost=100%

Rand Source K-means

1 Shard L0.024 L0.056 0.152
Cost (%) 0.20 0.20 0.32
3 Shards L0.046 0.112 K0.182
Cost (%) 0.60 0.60 1.12
5 Shards L0.066 0.120 0.174
Cost (%) 1.00 1.00 2.08
10 Shards L0.088 0.168 0.160
Cost (%) 2.00 2.01 4.81
15 Shards 0.114 0.174 0.146
Cost (%) 3.00 3.00 7.40

source-based 60% or more queries were found to perform
well with selective search.

The selective search performance for the Clue datasets
becomes comparable to that of exhaustive search much ear-
lier in terms of shard cutoff than that for the Gov2 dataset.
We believe this could be an artifact of the differences in the
topical diversity of the datasets – the ClueWeb-09 dataset is
much more diverse than the Gov2 dataset. As a result the
topical shards of the ClueWeb-09 dataset are more dissimilar
to each other than those for the Gov2 dataset. This could
have an effect of concentrating similar documents in fewer
shards for Clue datasets. Thus searching the top ranked
shard is sufficient to retrieve most of the relevant documents.
The topical diversity and the topically focused shards must
also help reduce the errors during shard ranking.

The Clue datasets and the Gov2 dataset are also different
in terms of the level of noise that is present in these datasets.
Clue datasets have high percentage of noise while Gov2 is
relatively clean. This could be one of the reasons why selec-
tive search is able to provide a significant improvement over
exhaustive search for the Clue datasets. Selective searching
of shards provides a natural way to eliminate some of the
noise from the search space which improves the search ac-
curacy by reducing the false positives from the final results.

More generally, these results reveal that each of the doc-
ument allocation policies, more or less, converges to the
exhaustive search performance, however, at very different
rates. Topic-based converges the fastest and random con-
verges the slowest.

8. CONCLUSIONS
This work demonstrated that exhaustive search of docu-

ment collection is not always necessary to obtain compet-
itive search accuracy. To enable this we partitioned the
dataset into distributed indexes or shards, and then selec-
tively searched a small subset of these shards. An important
step in this process is the allocation of documents to various
shards. We investigated three types of document allocation
policies: random, source-based and topic-based.

Empirical results on three large datasets demonstrated
that selective search of topic-based shards provides at least
an order of magnitude reduction in search costs with no loss
of accuracy, on average. 86% or more queries did as well
or improved over exhaustive search accuracy when perform-
ing selective search using topic-based shards for all the three
datasets. Although previous work hasn’t reported this num-
ber anecdotal results suggest that this is much more stable
than prior research. The results also demonstrate for the
first time that selective search can consistently improve over
exhaustive search while searching only a small fraction of
the collection if a good document allocation policy has been
employed to create the shards.

The topic-based document allocation technique studied in
this work has two useful properties – scalability and gener-
ality. Scalability is achieved by using sampling-based ap-
proximation of K-means clustering to efficiently partition a
large collection into topical shards. Our experiments show
that even relatively small samples provide good coverage
and statistics of corpus vocabulary. Generality is provided
by the K-means clustering used to define topics, because it
does not require any specific resources such as training data,
query logs, click-through data, or predefined categories. Ex-
isting techniques such as caching that make use of resources
like query-logs and click-through data to reduce search cost,
can be used in combination with the techniques studied in
this paper to further lower the search cost.

9. ACKNOWLEDGMENTS
This work was in part supported by the NSF grants IIS-

0841275 and IIS-0916553. Any opinions, findings, conclu-
sions and recommendations expressed in this paper are the
authors’ and do not necessarily reflect those of the sponsors.

10. REFERENCES
[1] R. Baeza-Yates, V. Murdock, and C. Hauff. Efficiency

trade-offs in two-tier web search systems. In Special
Interest Group on Information Retrieval, pages
163–170, Boston, MA, USA, 2009. ACM.

[2] L. A. Barroso, J. Dean, and U. Hölzle. Web search for
a planet: The google cluster architecture. IEEE Micro,
23(2):22–28, 2003.

[3] J. Callan. Distributed information retrieval. In
Advances in Information Retrieval, pages 127–150.
Kluwer Academic Publishers, 2000.

[4] J. P. Callan, Z. Lu, and W. B. Croft. Searching
distributed collections with inference networks. In

LSDS-IR’10 Topic-based Index Partitions for Efficient and Effective Selective Search

23

Special Interest Group on Information Retrieval, pages
21–28, New York, NY, USA, 1995. ACM.

[5] C. Clarke, N. Craswell, and I. Soboroff. Overview of
the TREC 2004 Terabyte track. In TREC, 2004.

[6] J. Heaps. Information Retrieval – Computational and
Theoretical Aspects. Academic Press Inc., New York,
NY, 1978.

[7] L. S. Larkey, M. E. Connell, and J. Callan. Collection
selection and results merging with topically organized
U.S. patents and TREC data. In Conference on
Information and Knowledge Mangement, pages
282–289, New York, NY, USA, 2000. ACM.

[8] J. B. MacQueen. Some methods for classification and
analysis of multivariate observations. In Proceedings of
5th Berkeley Symposium on Mathematical Statistics
and Probability, pages 281–297. University of
California Press, 1967.

[9] D. Metzler and W. B. Croft. Combining the language
model and inference network approaches to retrieval.
Inf. Process. Manage., 40(5):735–750, 2004.

[10] D. Metzler and W. B. Croft. A markov random field
model for term dependencies. In Special Interest
Group on Information Retrieval, pages 472–479, New
York, NY, USA, 2005. ACM.

[11] P. Ogilvie and J. Callan. Experiments using the lemur
toolkit. In TREC, pages 103–108, 2001.

[12] D. Puppin, F. Silvestri, and D. Laforenza.
Query-driven document partitioning and collection
selection. In InfoScale, page 34, New York, NY, USA,
2006. ACM.

[13] M. Shokouhi. Central-rank-based collection selection
in uncooperative distributed information retrieval. In
The 29th European Conference on Information
Retrieval, Rome, Italy, 2007.

[14] L. Si and J. Callan. Relevant document distribution
estimation method for resource selection. In Special
Interest Group on Information Retrieval, pages
298–305, New York, NY, USA, 2003. ACM.

[15] C. J. van Rijsbergen. Information Retrieval.
Butterworths, 1979.

[16] J. Xu and W. B. Croft. Cluster-based language models
for distributed retrieval. In Special Interest Group on
Information Retrieval, pages 254–261, New York, NY,
USA, 1999. ACM.

[17] C. Zhai and J. Lafferty. A study of smoothing
methods for language models applied to information
retrieval. ACM Trans. Inf. Syst., 22(2):179–214, 2004.

LSDS-IR’10 Topic-based Index Partitions for Efficient and Effective Selective Search

24

