
Towards Model-Driven Approach for Rapid ERP
Development

Igor Miletić1, Marko Vujasinović², and Zoran Marjanović³

1Breza Software Engineering, Kraljice Natalije 23a,
11000 Belgrade, Serbia

igor.miletic@brezasoftware.com
² Research consultant, B. Knezova 10,

22300 Knin, Croatia
marko.vujasinovic@acm.org

³ Faculity of Organizational Sciences, Jove Ilica 154,
11000 Belgrade, Serbia

zoran.marjanovic@fon.rs

Abstract. In this paper we describe an MDA (model-driven architecture) approach
that we successfully apply in our ERP development process. We have developed
platform-independent models of certain ERP aspects and tools that use these models
to generate database scripts and source code for a target platform, ERP
documentation, and help system. The paper outlines these models using patterns,
which are considered common solutions for recurring challenges in ERP
development.

Keywords: enterprise resource planning, model-driven development, application
generators

1 Introduction

An enterprise resource planning (ERP) system integrates business data to coordinate,
consolidate, and support execution of business processes inside a company. Our
experience from the ERP systems development (BrezaERP [1]) and several
successfully completed ERP implementations exposed that ERP systems typically
need to provide various applications and reports that support a wide range of business
processes, quick and reliable responses to business processes, and simple and low-
cost extensions to such business processes. To address these issues, we propose
certain best-practice solutions. We have formalized these solutions through a set of
patterns expressed as platform and application independent MDA
(www.omg.org/mda) models using UML (Unified Modeling Language;
www.uml.org). These model-based patterns have been incorporated into a several
ERP development projects and have significantly helped us to speed-up the
implementation activities. Importantly, the patterns apply in any ERP development
project. In the following sections, we start with the short overview of the related
work. Then, we introduce the key requirements that any ERP should satisfy, and
discuss the proposed model-based patterns that meet these requirements. We conclude
the paper with some future work directions.



126 I. Miletić, M. Vujasinović, and Z. Marjanović

2 Related Work

Several approaches to speed-up ERP development have been proposed. Govedarica
et. al. [2] propose development of a system specification using XML (Extensible
Markup Language; www.w3c.org/xml), which is used by the XSLT (XSL
Transformation; www.w3c.org/TR/xslt) tools to generate executable information
systems. Govedarica and his colleagues propose structures that describe specification
of transactional programs as well as user forms. However, this approach is too general
- it is not strictly focused on the ERP development issues, it does not provide concepts
and models that can be used to express commonality of user forms as well as behavior
of applications, nor does it address generation of a help system of the application from
a system specification. Lazarevic and Misic [3] introduced an approach that uses a
formal specification of the ERP systems to generate the database procedures that
would control the integrity-constraint rules of the entity-relationship models. Dugerdil
and Gairals [4] focus on the development of the MDA models that can capture an
ERP configuration, but they start from an assumption that the ERP system is already
developed and needs only to be customized. Deursen and Kuipers [5] focus on the
problems related to the synchronization of ERP documentation with the changes in
the source code; they introduce so-called island grammars, which are syntactic
structures that generate documentation from the source code and merge it with a
hand-written documentation.

Our work differs from others in that we provide precisely defined, formalized, and
in-practice proven MDA models that speed-up ERP development through (1)
automated generation of the user forms, documentation, and help system, (2) simple
introduction of new ERP modules and new documents, and (3) simplified
customization of system actions and behavior.

3 Design Patterns (Generic Models) for ERP Development

An ERP system depends on a number of requirements imposed from the different
perspectives, e.g., usability from the end-users’ perspective, or simplicity of develop-
ment, extension, and maintenance from the developers’ perspective. Table 1 lists the
key requirements that have been revealed during BrezaERP development. However,
these requirements are not BrezaERP-specific; they apply to any ERP system.

Table 1. The key requirements for the ERP development

Requirement No. Requirement Addressed by pattern
1. Uniform user interface Interface configuration
2. User system support (Help system) Interface configuration
3. Updated user specification of the system Interface configuration
4. Simple integration of new modules System configuration
5. Support for large number of documents Document configuration
6. Execution of actions over the documents Behavior configuration
7. Reliable communication between subsystems Behavior configuration

We have identified four generic models (or patterns) that can be used to meet these
requirements and reduce manual effort and development time.



Towards Model-Driven Approach for Rapid ERP Development 127

3.1 Interface Configuration Pattern (Model)

Separate design and coding of the hundreds of different user forms that may exist in
an ERP is a hard, error-prone, and time-consuming work. Even a small change in
specifications may require significant effort. For instance, consider tens of user forms
embedded within an ERP financial module, all of them containing a date-picker
component. Assume that we want to replace the component with a new improved one.
It may take up to one hour (in our experience) to implement and test the change in just
one form. If, say, twenty user forms are being changed and all are maintained
separately, such a small change will have taken few days to complete. Moreover,
additional time is needed to change the help and the system specification documents.
To address such issues and to reduce development time, we propose the interface
configuration pattern (shown in Fig. 1).

Fig. 1. The interface configuration pattern. (The left part shows the interface configuration
concepts; the right part shows their instances, given as an example)

The interface configuration pattern proposes development of models that contain
descriptions of the user forms in a generic way. Subsystem concept represents an
ERP module (e.g. financial module). Subsystem contains Applications (e.g.
Invoice application). Each Application belongs to the ApplicationType
that represents either a business document or a codebook. Application is
composed of ApplicationHeader and ApplicationItems, which are sets
of Fields (e.g. document date, item quantity). The Application elements on the
user forms are specified by InterfaceComponents such as check-boxes, tables,
text-fields, etc.

We model all the user forms to comply to the interface configuration pattern. (This
pattern can be considered as a metamodel for the models of specific user forms.)
Changes on the user forms are performed over the interface configuration that defines
these forms. Our user form definition tool allows us to simply define new or to change
existing user form definitions. The generators operate on the interface configuration
definitions, and guarantee the uniform user interface, and harmonized help system and
system specification documents.

3.2 System Configuration Pattern (Model)

Traditionally, when developing a new ERP module, developers engage in several
activities, such as creation of new database objects manually or by a tool that
generates executable database scripts for new objects, execution of the database



128 I. Miletić, M. Vujasinović, and Z. Marjanović

scripts, and development environment preparation (e.g., setting up new project in a
development tool, placing the project under a version control, and so on). All these
activities take significant time. If the number of new modules increases, the effort and
duration of activities increase as well. To address this issue, we propose the system
configuration pattern (shown in Fig. 2).

Fig. 2. The system configuration pattern. (The left part of figure shows the system
configuration concepts; the right part shows their instances given as an example)

The system configuration pattern proposes the model that is supported by a tool
that clones a (previously prepared) template of a database structure of a standard
module (the one defined as a standard-template). System concept represents any ERP
system. Subsystem represents an ERP module. Database structure of the ERP
module may contain codebook schema and document schema. These are captured by
CodebookDBSchema and DocumentDBSchema concepts. CodebookDBSchema or
DocumentDBSchema can contain a number of database objects - tables, triggers,
packages, etc. When we develop new modules we use system configuration pattern
and our tool, which provides us a faster ramp-up time. In particular, we automatically
get initial table structures, initially prepared projects in a development environment,
as well as application objects that map to database objects.

3.3 Document Configuration Pattern (Model)

The ERP system automates the flow of the (electronic) business documents within a
company. New document types, however, appear rapidly as the business grows.
Appearance of a new document type is reflected with the ERP system as a creation of
new electronic document type. Assume a case in which a government administrator
introduced a new type of invoice document that is obligated for all the companies in
the country. The new invoice type introduces new type of document items that
contain important tax information. Traditionally, the new document type, such is that
invoice, requires a new database structure. It will cost time to design such a new
database structure, and to implement business logic that supports the document type.
If the document has relationships with other document(s), this leads to an even more
complicated situation. The number of database table objects will grow rapidly with
more and more new document types. To avoid such issues we propose the document
configuration pattern (shown in Fig. 3).

The document configuration pattern proposes the database structure that provides
flexibility in storing documents, document items and document connections of
various document types in the same database tables of a particular subsystem
(module). The pattern enables addition of new document types in the ERP without



Towards Model-Driven Approach for Rapid ERP Development 129

any change of the data structure or change in the application code. In fact, the pattern
is a metamodel for document types (models). Each document complies with the
document configuration. DocumentTable, DocumentItemTable and
DocumentConnectionTable concepts represent physical structures (e.g. database
tables) that store documents, document items and document connections, respectively.

Fig. 3. The document configuration pattern. (Left part of the figure shows the document
configuration concepts; the right part shows their instances given as an example)

We have developed a generic ERP component that is based on the document
configuration pattern and that implements the standard functions for the document
manipulation (e.g., create document, delete document, add document item). When
new document type appears, we just register new document type. The ERP system
distinguishes the types of documents by the provided field value that classifies the
documents.

3.4 Behavior Configuration Pattern (Model)

Behavior and business logic of every ERP system is woven into the number of actions
over the documents. Actions may be standard (i.e., supported by document
configuration pattern and above mentioned component), or document-specific such as
the specific processing, accounting, and document content auditing. The specific
actions executed on a document in one module can cause creation of one or more new
documents in other modules. (Such creation of new documents is followed by strict
mapping rules. The mapping rules define how to map fields from one document to
another when transformation among documents occurs; mapping can be simple one-
to-one mapping or more complex if additional operations are included.) Adding a new
action to the ERP system usually brings additional costs because business logic
related to all document types that new action will apply to has to be re-implemented.
To address such issues we propose the behavior configuration pattern (Fig. 4).

Fig. 4. The behavior configuration pattern (Left part of the figure shows the behavior
configuration concepts; the right part shows their instances given as an example)



130 I. Miletić, M. Vujasinović, and Z. Marjanović

The behavior configuration pattern proposes a metamodel for modeling and
configuring document types’ related actions as well as the mapping rules among two
or more document types. The proposed model is expressed as an aggregation of the
DocumentType concept and the actions related to the document type and mapping
rules (concept DocumentActions). The mapping rules are used by the corresponding
action when transformation among documents is needed. DocumentAction is in fact
some executable component (e.g. Java class) that is general enough to be executed
over the documents. To support the behavior configuration pattern, we developed
mechanism (component) of the action execution. The component executes the
allowed actions over the certain type of document. In order to transform one
document to another, the component reads mapping rules (represented by
DocumentTypeMappingRules concept) and executes defined transformation.

The behavior configuration pattern allows changes in behavior of the ERP system
without code modification, as we have developed component which is able to load
defined actions from the model and execute them over the documents. It is sufficient
to register new action into the underlying structure.

4 Conclusion and Future Work

The proposed patterns are in fact generalized MDA metamodels of certain ERP
aspects. Their constructs can be also considered as a domain-specific language
constructs for ERP modeling. We describe each particular ERP module and
application by using these constructs, and use the tools to generate database scripts,
source code, help system and system specification documents. Our target platform
was Oracle database and Java environment; however, the generators could be
extended to support other similar platforms as well. We now plan to reveal more
patterns for ERP development and formalize them as metamodels. That will lead
towards ERP model-based, rather than hard-code, development. Additionally, we plan
to develop a tool that provides a visual environment for ERP modeling.

5 References

1. BrezaERP. On-line, last accessed August 2010 at www.brezasoftware.com.
2. Govedarica, M., et. al. (2004) Generating XML Based Specifications of Information

Systems, Computer Science and Information Systems, Vol. 1, Issue 1, pp. 117-140.
3. Lazarevic, B. and Misic, V. (1991). Extending the entity-relationship model to capture

dynamic behavior. European Journal of Information Systems, Vol. 2, pp. 95-106.
4. Dugerdil, P., and Gaillard, G. (2006), Model-Driven ERP Implementation, Proc. of the

2nd Int. Workshop on Model-Driven Enterprise Information Systems, Paphos, Cyprus.
5. Deurse, A., and Kuipers, T. (1999) Building documentation generators, Proc. of the

IEEE Int. Conf. on Software Maintenance, pp. 40-49.


