
Agreement Technologies for Adaptive, Service-Oriented
Multi-Agent Systems

J. Santiago Pérez1, Carlos E. Cuesta2, and Sascha Ossowski1

1 Centre for Intelligent Information Technologies (CETINIA), and
2 Kybele Research Group, Dept. Comp. Languages and Systems II

Rey Juan Carlos University,
28933 Móstoles (Madrid), Spain

{josesantiago.perez,carlos.cuesta,sascha.ossowski}@urjc.es

Abstract. Multi-Agent Systems (MAS) are increasingly popular in Artificial Intelligence
(AI) to solve complex problems. They can be conceived flexible and able to adapt to
different situations. However, these features are often compromised by the characteristics
of the problem itself. On the other hand, MAS have not had a lot of success in the
industry, probably due to a different development culture. To solve this, MAS techniques
should be more accessible to the general public, and have a shorter learning curve. The
proposed approach is to use service-oriented concepts, which are popular in industry, to
simplify this step. Moreover, if this approach manifests also self-adaptive capabilities, it
will fulfil the notion's original promise: to guarantee that the system is able to adapt to
changing conditions of the problem. This work proposes a service-oriented framework,
consisting on a supporting agent-oriented architecture, a development methodology for
service-oriented MAS, and an infrastructure based on the concept of agreement, which
makes it adaptive. The first section provides a brief introduction and summarizes the
paper goals. This is followed by the description of the base architecture, designed to
support the agreement structure. Next section discusses concepts about service layers and
the role of organizations. After that, the service-oriented methodology as well as the
agreement structure itself is presented. Finally, a real-world case study, in the domain of
medical emergencies, is analyzed, some conclusions are drawn, and further lines of work
are outlined.

Keywords: Multi-Agent Systems, Service-Oriented Architecture, agreement,
coordination, adaptability.

1 Introduction

The concept of agent has evolved, and nowadays MAS are increasingly popular in AI as a
generic approach to solve complex problems. Different development strategies have been
proposed in order to make them flexible and able to adapt to different situations. However,
these features are often compromised by the heterogeneity of components, the nature of
problems themselves, or the dynamism in the environment. On the other hand, MAS have not
had a lot of success in the industry [14][36], probably due to a different development culture.
To solve this, MAS techniques should be more accessible to the general software community.
The proposed approach is to use service-oriented concepts, which are popular in industry, to
simplify this step. Moreover, if this approach demonstrates also self-adaptive capabilities, it

118

will fulfil MAS original promise: to guarantee that the system is able to adapt to changing
conditions in the problem to solve.

Before dealing with adaptability, it is perhaps better to consider coordination as a previous
concept. A well-known definition of “coordination” within the MAS field is taken from
Organizational Science: “the management of dependencies” between organizational activities
[27]. From a “micro” point of view (agent-centred) [35], coordination is understood as an
adaptation to the environment. On the other hand, from an MAS-centred point of view, the
consequences of coordination can be understood as a global influence. This can be a “shared”
plan [30] or the combination of individual plans (a “multi-plan”) [28]. In few words, when
using MAS as a software solution, the problem of coordination is always present. In fact, when
we have a self-organized agent structure, we can often consider this structure as optimal,
because it would solve the coordination issues.

Some early steps in the direction of adaptability have been given by organization-oriented
approaches. Obviously there are many other approaches, but this is one of the most interesting
in our context: adaptive capabilities, using a MAS approach, seem to be most easily provided
by organizations. These imply a number of additional questions: about the inner role of
organizations in MAS and about the need to provide coordination for organizations to achieve
adaptation. To answer to them, two additional concepts have to be defined; respectively,
services of an organization and agreements between them. The former provides both a
methodological basis for the approach, as well as a direct connection to SOA [26]. On the other
side, the latter is a main topic of this paper, and it will be discussed in detail.

Globally, this paper pursuits three main goals, namely:
- To evolve the classic agent-oriented approach, from an originally closed MAS design into

an open Service-Oriented ecosystem,
- To define the corresponding infrastructure and methodology to achieve this, using the

notion of organization as the conceptual nexus, and
- To provide internal coordination by defining the agreement, conceived as an adaptive

architecture-level construction, which would provide coordination as an emergent property,
by containment.

This paper is organized as follows: second section describes the base architecture, designed
to support the agreement structure. Next section discusses concepts about service layers and the
role of organizations. Them, the service-oriented methodology as well as the agreement
structure itself is presented. Finally, a real-world case study, in the domain of medical
emergencies, is analyzed, some conclusions are drawn, and further lines of work are outlined.

2 A Base Architecture for Service-Oriented MAS

The architecture that gives support to the model has been defined both as an open MAS and
also as a service-oriented, organization-centric, agent-based architecture. These two
perspectives are not necessarily contradictory; they are not obviously compatible either.

For both descriptions to be true, the platform has to be capable of being observed at different
levels and from different perspectives. This multi-level and multiple viewpoint nature must be
specifically enabled by the technical architecture (see 2.2), as it must present several different
notions as the key concept of the system. This requires an intertwining relationship which must
be purposely provided by the infrastructure. As the platform is conceived as a distributed
system, the middleware is the logical place to provide this support.

119

2.1 The Need for Organizations

As defined previously, the architecture that supports the model has been defined as open MAS,
which is also service-oriented, organization-centric and, of course, agent-based. In this work,
agents supporting services has been chosen as the solution alternative. First, agents are well-
known computational entities in the academic environment, with an implied granularity, and
need to comply with an existing standard [20]. On the other hand, although the services
technology is established and has a number of standards [7][12][17][26], its methodology and
influence on other paradigms are still under development. In order to allow the use of the rich
semantic and technological capabilities of agents in a broader context, an upper layer of
services can be added to provide, in particular, the interoperability feature. Therefore, it is easy
to conceive a service as a way to present the operational capabilities of an agent or, even better,
a collection of agents as an organization. One way to implement is to have the platform defined
as a SOA, built on top of supporting MAS.

Implicit in the definition of MAS is the need to register agents in the system, to separate
those ones who belong to the architecture from those who do not. The same approach will be
used to identify services. To allow their external access, they will be explicitly registered and
grouped as part of a service. This service could be later discovered by other entities within the
distributed registry of the system.

Pure agent-oriented MAS methodologies (such as MAS-CommonKADS [24], Gaia [38],
MaSE [37], Tropos [23] or Prometheus [29], among others) usually concentrate in the agent
vision. It is assumed that the final behaviour of the system emerges from the interrelations
between the designed agents. But the global behaviour is not analyzed in detail.

On the other hand, in organization-oriented MAS methodologies, the analysis is made from
a global perspective (Agent-Group-Role [19], MESSAGE [9], ANEMONA [22], AML [11],
OperA [15], Civil Agent Societies [13], MOISE [21], Electronic Institutions [18],
HARMONIA [34], GORMAS [3], among others). The objectives describe the organizational
purposes at a high level. This allows the determination of tasks, types of agents, resources
assignation between members, etc. In this approach, norms are very important because they
describe the desired behaviour of the members. These norms will derive in control,
prohibitions, sanctions, etc. to achieve the expected global behaviour. Mechanisms to allow
external agents to enter the organization and control their behaviour are particularly useful to
design open MAS.

2.2 The Agreement Technologies Base Architecture

The set of technologies and approaches used in this work is globally named as “Agreement
Technologies” [1]. This section presents the base architecture for these technologies, and, as it
was noted in the previous section, it was conceived to be based in an open MAS.

One goal of the proposed approach is to take advantage of MAS features, so the research is
oriented to achieve a greater capacity and functionality, with a lesser emphasis on efficiency or
scalability. Moreover, and from this point of view, services are used to achieve interoperability,
as mentioned earlier. The main idea is to export the agent system as a system of services,
which will be supported, not only technologically, but also methodologically.

These concepts are intended to be built on top of existing and concurrent work. It is not the
purpose of the article to give a complete description of the THOMAS architecture, which can
be found in [4]. But briefly, its design can be summarized as described in the following.

120

Figure 1: THOMAS Technical Architecture (inspired on [4])

The platform, including its middleware, (Figure 1) is structured in three levels but they are
not strictly layers. They are orthogonally supported by four specific components, which are
included as part of three different subsystems. The Platform Entities Management subsystem is
actually layered in turn. The different layers of this subsystem are used to provide capabilities
for different levels in the platform. The three levels are:
- Platform Kernel (PK). It is the actual kernel of the middleware; includes both the Network

Layer and the Agent Management System (AMS) component. It provides all the
capabilities of FIPA-compliant architecture [20]. Therefore, at this layer the platform is
already an (open) Multi-Agent System.

- Service & Organization Management. This is the conceptual level composed of the
Organization Management System (OMS) and the Service Facilitator (SF) components.
Both components provide all the relevant features and abstractions for the Execution
Framework.

- Organization Execution Framework. It is the “space” where all the computational entities
“live” and perform their functions. Agents and their organizations, and the services they
offer, are conceptually located in it. Every specific application would be conceived,
designed and executed at this abstraction level.

The aforementioned three main components of the platform are: AMS, which provides all

the required capabilities and functions for managing an agent; OMS, which provides all the
required capabilities and functions for managing an organization, and maintains together the
system as a whole; and SF, which provides the required capabilities and functions to allow that
a certain selection of the operations in an organization behave as a unified service.

3 The Service-Oriented Layer

As already noted, the base architecture will be primarily conceived as a service-oriented.
Hence, an important concept is that of service.

According to their provider, there are basically base services (user-level services, and they
are defined for every concrete application); and system services (not strictly “services” as they
are not offered by a concrete user-level provider, they are provided by the system itself, i.e.
they are the support services of the platform).

Taken into account their function and the extent of their capabilities three separate sets of
services can be identified in the architecture:

121

- Structural Services. They allow defining a certain organizational/architectural structure, by
creating and registering organizations, their roles and norms, and their relationships. They
make possible to establish and modify both structural and normative specifications of the
system and they are provided by the OMS.

- Information Services. They provide specific information about components in an
organization. Also, some of them are published as registered services, while some others
are just conceived for the use of the OMS and stay invisible.

- Dynamic Services. They allow entities to dynamically enter or abandon an organization, as
well as to adopt existing roles. Units and roles have been previously defined and registered
by using structural services. Dynamic services are just able to modify services, units and
roles. These services provide dynamic reconfiguration.

3.1 The Role of Organizations

The organization is the most important active element and the unifying notion of the
architecture itself. The recursive hierarchy of organizations is what would make possible to
simultaneously define the architecture as service-oriented and as agent-based. The concept of
organization is the nexus between both perspectives.

An organization can be seen from two points of view: externally, it can be considered as a
context, a domain of influence, the scope of a set of norms and rules; and internally, it can be
considered as a collection, the gathering of the set of individuals which would comply with the
stated norms and fill the defined roles. An organization is also composed of units (or
organizational units). A unit is an active entity with a definite, externally observable behaviour,
and it can have either a collective nature (where the unit is itself an organization) or an
autonomous nature (when the unit is just a single agent). The unit is therefore the substrate
which supports both the gathering of agents and the definition of services.

The concept of organization is also used to solve the scaling problem of architecture, in the
context of services. Since they generally are intended to be used in-the-large, it is necessary to
use a compositional structure: the organization itself. In this vision, low-level services are
essentially provided by individual agents, while system-level services are provided by roles in
a complex organization. Intermediate levels can also provide their services, so the recursive
organizational hierarchy defines the compositional “spine” for the system.

As implied before, from this point of view everything is a unit. The system itself must be
conceived from within as a unit, and therefore, it is an organization too. As such, it gathers the
contributions of both individual agents defining the small-scale MAS, as well as those from the
middleware itself, which supports the technical architecture, as described in section 2.

4 A Service-Oriented Methodology

As already said, the proposed approach is to group agents into organizations, but this is not a
simple task. Some questions arise, such as: Which agents belong to an organization? What
criteria will be used to group them? Moreover, the process of exporting the capabilities of
agents as services leads to another question: What services should be exported?

A methodology is proposed in an attempt to answer all these questions. A first step involves
the functional decomposition of services, and this leads to define organizations. Then, as a
second step, the composition of services is guided by the organizations and their structure.

122

The system is conceived as service-oriented, so, high-level services are proposed as the
starting point. Their functional decomposition (or a hierarchical decomposition, from another
point of view) will be also used to design the hierarchical structure of organizations.

A service is defined as a computational entity which gathers a set of operations, described in
its standard interface, and comprised a semi-ordered sequence of activities, semantically
described by an intentional profile and an explicit process model, which can in turn be split in
several smaller processes. There may be several implementations for the same service and an
identical profile, which are offered by different (possibly many) service providers.

The concept of service process, in this context, intends to provide a clear semantic
perspective of a service’s functionality, by describing it as a workflow.

The service process model identifies three kinds of processes in the structural description.
This classification, designed from a semantic perspective [2], will be used to support the
methodology, and assist in the design of the structure of organizations. These types of
processes are:
- Atomic processes can be directly invoked, execute in a single step, and cannot be

decomposed.
- Simple processes are also perceived to be executed in a single step, but cannot be directly

invoked. They are abstract processes (placeholders) and can be filled either by an atomic
process; or (acting as a simplified representation) by a composite process.

- Composite processes are decomposed in sub-processes, which can be defined in turn as
atomic, simple or composite ones. This way, the service’s functionality unfolds recursively
as a hierarchic composite structure.

Simple processes (which are also services) allow a next level of decomposition. High-level
services can be described as a set of simple processes. Those actually simple are described as
atomic services (i.e. agent operations); and those that are more complex are considered as
composite processes, which will be further decomposed. Organizations can be now identified
by relating each service with its provider, unfolding their hierarchical structure.

From this point of view, the composition of services is given by the organizational structure
itself. Though the approach here has a semantic nature, this is essentially the same approach
which is also used for this purpose, from a behavioural perspective, in the context of service
composition, based on orchestration [25].

In particular, both approaches use the process abstraction as the way to describe the
behaviour of a service, and specifically the composition of (smaller-scale) services. Also,
provide a number of control structures, which define a principled way to combine sub-
processes into larger processes, providing compositionality and recursive structures.

There is an implicit relationship between these recursive structures: (composite) processes
can be provided as services by (composite) organizational units; when these processes are
decomposed, the resulting sub-processes can be provided in turn by other units. That is, sub-
processes of a composite process would be provided by the members (units) of the composite
organization which provided the upper level. When this happens, the recursive structure of
processes mimics the recursive structure of organizations. The converse is also true: starting
from simple tasks, a vertical composition method could help in the definition of the
organizational hierarchy, defining at the same time the resulting complex (composite)
processes. Like in the case of organizations, the recursion ends at the agent level.

Therefore, our approach provides the structure for the vertical composition of services. This
way, a task that is often considered difficult –to design the service composition– is
methodologically tackled, allowing at the same time to fully exploit the organizational
structure of the agents. Then, there is a mutual support between these two concepts.

123

5 The Agreement Structure

Agents were originally conceived as single actors, but within the MAS approach, a different
method has become possible. The need for a trade-off continues, but has it transformed into a
coordination problem. As already said, the service can be conceived as a way to present the
operational capabilities of an agent (or a collection of them) inside an organization.

The proposed methodology allows tackling the decomposition of services, but adaptability
in the system is provided by the architecture. First, there is a decomposition of services to
provide the required features; but after that it is necessary to address the structure of
agreements which supports this decomposition, in order to make it adaptive.

So, an important notion is the agreement between computational entities (organizations, at
the top levels; but also agents, at the lower ones) conceived as an architectural construct. The
following subsections discuss the need for an adaptive structure, and the agreement model.

5.1 The Need for an Adaptive Structure

When using MAS as a software solution, as already noted, the problem of coordination is
always present. When they define a self-organized structure, it sometimes implicitly solves the
coordination issues; this approach could be considered as optimal.

When a complex problem is tackled in an ecosystem (or a system of systems), the solution
requires certain adaptability. At the same time, this structure needs to be flexible to achieve
coordination inside the ecosystem, and also this behaviour could be emergent.

Pioneer works related to cooperation define adaptiveness as a required notion for intelligent
solution of complex problems [2]. Two approaches can be considered: from the collaborative
entity point of view (cooperation is introduced as an additional mechanism to increase the
effectiveness in solving problems); and from the problem to solve point of view (this intends to
find the best way to structure and decompose a complex problem to solve it effectively).
Taking into account these approaches, several solutions to the cooperation problem were
developed. The blackboard architecture [16] provides cooperation between knowledge sources
using a simple communication mechanism. The contract net [32] proposes negotiation as a
mechanism to coordinate and to assign tasks to different entities participating in problem
solving. The reactive architecture [8] tries to obtain an intelligent behaviour from simple
models, without knowledge representation, reasoning or learning mechanisms. Finally, agent
architectures with organizational capacity appeared: agents need to know about their own
capabilities and social features.

Generically, entities are organized into a structure by using controls, which either enforce or
forbid specific interactions –or connections–; and protocols, which either enable or channel
them. Therefore, where the former are based on force or imposition, the latter are based on
consensus and agreement.

The concept of agreement among computational entities seems to be a right approach to
tackle the need for an adaptive structure. The objective is to “discover” a suitable structure of
controls and protocols so that it emerges as a global structure, the agreement. This will make
possible to define the main inner structures in order to obtain agreement-based organizations.

As the structures of agents are become more and more complex, it is clear that for some
kind of problems we need not a superstructure, like the blackboard. Agents that organize
themselves in organizations (and after that in agreement-based organizations) are needed. The
main objective is to evolve from that emergent coordination to an emergent agreement between
entities.

124

5.2 The Agreement Model

As already noted in previous sections, a central notion in this approach is the agreement
between computational entities. Continuing with research efforts in the field of “Agreement
Technologies” [1], the process of agreement-based coordination can be conceived as
consistent with the normative context where agents are established and allow them, once
accepted, to call for mutual services, and to be called by others.

Several key research topics must be considered and they can be seen in a “tower” structure
[1] where each level provides functionality and inputs to the one above. Therefore, the
agreement must be seen as a layered structure, by definition: when an agreement is reached at a
certain level, elements located at lower levels must respect it at their own level. These “tower”
levels, from bottom up, are:
- Semantics: the bottom one, as semantic issues influence all others. The semantic alignment

of ontologies [6] is necessary to avoid mismatches and is needed to have a common
understanding.

- Norms: is concerned with the definition of rules determining constraints that the
agreements, and the process to reach them, have to satisfy.

- Organizations: implies a super-structure that restricts the way agreements are reached by
fixing the social structure of the agents, the capabilities of their roles and the relationship
among them [5].

- Argumentation and Negotiation: can be seen as protocols that define the structure of an
agreement.

- Trust: the top level in the tower. Agents need to use trust mechanisms that summarize the
history of agreements and subsequent agreements executions in order to build long-term
relationships between them [31].

These five layers, of course, are not seen as isolated because they may well benefit from
each other. For example, if changes in some norms or to take advantage of negotiation
methods, the organizational model has to be modified. A switch from the described “tower”
into a multi faceted (“pentagon”) figure can be conceived because the agreement pervades (and
is influenced by) all the facets/levels (Figure 2). In this sense, the facets are intertwined, but
agreement is still a layered structure – and layers bind both ways.

Figure 2: Multi-faceted perspective on the structure of an Agreement

In fact, the agreement is a crosscutting structure, which maintains a bidirectional

relationship to every element it contains. The agreement defines the architecture but at the
same time, the architecture defines the agreement. The agreement is shaped by those forces,

125

but its existence also shapes the reaction to them, and models the future evolution of the
system. It is important to note that the multi-faceted perspective is not intended to replace the
“tower” structure, as the architecture described in previous subsection is still hierarchical in
many senses, but the agreement itself can be considered not only as layered, but also as multi-
faceted. Layers are just conceived to provide logical separation of concerns, and they are not
always physical (contained) tiers. On the other side, in an MAS setting, a reconfiguration can
also be triggered bottom-up; a single agent can react to a change in their surroundings by
asking for some kind of change, such as a move to some other organization. Of course this
change can cause some others in turn, and the effect would spread accordingly, causing even a
global reorganization.

In summary, the system already provides the required elements to build an adaptive
architecture; to actually define an emergent agreement would just require identifying the
structural patterns, and the set of inter-level protocols. Some refinements can be made further,
though the need for meta-elements has still to be considered, nothing excludes the definition of
specific agents to carry out support tasks for the agreement itself (such as sensors, observers or
even planners).

6 Case Study: mHealth

This section presents a case study in order to illustrate the proposed approach. Our purpose is
to show the reason why an agreement between entities is not only necessary, but it can also be
a natural solution to complex problems. As already said in section 3.1, the structure in
organizations can be seen as a logical strategy to tackle complex situations, and has also
several advantages. The need for a flexible and adaptive agreement construct can also be seen
as the basis to create and evolve these organizations. Section 5 has described the structure of
the agreement structure which could address that need.

The example is related to the mHealth (mobile-Health) demonstrator, which is an
evolutionary prototype currently under development within the Agreement Technologies
project [1]. It is inspired by work with SUMMA112 [33], the centre that manage medical
emergencies in the Autonomous Region of Madrid, which is also involved in the project.

In the following, an initial emergency (E1) is described. The system has to evolve to
simultaneously react to a second one (E2).

E1. There is a fire in Casa de Campo (a large urban park). There are about 500 people at that
moment and about 65 of them present symptoms of asphyxia. SUMMA112 receives
information related to E1 and decides that 5 ambulances and one helicopter are needed. The
coordination with hospitals near the area, Fire Department (FD) and Police (P) is also urgent.
FD and P will send 3 fire trucks and 5 police cars. From an organizational approach, all these
elements form an organization, O1. Each actor maps onto an agent considering this scenario as
MAS. Then, there are 14 agents are interacting in the organization O1. Each agent has its role,
goals and plans inside the organization, which in turn has its own norms and protocols.

E2. One hour after E1, there is a chain car crash (E2) in the tunnel of Paseo de Extremadura,
a road near to E1 location. Several cars have crashed and 2 of them are on fire. SUMMA112
decides that this emergency requires 3 ambulances. In this case, FD and P decide to send one
fire truck and 3 police cars. Again, all these 7 elements form a second organization, O2.

Basically, this scenario can be solved using two alternative solutions: deal with O1 and O2
as separate elements, with no relation between them; or, deal with O1 and O2 as units with
some degree of relationship.

126

The second is the most efficient and sensible approach, as it must have into account
potential interactions between both emergencies. So, let’s consider first O1, whose elements
reach an agreement to tackle E1. At this point, the agreement construct can be seen as “the set
of elements interacting in a coordinated way to solve a problem”. But at the time to assign
resources to E2, O2 is not considered in isolation from O1. Some resources that previously
were mapped onto O1 now can be mapped on O2 because the conditions in emergency E1 may
have changed during the last hour. This process of re-mapping implies a reconfiguration of
unit O1, i.e. an agent’s reorganization within the O1O2 composite.

Some services which were provided by unit O1 are no longer required in E1 and now can be
re-mapped onto O2. This can be done at different levels (for instance, registering services at
the unit level, with no structural changes); but the simplest and most efficient solution implies
not only re-assigning services, but also the agents which provide them, i.e. doing a
reorganization. For example, according to the observed results in O1 some services can be
assigned to E2. Additional elements are also assigned to E2 to fulfil O2 necessities. O1, a
smaller unit now, continues working in E1; and a new agreement is created around E2,
defining the O2 organization. At the same time, a larger agreement is created encompassing
both units (and therefore, defining another one). This agreement would continue adapting to
changes in both emergencies as system evolves.

Elements participating in an agreement (O1+O2) must be capable to adjust themselves to
environmental changes, to accomplish the goals in the agreement. This will often lead to
changes, not in the elements themselves, but on their configuration. In fact, even the criteria
used to decide if an agent belongs in an agreement should be managed the same way: this
defines an emergent agreement, where not only part of the behaviour, but the structure itself
emerges from the situation.

The base architecture described in Section 2 already includes all the services and facilities
necessary to carry out any reconfiguration [4]. However, this is not enough to define a self-
adaptive structure – the triggering of those services is essential. Of course norms (to define
constraints) and organizations (to define their scope) can assist in the establishment of such a
structure; and even the negotiation layer can be used to trigger the creation of the agreement
itself.

7 Conclusion

It has been argued that MAS techniques should be more accessible to software community in
general in this paper. As services are concepts very popular in industry and can simplify the
transition, this work has proposed a service-oriented framework, consisting on a supporting
agent-oriented architecture; a development methodology for service-oriented MAS; and an
infrastructure based on the concept of agreement, which makes it adaptive.

The example shows why it is needed to consider a general ecosystem, instead a “classic”
closed system or a single-design open system. To actually provide the required response in an
emergency, SUMMA112 has to coordinate with the information systems from the Fire
Department, the Police, and every hospital in the area. This implies that it is not possible to
have a unified pre-programmed strategy to manage emergencies, as it should be embedded in
several independent systems which only sometimes gather to act together.

The key idea in the Agreement Model is that it creates an architectural context, in which
agents (organizations, services) are coordinated and reorganized by inclusion in a structure. In
particular, there is not an architectural element in charge of reconfiguration, i.e. there is not a

127

self-supervisor. Instead of that, every self-property in the system is conceived as emergent, and
they will be “indirectly” provided by structural features of the agreement. The elements do just
what they must to comply with the requirements of the location they occupy within the
architecture; the relationships between the agreement facets will do the rest. Again, the case
study discussed previously describes a simulated coordination effort in the current
SUMMA112 system. In [10], MAS structured in organizations, and implemented in THOMAS
architecture has been used to model systems and simulate several situations.

The reconfiguration process has also been modelled and tested using several different
approaches; but this manual process is only the first stage of research. The next step is to
develop a model-driven approach to guide the reconfiguration, and will be followed by a well-
defined self-adaptive, emergent approach, which is the ultimate goal.

Acknowledgment: This work has been partially funded by Project AT (CONSOLIDER
CSD2007-0022, INGENIO 2010) of the Spanish Ministry of Science and Innovation, and from
COST Action AT (COST IC0801) from the EU RTD Framework Programme.

References

[1] Agreement Technologies (AT) Project: http://www.agreement-technologies.org/ (2009)
[2] Ana Mas: Agentes Software and Sistemas Multi-Agente: Conceptos, Arquitecturas y Aplicaciones.

Prentice-Hall (2005).
[3] Argente, E.: GORMAS: Guidelines for ORganization-based Multiagent Systems. PhD thesis,

Universidad Politécnica de Valencia (2008).
[4] Argente, E., Botti, V., Carrascosa, C., Giret, A., Julian, V., and Rebollo, M.: An Abstract

Architecture for Virtual Organizations: The THOMAS Project. Technical report, DSIC, Universidad
Politécnica de Valencia (2008).

[5] Argente, E., Julian, V., and Botti, V.: Multi-Agent System Development based on Organizations.
Electronic Notes in Theoretical Computer Science 150(3):55-71 (2006).

[6] Atienza, M., Schorlemmer, M.: I-SSA - Interaction-situated Semantic Alignment. Proc Int. Conf. on
Cooperative Information Systems (CoopIS 2008) (2008).

[7] Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., and Orchard, D.: Web
Services Architecture. W3C WSA Working Group, W3 Consortium (2004)

[8] Brooks, R.: Intelligence without Representation. Art. Intelligence, 47:139-159 (1991).
[9] Caire, G., Coulier, W., Garijo, F., Gomez, J., Pavon, J., Leal, F., Chainho, P., Kearney, P., Stark, J.,

Evans, R., and Massonet, P.: Agent-oriented analysis using MESSAGE /UML. LNCS vol.
2222:119–125 (2002).

[10] Centeno, R., Fagundes, M., Billhardt, H., and Ossowski, S.: Supporting Medical Emergencies by
MAS. In “Agent and Multi-Agent Systems: Technologies and Applications”. LNCS, vol. 5559:823-
833. Springer (2009).

[11] Cervenka, R., and Trencansky, I.: AML. The Agent Modeling Language. Whitestein Series in
Software Agent Technologies and Autonomic Computing. Birkauser (2007).

[12] Christensen, E., Curbera, F., Meredith, G. and Weerawarana, S.: Web Services Description
Language (WSDL) 1.1. W3C Consortium. W3C Note (2001)

[13] Dellarocas, C., and Klein, M.: Civil agent societies: Tools for inventing open agent-mediated
electronic marketplaces. In ACM Conf. Electronic Commerce (EC-99) (1999).

[14] DeLoach, S.: Moving multi-agent systems from research to practice. International Journal of Agent-
Oriented Software Engineering - Vol. 3, No.4 pages 378 – 382 (2009)

[15] Dignum, V.: A Model for Organizational Interaction: Based on Agents, Founded in Logic. PhD
thesis, Utrecht University.

[16] Erman, L., Hayes-Roth, F., Lesser, V., Reddy, R.: The Hearsay-II Speech-Understanding System:
Integrating Knowledge to Resolve Uncertainty. ACM Computing Surveys 12(2), pages 213-253
(1980)

128

[17] Esteban, J., Laskey, K., McCabe, F., and Thornton, D.: Reference Architecture for Service Oriented
Architecture 1.0. Organization for the Advancement of Structured Information Standards (OASIS)
(2008).

[18] Esteva, M., Rodriguez, J., Sierra, C., Garcia, P., and Arcos, J.: On the Formal Specification of
Electronic Institutions. Agent Mediated Electronic Commerce 1991, pages 126–147 (2001)

[19] Ferber, J., Gutkenecht, O., and Michel, F.: From Agents to Organizations: an Organizational View of
Multi-Agent Systems. In Proc. AAMAS03 - Agent-Oriented Software Engineering Workshop
(AOSE) (2003).

[20] FIPA. FIPA Abstract Architecture Specification. Technical Report SC00001L, Foundation for
Intelligent Physical Agents. FIPA TC Architecture (2002).

[21] Gateau, B., Boissier, O., Khadraoui, D., and Dubois, E.: MOISE-Inst: An Organizational model for
specifying rights and duties of autonomous agents. In der Torre, L. V., and Boella, G., eds., First
Intl. Workshop on Coordination and Organisation (2005).

[22] Giret, A.: ANEMONA: Una metodología multi-agente para sistemas holónicos de fabricación. PhD
thesis, Universidad Politécnica de Valencia (2005).

[23] Giunchiglia, F., Mylopoulos, J., and Perini, A.: The Tropos Software Development Methodology:
Processes, Models and Diagrams. In Proc. Workshop on Agent Oriented Software Engineering
(AOSE), 63–74 (2002).

[24] Iglesias, A., Garijo, M., Gonzalez, J., and Velasco, J.: A methodological proposal for multiagent
systems development extending CommonKADS. In Proc. 10th Banff Workshop Knowledge
Acquisition for Knowledge-Based Systems (1996).

[25] Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B., Curbera, F., Ford,
M., Goland, Y., Guizar, A., Kartha, N., Kevin Liu, C., Khalaf, R., Koening, D., Marin, M., Mehta,
V., Thatte, S., van der Rijn, D., Yendluiri, P., and Yiu, A.: Web Services Business Process Execution
Language (WSBPEL) 2.0. Organization for the Advancement of Structured Information Standards
(OASIS) (2007).

[26] MacKenzie, C., Laskey, K., McCabe, F., Brown, P., and Metz, R.: Reference Model for Service
Oriented Architecture 1.0. Organization for the Advancement of Structured Information Standards
(OASIS) (2006).

[27] Malone, T., Crowston, K.: The Interdisciplinary Study of Co-ordination. Computing Surveys 26 (1).
ACM Press, pages 87–119 (1994).

[28] Ossowski, S.: Co-ordination in Artificial Agent Societies, LNAI 1535. Springer (1999).
[29] Padgham, L., and Winikoff, M.: Prometheus: A Methodology for Developing Intelligent Agents. In

Proc. Agent Oriented Software Engineering (AOSE), 135–145 (2002).
[30] Rosenschein, J., and Zlotkin, G.: Rules of Encounter – Designing Conventions for Automated

Negotiation among Computers. MIT Press (1994).
[31] Sierra, C., Debenham, J.: Information-Based Agency. Proc Intl. Joint Conference on AI (IJCAI-

2007). AAAI Press, pages 1513-1518 (2007).
[32] Smith, R.: A Framework for Problem Solving in a Distributed Processing Environment. PhD thesis,

Stanford University (1978).
[33] SUMMA112: http://www.madrid.org/cs/Satellite?language=es&pagename=SUMMA112

%2FPage%2FS112_home (2009).
[34] Vazquez-Salceda, J., and Dignum, F.: Modelling Electronic Organizations. Lecture Notes in

Artificial Intelligence 2691:584–593 (2003).
[35] Von Martial, F.: Co-ordinating Plans of Autonomous Agents. LNAI 610, Springer (1992)
[36] Weyns, D., Helleboogh, A., and Holvoet, T.: How to get multi-agent systems accepted in industry?

International Journal of Agent-Oriented Software Engineering - Vol. 3, No.4 pages 383 – 390
(2009)

[37] Wood, M., DeLoach, S., and Sparkman, C.: Multiagent system engineering. Journal of Software
Engineering and Knowledge Engineering 11:231–258 (2001).

[38] Wooldridge, M., Jennings, N., and Kinny, D.: The Gaia Methodology for Agent-Oriented Analysis
and Design. J. Autonomous Agent and Multi-Agent Systems 3:285–312 (2000).

129

