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Abstract. Application domains often include notions that are inher-
ently based on graph structures. In this paper, we propose a compre-
hensive generic ontology-based datatype for graphs. It focuses on those
aspects of graphs that are useful for workflows that require exploration
of relevant parts of potentially large graphs by online algorithms. The
goal of the ontology is to include as much information as possible sup-
porting the graph exploration process declaratively into the specification
of the graph. This allows to separate the (also declarative) specification
of the actual exploration process from the maintenance of the graph it-
self. For concrete applications, the graph specification is given in RDF
using this ontology. From the specification, an appropriate instantiation
of the abstract datatype is automatically derived which is then used in
information workflows.

1 Introduction

A recurring motive when designing informational workflows is the computation
of (parts of) transitive closures of graphs. Graph algorithms in general are a
traditional research topic; they usually assume a given graph and the focus is
on employing additional suitable data structures for efficient algorithms. In the
context of the Web, online algorithms [1, 4] became more relevant: there, the
graph is neither known nor materialized a priori to run algorithms on it, but
is explored only at runtime, using one or more Web data sources. Often, even
the graph data itself is dynamic which does not allow for materialization or
caching. These characteristics require completely different algorithms where the
exploration and expansion strategy for the graph itself is the central issue. Most
algorithms basically follow a best-first-search like A∗ [15], breadth-first-search, or
depth-first-search for exploration.

In this work, we present the Configurable Graph DataType (CGDT) that pro-
vides an ontology and an API for configurable graphs. The design of CGDT com-
bines generic graph behavior (insertion of edges etc.) with application-specific
configurability. CGDT allows to encode the maintenance of the stored graph data
inside the graph by (i) assigning properties to vertices, edges, and paths, and
(ii) specifying how paths are obtained from existing edges and paths during the
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exploration process. This allows to separate the (also declarative) specification
of the actual exploration process and the basic acquisition of data from the Web
from the maintenance of the graph itself. The CGDT can be embedded in the
declarative specification of informational workflows that are specified in RelCCS
[6], a process specification language that extends CCS [10] to relational data flow.
RelCCS itself is based on the MARS framework [8, 5], an open framework that
provides interoperability between nearly arbitrary languages that support rela-
tional dataflow. For the actual acquisition of data from the Web that takes place
on-demand, MARS enables to embed query languages in RelCCS processes.

In general, Web nodes that implement CGDT can act as Web-wide services
for storing, maintaining and querying graph structures not only within MARS-
based approaches. The prototype implementation of CGDT uses a relational
database for storing the actual contents of the graphs. CGDT calls also set-
oriented, i.e., a set of edges (tuples) can be inserted and processed at a time.

Structure of the Paper. In the next section, we describe a concrete use case and
analyze the general requirements and concepts for the CGDT ontology. Section 3
introduces the schema part of the ontology. Section 4 adds generic notions to
specify how the graph develops during evaluation of an online algorithm. Sec-
tion 5 gives an overview of related work, and Section 6 concludes.

2 Application Scenario and General Considerations

Consider the problem to find either the cheapest or shortest (in terms of total
time spent travelling) route to a given location (e.g., for a conference travel)
or a combination of both. Human, manual search usually employs some kind of
intuitive strategy. Roughly, the strategy is to start with considering a known set
of airports near the hometown and to try to cover as much distance as possible
by plane (assuming the distance is above a certain threshold), and then bridge
the remaining distance by train or bus; if this fails, do backtracking. This shows
that, although human problem solving usually considers one possibility (= tuple)
at a time, in this case it is inherently based on a set-oriented model.

With the means of the presented approach, such tasks can be formulated as
data workflows. The backtracking is here replaced by a search strategy, where
the search space is explored stepwise and pruned based on intermediate results.
While for train connections, sources usually are able to return transitive connec-
tions, flight portals only return transitive connections over the flights of the same
airline. Thus, here an actual graph exploration is required. An typical aspect of
this use case (and many other ones) is that the search is subject to additional
constraints, like arrival and departure times and required time for changing.

The expected answer is the set of k best alternatives (wrt. a weighted function
of price and duration), where each solution contains the actual connection data
(flight and train numbers, departure/arrival times). Furthermore, it should in
general be possible to extend the process specification in such a way that the
best available one is actually booked automatically.
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Pitfalls. Experiences with conference travels showed that real travel agencies
are often challenged with finding the potential nearest airports to less standard
destinations (e.g., St. Malo/France as for ICLP 2004), and are rather weak in
finding non-direct flight connections using different airlines (e.g. Lufthansa +
AirFrance) or via unexpected intermediate airports (via London Stansted to
reach Dinard/France), or surprising connections (fly to Jersey Island and take the
ferry to St. Malo) – actually, ferries are often contained in the railway portals, so
we do not consider these separately. The latter example shows also that it would
not be advantageous to try to save time by predefining the set of destination
airports by the user, but to use a fully algorithmic search that is not biased.

Comparison to Classical Graph Algorithms. On first sight, the problem looks like
an application for classical “shortest path” graph algorithms like Prim [11, 2] or
Kruskal [7, 2]. A more detailed analysis shows that even under some optimistic
assumptions, this would not be an appropriate solution:

– Dynamics: the complete graph is not available, and is continuously changing:
the availability of flights and their prices changes every moment.

– Constraints: the paths are further constrained by the requirement that the
departure time must be after the arrival time at intermediate airports.

– Completeness: the airline connections’ graph (which is, neglecting the avail-
ability issue, of a size that could efficiently be processed by breadth-first or
A∗ search), is not sufficient. Additionally, the connections between airports
and the final destination must be considered. Thus, finding the solution in
the graph depends on further information since below a certain remaining
distance the process continues outside the main graph.

Generalization. The above considerations show that in such cases, a large search
space has to be explored, and application-specific properties of the paths, like
price and duration, have to be maintained incrementally. The stepwise explo-
ration corresponds to inductive characterizations of these properties that are in
fact common to the idea of properties of paths in a graph. The CGDT ontology
provides generic notions to specify how this information is combined from the
actual input (i.e., information about edges obtained from Web sources). The
relevant features are mapped and expressed in terms of the generic ontology.

CGDT supports the following generic functionality:

– materializing the relevant graph fragment (including the inductively defined
properties) based on the explored edges,

– creating paths according to specified criteria,

– accessing the vertices that should be explored next according to BFS or A∗,

– querying the result graph.

The design of the data workflow can then be separated into three issues:

– describe the domain-specific characteristics of the graph in terms of the
CGDT ontology. This consists of the basic schema of the graph, the con-
structive specification how to extend the graph with relevant newly obtained
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knowledge, and constraints when newly obtained knowledge is relevant to
expand the graph;

– actual acquisition of the data from the Web (including Deep Web sources).
This means to identify appropriate data sources and to encode the access to
them. Potentially, for each step also two or more sources must be accessed –
for instance one to identify potential edges (in our example: which airports
can be reached from a given one), and the second to query for the actual exis-
tence of the edges (in our example: actual availability and departure/arrival
times of that connection for a given date);

– fill in a common breadth-first-search or A∗-search workflow pattern as a Rel-
CCS process with case splits and Web queries.

After configuring the graph once during the initialization, the process will only
submit edges to the graph, and query it for the vertices where the exploration
should be continued. The compilation of the information in the graph itself, and
the choice of the vertices for the next step is done automatically by the graph.

3 An Ontology for Graphs in Online Algorithms

The basic notions of any graph ontology are vertices, edges, and paths. In the
following, we consider directed, labeled graphs of the form G := (V, E, P ),
where V is the set of vertices, E ⊆ V × V is the set of directed edges be-
tween these vertices, P is a set of paths. While in the usual notion of graphs,
the set of paths is defined as the transitive closure of edges (i.e., the set of paths
is {(v1, . . . , vn) | (v1, v2), . . . , (vn–1, vn) ∈ E}), the set P of relevant paths in
a configurable graph is a certain subset of all existing paths in the graph that
satisfy additional constraints. Nevertheless, each path p ∈ P is a path in the
traditional sense which consists of multiple connected edges. A path p that ends
in a vertex x can be extended by an edge (x, y), denoted by p ◦ (x, y). The set
P will contain paths that are obtained by such extension steps according to
configurable criteria.

3.1 Properties

A central feature of CGDT is that vertices, edges and paths can be adorned with
sets V P , EP , and PP of (typed) properties. Each property is associated with a
literal type, taken from the XML Schema datatypes [18].

The properties can optionally be specified in terms of view definitions over
other properties, or by external queries. For instance, given a vertex with its
airport code, the timezone can be obtained by a suitable Web query. The dis-
tance of a flight from A to B is the geographical distance between A and B’s
coordinates, and the price of a path is the sum of the prices of its edges.

For properties of vertices and edges where no definition is given, the value
must be given when adding the edge to the graph. Often, vertices are added only
with their key (when found by exploring edges), and their additional properties
are obtained by external queries that are automatically executed upon insertion
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of the vertex. As paths are not inserted manually, but automatically by extending
an existing path with an edge, all path properties must be derived properties.
Here, often an inductive definition over the length of the paths is used.

3.2 Signature and Operations

The operations of CGDT are divided into a Data Definition Language (DDL)
where the properties and the constraints are defined, and a Data Manipulation
Language (DML) that provides generic operations for updating and querying
the graph which are used during the actual process of exploration.

3.2.1 The DDL

While in SQL and related languages, the DDL has an own syntax, the DDL of
CGDT is actually the ontology language RDF [12] that declaratively specifies
which properties exist, together with their definitions, and with the constraints
how to expand the graph.

In contrast to SQL, where the main notion of the schema is the table, the
CGDT is based on three subschemas, i.e., a VertexSchema, an EdgeSchema, and
a PathSchema. Each of them defines some properties (i.e., VertexProperties, Edge-
Properties, and PathProperties) and optionally some constraints (to be discussed
in Section 4) that guide the exploration process. Each of the subschemas can
be regarded (and stored) as a table. The notions of the generic graph ontology
itself (i.e., the DDL notions) are depicted in UML in Figure 1; an excerpt of the
RDF Schema [13] definition can be found in the long version of this paper1.

Fig. 1. Basic notions of the CGDT ontology

The three subschemas contain some mandatory, built-in properties:

– vertex schema: id serves as key,

1 Available at http://www.dbis.informatik.uni-goettingen.de/Publics/
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– edge schema: id (key, internally generated and used), from and to, referring
to vertices x and y for an edge (x, y). Note that from and to are not key to
allow different edges between the same vertices (e.g., several flights at the
same day),

– path schema: id (key, internally generated and used), from, to, front and last,
referring to a, y, p and (x, y) (the latter two referring to ids of an edge and
a path, respectively) for the path p ◦ (x, y) where a is the first vertex of p.

A concrete application-specific CGDT specification then defines

– the names and datatypes of the additional application-specific properties of
each subschema,

– the definitions of the derived properties,

– conditions to configure the exploration process (to be discussed in Section 4).

Derived Properties. Since derived properties are views over other properties or
Web queries, they can be expressed by query languages. For accessing the Web,
external queries can be embedded using the language management of the MARS
framework. Throughout this paper, we use pseudocode expressions. Properties
of paths are often defined inductively. For these, the specification of the base
case (which is an edge, and thus builds upon the edge’s properties) and of the
inductive step (potentially using the path and the extending edge) have to be
given. Instead of giving an inductive definition, path properties can also be
specified to be SumProperties, CountProperties, or {Min|Max}Properties, which
are defined as the aggregation of the values of a specified edge property.

Example 1 In our running example, the concrete instantiation of CGDT is
tailored to the travel application scenario and rooted shortest path search.

The vertices (which are the train stations and airports) have two properties,
i.e., the id (which is e.g. the airport code) and the timezone. The timezone is
defined by a Web query (against a wrapped Web source)

timezone = getTimezone(<http://www.theairdb.com>, code) .

Edges, which are the direct connections, e.g., FRA-CDG (Frankfurt to Paris
Charles de Gaulle), have domain-specific properties code (the flight number),
dept, arr (departure and arrival time wrt. the local timezone) and price. The
duration is a derived property:

duration = arr - dept + from.timezone - to.timezone.

The properties of the paths, from, to, dept, arr, price and duration are defined
inductively. For the base case where a path is just a single edge, they have the
same values as for the edge. For paths of length > 1, they are defined as follows:

from = front.from (built-in), dept = front.dept,
to = last.to (built-in), arr = last.arr,
price = front.price + last.price or equivalently as a SumProperty

= sum[e:edge](e.price) ( = sum of prices of all edges of the path)
duration= front.duration + last.duration + last.dept - front.arr

which equals last.arr - front.dept + from.timezone - to.timezone.
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The Constructor. The constructor gid ← getGraph(rdf-spec) initializes a new
CGDT instance with a given specification rdf-spec (which is an RDF specification
of the desired instance) and returns a unique graph id.

3.2.2 The DML

The DML is also independent from the actual application domain. The modifiers
allow to add items to the graph:

– addVertex(id, vertex-property-name-value-pairs) adds a new vertex id with the
given vertex property values,

– addEdge(from, to, edge-property-name-value-pairs) adds a new edge (from, to)
with the given property values (and adds the target vertex if not yet present).

In the pseudocode, we use a slot-based notation, e.g. addEdge(“FRA”, “CDG”,
[dept ← “10:30”, arr ← “11:50”, code ← “LH123”, price ← 185.00]).
The accessors include the following:

– var ← getNewVerticesBFS() supports breadth-first-exploration and binds
var to the ids of each of the new vertices that have been added since the
previous call of getNewVerticesBFS(),

– var ← getNextVertexAStar() binds var to the id of the next vertex that
has to be extended according to A∗ best-first-search (and a given valuation
function, cf. Sec. 4.4),

– (v1, . . . , vn)← getResultPaths(v1 ← attr1, . . . , vn ← attrn) returns a binding
for variables (v1, . . . , vn) to the corresponding attributes of each path that is
considered as a result. In Section 4.4 we will discuss how the intended result
paths are specified in the ontology.

4 Configurability of the Exploration Process

Although breadth-first-search, best-first-search and depth-first-search proceed
different in the large, the configuration of the exploration process can be specified
by the same notions. Thus, we exemplify it for the use in breadth-first-search,
which shows the set-oriented features best by doing the expansion in parallel.

4.1 Breadth-First Search

The underlying principle of breadth-first-search is simple and makes the strategy
well-suited for graph exploration in online algorithms: Starting with a set of one
or more known vertices (e.g., the nearest airports to the starting place), consider
all edges from these vertices to any other (known or yet unknown) vertex. These
edges are added to the graph, and (i) can be used to extend existing paths, and
(ii) result in newly known vertices that can be used in the next step.

The configuration of the behavior of the graph consists of conditions that
specify the following:

1. when a new edge is found, add it to the graph or discard it (e.g., when certain
airlines or intermediate airports should be excluded),
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2. when a new edge is inserted: under which conditions can it be used to extend
an existing path p (e.g., its departure time must obviously be later than the
arrival time of p),

3. under which conditions should a vertex be considered for the next exploration
step?

By this, CGDT separates the acquisition of edges (that must be programmed
explicitly in the processs) from the actual handling of their contributions to the
graph (that is configured into the graph).

4.2 Insertion Conditions

For vertices and edges, conditions can be stated that need to be satisfied for
insertion of the item into the graph. Vertex insertion conditions are only con-
cerned with properties of the vertex itself (e.g., the exclusion of flights via Lon-
don Heathrow (LHR) because of luggage handling problems can be expressed
as id 6= “LHR”). Edge insertion conditions are only concerned with properties
of the edge itself (e.g. duration < “10:00”), its start and end vertices, and with
general properties of a graph (e.g., forbid to make the graph cyclic). An edge is
also not inserted if one of its vertices does not satisfy the insertion conditions.

4.3 Path Extension Conditions

Path Extension Conditions allow to state application-specific constraints whether
a new edge (x, y) can be used for extending a path p that ends in x to p ◦ (x, y).
They are formulated in terms of the properties of the edge and of the path.

Example 2 In our example, for a path ((s, . . . , x), [arr = t1]) and a new edge
(x, y, [dept = t2]), the new path ((s, . . . , x, y), [. . .]) is only added if t2–t1>“01:00”.

Consider an invocation of addEdge(x, y, [...]) (i.e. a direct connection). If the
destination airport y is not yet contained in the graph, it is added as a vertex
(automatically retrieving its timezone property from the Web). The connection
itself is added as an edge with its properties, and for all paths p = (s, . . . , x), the
path p′ = (s, . . . , x, y) is a candidate for insertion. If the new edge’s departure
is more than one hour later than p’s arrival, p′ is actually inserted with the
appropriately computed property values.

If for such newly added paths, edges (y, z) are already stored, the respective
extended paths (s, . . . , x, y, z) are also candidates for insertion, and so on. Note
that edges (like in the example (x, y, [dept = t3]) with t3 < t1) that cannot yet
be used for extending an (already known) path can possibly be used later for
extending other paths that reach y with an earlier arrival time than p. For that,
path extension conditions are usually stricter than edge insertion conditions.
Vertices are only considered as “new” to be extended in the next step if they
became actually newly reachable by a path.
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4.4 Specification of Desired Result Paths and Termination

The above conditions control how the internal information of the CGDT instance
is extended when adding edges. Additionally, it must be specified, when the
process ends, and preferably already during the process, only new vertices that
are promising to continue the search should be selected for the next step.

The Result Specification is expressed via a filtering condition which paths
can qualify as intended results (in the example, those that end in the final
destination), and optionally a valuation function on paths (that can be seen as
a cost measure and that must be strictly monotonic wrt. path extension) and
an integer k, how many results should be finally returned.

Example 3 In our example, the valuation function is duration (in hours) + price
/ 100 (means, for 100e saved, one accepts one more hour to travel). The filter
condition is to = finalDestination, and k = 5.

When breadth-first-search is applied, paths that are “above” (i.e. more ex-
pensive) the limit of the best k results so far are not further extended, and
vertices that are only reachable by such paths are not expanded. This prunes
the search space as soon as k paths have been found that satisfy the filter con-
dition, and guarantees termination. In case of A∗ search, the valuation function
is used to choose the next vertex to be extended.

5 Related Work

The notions of online algorithms [1] in general and dynamic graph algorithms
[4] cover a broad spectrum of aspects. This includes scenarios where the cur-
rent situation is completely known, but changes, as well as situations where the
underlying situation is actually static, but is not completely known and is pro-
cessed incrementally, like dynamic search algorithms. CGDT is tailored to the
special, but still very common case where exploration is dynamic, but monotonic:
vertices and edges once added to the graph will remain unchanged forever. The
underlying graph is also dynamic, but every run is based on a (non-transactional)
snapshot that is explored dynamically.

Online algorithms over unknown graphs are investigated by many authors un-
der different aspects (total exploration [3], search etc.). For path search, breadth-
first-search and best-first-search by A∗ (see e.g. [15] for an overview) are the most
prominent ones. Also, research on composition of Web Services like [14, 9] is a
related area, but in general deals with a higher level of abstraction where the
concrete modeling and algorithmic handling of the data is not described. Such
approaches can be complemented with the use of CGDT, since it declaratively
covers the data-oriented aspects.

Most works on graph schemas have a different goal, namely to describe a
graph-based data model in the sense of semistructured data like RDF on the
schema level by the labels of its vertices and edges. In these languages the graph
is not part of the domain and it is not used for applying graph algorithms, but
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the domain is modeled as a graph which is updated and queried. Some works
in the area of graph transformations, e.g. Progres [16] allow –like CGDT– to
assign (optionally derived) attributes not only to vertices, but also to edges and
paths. Paths are seen as derived edges that are declared in a rule-based way.

6 Conclusion

We presented an ontology for a configurable graph datatype CGDT that supports
explorative online algorithms using Web information sources. CGDT allows to
declaratively specify and encapsulate the handling of the collected graph data,
and to separate it from the data acquisition and process control.

A prototype of the implementation has been completed. An online prototype
for MARS and RelCCS, with further documentation and the above process can
be found at http://www.semwebtech.org/mars/frontend/→ run CCS Process.
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