
Stones Falling in Water: When and How to
Restructure a View-Based Relational Database

(Extended Version)⋆

Eladio Domı́nguez1, Jorge Lloret1, Ángel L. Rubio2, and Maŕıa A. Zapata1

1 Dpto. de Informática e Ingenieŕıa de Sistemas.
Facultad de Ciencias. Edificio de Matemáticas.

Universidad de Zaragoza. 50009 Zaragoza. Spain.
noesis,jlloret,mazapata@unizar.es

2 Dpto. de Matemáticas y Computación. Edificio Vives.
Universidad de La Rioja. 26004 Logroño. Spain.

arubio@dmc.unirioja.es

Abstract. Nowadays, one of the most important problems of software
engineering continues to be the maintenance of both databases and ap-
plications. It is clear that any method that can reduce the impact that
database modifications produce on application programs is valuable for
software engineering processes. We have proposed such a method, by
means of a database evolution architecture (MeDEA) that makes use of
database views. By using views, changes in the structure of the database
schema can be delayed until absolutely necessary. However, some condi-
tions oblige modifications to be made. In the present paper we present
an approach to detect when the restructuring process must be realized
and how to carry out this restructuring process.

1 Introduction

Software maintenance, and in particular database maintenance, is still one of
the major challenges that researchers and practitioners must face in their ev-
eryday work. The systematic usage of multi–tier architectures helps to grant
independence between applications and their underlying databases, and indeed,
to dissociate at least to some degree the maintenance tasks that might be carried
out within the distinct levels. Nevertheless, sometimes this dissociation is not
feasible and the required modifications affect both applications and databases. It
is clear that this process should be done as seamlessly as possible, as is recognized
for example in [10] in the case where databases are the artifacts that unleash
the process. Liu et al. claim that “if additional functionality can be added [to

⋆ This work has been partially supported by the Ministry of Science and Innovation,
project TIN2009-13584, by the Ministry of Industry, Tourism and Commerce, project
LISBioBank (TSI-020302-2008-8) and by the Government of Aragon, project LIS
(PI108/08).

138 E. Domnguez, J. Lloret, Á. L. Rubio, and M. A. Zapata

the database] seamlessly, existing application programs may either optionally
ignore it or only require minimal modifications when the added functionality
becomes available. Therefore, how to effectively manage the impact of schema
modification, clearly, becomes an important issue for achieving such seamless-
ness”. Within this context, any means which delays and minimizes the impact
that database changes provoke in the applications is of great value.

Different strategies can be followed to make progress in order to achieve a
solution to this issue. In [4], we proposed MeDEA, a Metamodel–based Database
Evolution Architecture, which follows a forward maintenance perspective. Rough-
ly speaking, this means that all changes that have to be introduced to the
database are issued at the conceptual level. The changes at the conceptual level
are, by means of MeDEA, automatically propagated downwards to the logical
level and to the extension. As was presented in [4], MeDEA follows a strict

data conversion mechanism, meaning that conceptual schema changes are im-
mediately propagated to the logical schema and to the extension. However, the
strict conversion mechanism may involve a big impact on both the database
and the applications. In [5] we improved the approach by proposing a lighter
data conversion mechanism that makes use of database views. When views are
used, the modification of structures is not initially realized (logical conversion
mechanism), but delayed until necessary, which significantly reduces the impact
of required changes. Unfortunately, the use of views does not solve the problem
in its entirety, because of the well–known problem of updatability of views. It
has been proven in the literature [3, 9] that not every DML operation defined
on a view can be satisfactorily realized. There exist some structural requisites
in order for a view to be fully updatable.

The main goal of the present paper is to show an approach that determines,
on the one hand, when a view (generated and inscribed in the context of our
evolution architecture) must be restructured in the presence of some particular
DML operations, and on the other hand how this restructuring process can be
carried out.

The rest of the paper is structured as follows. In the following section we
present the basic structures and the way of working of MeDEA, including the
running example that we will use in the paper. Section 3 is devoted to outline
the settings of the problem we solve. In Section 4 we explain when the database
should be restructured and in Section 5 we describe how to do the restructura-
tion. Finally, we present some related works, conclusions and further work.

2 Database Evolution Architecture

The contributions of this paper rely on the MeDEA architecture for database
evolution we proposed in [4, 5]. In order to make the paper self–contained, in this
section we review the basic ideas of MeDEA such as we described it in previous
papers (see [4, 5] for details). At the same time, we introduce some new notions,
not included in our prior works, that are used in the subsequent sections.

Stones Falling in Water 139

MeDEA is a metamodel–based database evolution architecture we presented
in [4]. MeDEA uses a metamodeling approach for its four components (see Fig-
ure 1): conceptual component, translation component, logical component and ex-

tensional component.
The conceptual component captures machine–independent knowledge of the

real world. In this work, it deals with EER schemas. The logical component cap-
tures tool–independent knowledge describing the data structures in an abstract
way. In this paper, it deals with schemas from the relational model by means of
standard SQL. The extensional component captures tool dependent knowledge
using the implementation language. Here, this component deals with the spe-
cific database in question, populated with data, and expressed in the SQL of the
DBMS. One of the main contributions of our architecture is the translation com-

ponent, that not only captures the existence of a transformation from elements
of the conceptual component to others of the logical one, but also stores explicit
information about the way in which specific conceptual elements are translated
into logical ones.

External
events

Logical

Component

Extensional

ComponentTranslation

Component

extensional
 processor

database
extension

logical
database
 schema

logical
 processor

logical
meta-schema

translation
base

translation
 processor

translation
meta-schema

Conceptual

Component

conceptual
database
 schema

conceptual
 processor

conceptual
meta-schema

meta

model

layer

model

 layer

data

layer

Fig. 1. MeDEA Database Evolution Architecture

2.1 Forward Translation Process

The way of working of MeDEA is as follows: given an EER schema in the con-
ceptual component, the translation algorithm, which is composed of translation
rules, is applied to it and creates 1) a set of elementary translations in the
translation component, 2) the relational database schema and 3) the extensional
database schema. The resultant schemas of this forward translation process have
been depicted in the top part of Figure 2.

For instance, as a running example, we will consider an initial EER schema
S0 (see Figure 3, left) with employees and cities. Each employee has an id,
name, address and department where (s)he works. Each city has an id and a

140 E. Domnguez, J. Lloret, Á. L. Rubio, and M. A. Zapata

EER

Schema1

Relational

Schema1

Translation

Base1

DBMS

Database1

EER

Schema2

Relational

Schema1

Translation

Base2.1

DBMS

Database1

New2.1

Views2.1

Relational

Schema2.2

Translation

Base2.2

Logical

Component

Extensional

Component

Translation

Component

Conceptual

Component

evolution

restructuration

New2.1

Views2.1

V
ie
w
s
2
.2

DBMS

Database2.2

V
ie
w
s
2
.2

Fig. 2. View–based Evolution Processes within an EER–DBMS setting

name. Many employees can live in the same city. From this example, our archi-
tecture creates the extensional database schema (see Figure 3, right). Next, the
extensional database is populated with data.

Conceptual schema S0
employee

city

livesInN 1id

name

address

department

id

name

employee(id, name, address,

department, idCity)

city(id, name)

Extensional schema S0

StvStwSv

actual extensional schema S0

Fig. 3. Initial schema

2.2 Forward View-Based Database Evolution

For various reasons, the data structure may need to be changed. In this case,
the data designer must issue the appropriate evolution transformations to the
EER schema. These changes must be propagated to the rest of the components.
In order to do this we have proposed two different forward approaches: a strict
propagation mechanism [4] and a lazy and logical mechanism [5]. In this pa-
per we assume that the lazy and logical mechanism is applied. According to
this proposal, a view–based propagation algorithm is applied which delays the
propagation of changes creating views in the logical and extensional levels.

The key aspect of the view-based propagation algorithm is that the old logical
and extensional schemas remain unchanged, and the target schemas are not
completely created but simulated. In general, when the conceptual evolution

Stones Falling in Water 141

implies the creation of new elements (tables, attributes,...) they are created, but
the modification or elimination changes are simulated creating views. This fact
is depicted in the central part of Figure 2. It can be seen in this figure that,
after a forward evolution propagation process, the relational and extensional
schemas include the old schemas, together with the ‘Views’ piece representing
the views that simulate the modification and elimination changes and the ‘New’
piece representing the added schema elements.

For example, we consider that in schema S0 the attribute address is deleted,
giving rise to the conceptual schema S1 (see Figure 4, left). However the trans-
lation of this change does not provoke the elimination of the column address in
the table employee, instead of this, the lazy propagation algorithm delays the
elimination of the column creating the view vEmployee (see Figure 4, right).

Conceptual Schema S1

employee

city

livesInN 1
id

name

department

id

name

employee(id, name,

address, department,

idCity)

vEmployee

SELECT id, name,

department, idCity

FROM employee

city(id, name)

Extensional schema S1

StvStwSv

actual extensional schema S1

Fig. 4. First evolved schema

In the resultant situation not all extensional elements conform with the new
EER schema. For this reason, we are going to introduce several notions (not
included in previous papers) in order to classify the database elements making
explicit which extensional elements are related with the conceptual ones.

It must be noted that each extensional schema S can be split into two sets: the
set of views Sv and the set of tables St. In its turn, St is split into two sets: the set
of tables that have views defined on them, Stv, and the set of tables without any
view defined on them, Stw. Just after having translated the conceptual schema
to the logical one and before applying any conceptual transformation, the sets
Sv and Stv are empty. Moreover, at any time, it is verified that Stv ∩ Stw = ∅.
Besides, according to the lazy and logical propagation procedure, only Sv and
Stw correspond to conceptual elements, for this reason, we call the set Sv ∪ Stw

actual extensional schema. For example, the partition of the extensional schemas
S0 and S1 are shown in the right part of Figures 3 and 4.

One of the main advantages of this approach is that, since the extensional
database schema remains unchanged, the old software applications can continue
being executed directly on the tables where they were defined. In this way the
changes on software applications are delayed, minimizing the impact of evolution.

3 Backward-Forward Restructuring Process

Having explained our previous research results on which the contributions of
this paper are built, in this section we identify some management problems

142 E. Domnguez, J. Lloret, Á. L. Rubio, and M. A. Zapata

that can arise within a view-based relational database and which can imply the
restructuration of the database. After explaining these problems, we describe
how our prior proposal [4, 5] is enhanced in order to settle them.

Two kinds of DML operations can be performed on the resultant extensional
schema: those coming from the old applications and those coming from an exter-
nal source as, for example, scripts of DML operations. The former do not entail
any problem, since, as we have said before, they continue being executed directly
on the tables where they were defined, that is tables of Stv and Stw. However
the latter, as we will see, can be problematic.

First, we are only interested in external DML operations that conform with
the conceptual schema, that is, operations defined on the actual extensional
schema (Sv ∪ Stw). For example, the address of an employee can be modified in
the extensional schema S1 of Figure 4 (it is a valid operation) however we do not
intend to consider it because it does not conform with the conceptual schema
S1 (according to this schema this attribute does not exist).

In this context the well-known problem of view updatability arises, that is,
DML operations defined on a view cannot always be translated to the base
tables. There exist some structural requisites in order for a view to be fully
updatable [3, 9].

For example, we are going to consider that a second set of database evolu-
tions occurs. From the schema S1, the attribute department is transformed into
an entity type department, a new entity type building is added and a new
relationship type situatedIn between department and building is settled. Fi-
nally, a new entity type project and a new relationship type worksIn between
employee and project are also added. All these changes give rise to schema S2

and the corresponding extensional schema (see Figure 5).

department

department

project

id worksIn

1

isHiredBy

1

N

N

building

id

N

situatedIn

N

worksIn(idEmployee, idProject)

building(id)

project(id)

situatedIn(department, idBuilding)

vEmployee

 SELECT id, name, department,

idCity, idProject

 FROM employee, worksIn

 WHERE employee.id=worksIn.idEmployee

vDepartment

 SELECT DISTINCT department

 FROM employee

 WHERE department IS NOT NULL

employee(id, name,

address, department,

idCity)

Extensional schema S2

StvStwSv

actual extensional schema S2

Conceptual Schema S2

employee

city

livesInN 1id

name id

name

city(id, name)

Fig. 5. Second evolved schema

Stones Falling in Water 143

Let us suppose that, according to the conceptual schema S2, a new depart-
ment needs to be added. As the base table where the information about depart-
ments is stored is the table employee, the insertion of the department could
be done in this table but we do not consider it a feasible solution, since it
would oblige us to insert a new employee for this department (which is not the
case). Considering that the entity type department is translated into the view
vDepartment, another option is to insert a department in this view. However,
as we will see later on, this view is not insertable and the operation cannot be
done. The consequence is that, in this situation, the extensional schema must be
restructured propagating the addition of the entity type department in order to
be able to insert a new department.

As one of our main contributions, we identify in Section 4 when an oper-
ation on a view can not be translated into base tables. In these cases the ex-
tensional, logical and translational schemas must be restructured. In Section 5,
as another of our main contributions, we describe a backward–forward main-
tenance technique for determining how these schema restructurations are per-
formed. This restructuration process is depicted in the bottom part of Figure 2.
The backward–forward process is represented by means of bidirectional arrows
and the modifications performed in the schemas are represented changing the
size of the involved pieces, in particular the ‘View’ piece is represented with a
different size and shape.

Before explaining the ‘when’ and ‘how’, we want to note that, as we will see
later on, the proposed backward–forward process requires that the extensional
and logical components obtain information from the conceptual component. For
this reason, we have had to introduce a slight modification in MeDEA with
regard to the proposal we presented in [4]. The modification is that the arrows
representing the communication among the processors are bidirectional.

4 When to Restructure

In this section we answer the following question: Under which conditions is it
possible to translate an operation on views into an operation on base tables?
This is the updatability problem, which has been widely dealt with in numerous
research papers [3, 9] and it is known that not every DML operation on views can
be translated to the base tables. The question is to determine which operations
on views can be translated into an operation on base tables.

For dealing with this question, we have decided to make independent the
definition of updatability of the particular DBMS chosen, so we have defined
updatability at the logical level. In this context, we have followed the solution
of [9]. The paper [9] offers ‘a theory within the framework of the ER approach
that characterizes the conditions under which there exist mappings from view
updates into updates on the conceptual schema’. It includes a set of definitions
and theorems which determine, for entity types and relationship types views,
whether they are insertable, deletable or updatable.

144 E. Domnguez, J. Lloret, Á. L. Rubio, and M. A. Zapata

Our solution has been to adapt the view updatability algorithm of [9] to
our particular context in which views are defined on the logical and on the
extensional schema, unlike [9], where views are defined on the E/R schema. This
adaptation can be handled because, in our evolution architecture, the conceptual
and logical components are interconnected. Thus, we have rewritten the concepts
and theorems of [9] in terms of our evolution architecture, generating in this way
an integrated solution for the problem of when to restructure the database. For
example, about deletability of view relationship types and about insertability in
view entity types, [9] offers the following:

‘Theorem 2. Let R be a view relationship set with relationship derivation
< R1, ..., Rn >. R is deletable if and only if R is functionally equivalent to some
relationship set Ri w.r.t. < R1, ..., Rn > where i ∈ {1, 2, ..., n}.’

‘Theorem 4. A view entity type is insertable if and only if the identifier of
its base entity type is included in the view’.

In our context, we have reelaborated these theorems as follows:
Deletability Theorem. Let R be a logical select-project-join view defined

on base relation schemas R1, ..., Rn, R is deletable if and only if there is a one–
to–one correspondence between the rows of R and the rows of Ri for some i.

Insertability Theorem. A logical view V built on a relation schema R is
insertable if and only if the attributes of the key of the relation schema R are
included in the view V.

If the Insertability Theorem determines that a view is insertable, an insert
operation on it is accepted and will be executed provided that the integrity
constraints are satisfied. For executing the operation, we will apply an adaptation
to our forward database maintenance context of the View Update Translation
Algorithm of [9]. Analogously for the Deletability Theorem.

These ideas are gathered in the rule for managing external DML operations
(see Figure 6). In this rule, when an operation is accepted, it is executed if
the integrity constraints are satisfied. We are going to explain this rule through
several examples of application.

EVENT: DML operation q on table or view x of Stw or Sv

ACTION:
IF x is table THEN accept q
ELSE
 v <-- getLogicalElement(x)
 IF v is updatable THEN accept q
 ELSE restructure(x);
 END IF
END IF

Fig. 6. Rule for managing external DML operations

Example 1. Let us suppose the situation of schema S1 in which, from the
schema S0, the attribute address has been deleted. As a consequence, at the
extensional level, we have created a new view vEmployee on the previously exist-

Stones Falling in Water 145

ing table employee. The view vEmployee contains all the columns of employee
except the column address.

Then, if we try to add a new employee through an external DML operation
on the view vEmployee, the rule of Figure 6 for managing the operations is fired.
Next, the view vEmployee of the logical level is retrieved and the Insertability
Theorem is applied in order to determine whether it is insertable. The view
vEmployee is built on the relation schema employee. The column id, which is
the key of the relation schema employee is included in the view vEmployee. So
according to our Insertability Theorem, vEmployee is insertable and therefore
the operation will be accepted.

Example 2. Let us suppose that the situation is that of schema S2. Then,
we try to delete an employee through an external DML operation on the view
vEmployee. The rule of Figure 6 for managing the operations is fired. Next, the
view vEmployee of the logical level is retrieved, the Deletability Theorem is ap-
plied, which determines that the view vEmployee is deletable and the operation
is accepted.

Let us now suppose that we try to add a new department through an ex-
ternal DML operation on the view vDepartment. Then, the rule of Figure 6 for
managing the operations is fired, the corresponding logical view vDepartment

is retrieved and the Insertability Theorem is applied in order to determine if it
is insertable. The view vDepartment is built on the relation schema employee

and the attributes of the key of employee are not included in the view vDe-
partment. So, the view vDepartment is not insertable and the operation will not
be accepted. In this case, the algorithm determines that the schemas must be
restructured in order to insert the new department.

In the next section, we describe the main features of the algorithm which
restructures a view–based relational database.

5 How to Restructure

When a DML operation on a view cannot be translated into base tables, the
rule for managing DML operations of Figure 6 indicates that the extensional
database must be restructured. This section is devoted to explaining how the
extensional schema is modified and how the SQL code is generated in order to
restructure the extensional database.

The goal of the restructure algorithm is to make the minimal extensional
schema changes so that the DML operation can be executed on the new ex-
tensional schema. For this goal, we considered two options. One of them was a
backward propagation and the other was a backward–forward propagation. With
regard to the former, we identified at the extensional level the tables and views
that must be restructured (for example, by querying the upper components of
the architecture) and the changes were propagated backwards to the logical and
to the translation component. For the latter, we proposed to identify, at the
conceptual level, the elements which correspond to the view where the opera-
tion is defined and to consider reapplying the translation rules to these elements

146 E. Domnguez, J. Lloret, Á. L. Rubio, and M. A. Zapata

and to the adjacent elements. These changes will then be propagated forward to
the logical and extensional levels. We have chosen the idea of backward–forward
propagation for the restructure algorithm because we can reuse the main ele-
ments of our architecture and, particularly, the translation component.

Tasks for restructuring. For the backward–forward propagation idea, two
tasks are interspersed in the restructure algorithm. First, identify the conceptual
elements related with the restructuration. Second, for each one of these concep-
tual elements its translation to the logical and extensional levels is modified. For
the second task, three circunstances can appear:

1. A new translation rule is applied.
2. The same translation rule as before is reapplied but its effects will be different

from the effects when it was previously applied.
3. Nothing is changed (the same translation rule would be applied but it would

produce the same effect).

As we will see in more detail, these three possibilities appear, for example,
when we try to make an insertion on view vDepartment of schema S2. According
to the Insertability Theorem, the view is not insertable. So, in order to do the
insertion, a new translation rule must be applied to the department entity type
translating it into a table department (first possibility). As a consequence, the
entity type employee must be retranslated. In this case, as before, it is trans-
lated into the view vEmployee, using the same translation rule, but the result
is different since an attribute related with the new table department must be
incorporated (second possibility). However, the translation of the entity type
building must not be changed (third possibility).

Algorithm. After having described the tasks involved, we go into depth
about the restructure algorithm by explaining how the two previously described
tasks are performed in the algorithm. The input of the algorithm is the view on
which the DML operation is defined. First, the conceptual element c which corre-
sponds to the view v is retrieved (line 3). Then, the procedure considerApply-

TranslRule is executed for the element c (line 4). This procedure, which is used
several times in the algorithm, translates a conceptual element performing one
of the three possibilities previously mentioned.

If c is an entity type, then the relationship types where c participates may
change their translation rules (lines 5 to 12 of Figure 7). For this purpose, the
first relationship type processed must be the relationship type which connects c
with the entity type which corresponds to the relation schema which contains the
information of the view. For example, for the entity type department, the entity
type which corresponds to the relation schema which contains the information
of the view vDepartment is employee, so the first processed relationship type
must be isHiredBy.

Then, the reapplication of a translation rule is considered, first for each re-
lationship type (line 7) and, next, for each participant of the relationship type
(line 9), with the same three possibilities of translation we have mentioned be-
fore. If the conceptual element is a relationship type, then the reapplication of
translation rules to its participants is considered (line 15).

Stones Falling in Water 147

INPUT: v view

OUTPUT: Changes on the translation, logical and extensional schema

c<--getConceptualElement(v)

considerApplyTranslRule(c)

 IF c is entity type THEN

 FOR each r relationship type where c participates DO

considerApplyTranslRule(r)

 FOR each p participant in r different from c DO

considerApplyTranslRule(p)

 END FOR

 END FOR

 END IF

IF c is relationship type THEN

 FOR each p participant in c DO

considerApplyTranslRule(p)

 END FOR

 END IF

Fig. 7. Algorithm for restructuring the translation, logical and extensional schema

A noteworthy characteristic of our algorithm is that the restructuration tech-
nique we propose only makes the compulsory changes so that the desired opera-
tion can be executed on the new extensional schema. This idea can be metaphor-
ically compared with a stone falling in water. When a stone falls in water, the
effect does not remain at the point where the stone touches the water, but it is
propagated towards the shore in the form of several concentric waves (and not in
an irregular fashion). In a similar way, the retranslation of a conceptual element
is the stone which drops onto the schemas and this change generates concentric
waves that carry the minimal changes towards other pieces of the schemas.

After having restructured the logical and the extensional schema, there can
be queries which are no longer valid, for varied reasons, as they use views which
no longer exist. In our example, the queries using the view vDepartment are no
longer valid. So, these queries must be recreated. As a future work, we want to
define a conceptual query language that allows us to specify the queries at the
conceptual component. Then, they will be translated by an algorithm to the log-
ical component. Afterwards, when the database is restructured, the queries will
be automatically restructured by taking advantage of the translation component.
For the moment, the recreation of each query is done manually.

Example. Let us consider again the previously mentioned insert on view
vDepartment of schema S2. Then, the rule for managing external DML opera-
tions (Figure 6) is fired because the event is an operation on a view of Sv. As,
according to the Insertability Theorem, the view vDepartment is not insertable,
the restructure algorithm is executed. Its input is the view vDepartment and its
output is the SQL code of Figure 8.

Going step by step in the algorithm, first the conceptual element, that is
the entity type department, is retrieved (line 3) and the change of its transla-
tion rule is executed. To be specific, the first possibility of the previously de-
scribed possibilities for the translation rules is applied, and the translation rule
EntityTypeToRelSch01 is now executed for the entity type department. This
application does not modify the conceptual schema (the entity type department
remains the same) and is captured by the view–based propagation algorithm.

148 E. Domnguez, J. Lloret, Á. L. Rubio, and M. A. Zapata

This algorithm modifies values of the architecture components. For example,
after the change, the entity type department is translated to a relation schema
instead of to a view. Next, the logical subalgorithm is executed and, as a result,
a new relation schema is created for the department entity type. Finally, the
extensional subalgorithm applies a rule and a new table department is created
by means of SQL sentences (a) to (d) of Figure 8. Once the view vDepartment

is no longer valid, it is dropped (sentence e). From now on, we do not detail the
effect of the changes on each component of the architecture and we describe only
the effect on the extensional component.

Next, the relationship types where the entity type department participates
are retrieved in order: isHiredBy and situatedIn. For the first one, the first
case for applying a translation rule is applied, because the relationship type
isHiredBy can no longer be translated into the view vEmployee. This appli-
cation is captured by the view–based propagation algorithm, which translates
them to the rest of the components. In particular, a procedure is fired, which
loads data into the column isHiredBy just added to the table employee. As a
result sentences (f), (g) and (h) of Figure 8 are executed. For the participant
employee of isHiredBy, the translation rule EntityTypeToView01 is reapplied,
giving place to sentence (j).

Next, the relationship type situatedIn is processed. The sentences (k) to the
end are the result of the reapplication of the translation rule RelSchPerNNRelType
to the relationship type situatedIn.

a. CREATE TABLE department(id INTEGER, department VARCHAR2(30))

b. INSERT INTO department(department) SELECT * FROM vDepartment

c. UPDATE department SET id=rownum

d. ALTER TABLE department ADD CONSTRAINT pk10 PRIMARY KEY(id)

e. DROP VIEW vDepartment

f. ALTER TABLE employee ADD isHiredBy INTEGER

g. UPDATE employee e SET isHiredBy=(SELECT id FROM department WHERE department=e.department)

h. ALTER TABLE employee ADD CONSTRAINT fk10 FOREIGN KEY (isHiredBy) REFERENCES department(id)

i. ALTER TABLE employee DROP COLUMN department

j. CREATE OR REPLACE VIEW vEmployee AS SELECT id, name, isHiredBy, idCity, idProject

 FROM employee, worksIn WHERE employee.id=worksIn.idEmployee

k. ALTER TABLE situatedIn ADD idDepartment INTEGER

l. UPDATE situatedIn s SET idDepartment=(SELECT id FROM department WHERE department=s.department)

m. ALTER TABLE situatedIn ADD CONSTRAINT fk11 FOREIGN KEY (idDepartment) REFERENCES department(id)

n. ALTER TABLE situatedIn DROP CONSTRAINT pk5

o. ALTER TABLE situatedIn DROP COLUMN department

p. ALTER TABLE situatedIn ADD CONSTRAINT pk5 PRIMARY KEY (idDepartment, idBuilding)

Fig. 8. Generated SQL code

6 Related Work

Within schema evolution, several authors analyze the impact of schema changes
on data [2]. However, less attention has been devoted to avoiding or minimizing
the impact of schema changes in applications [7]. The few proposals that can
be found normally focus their attention on the definition of facilities to perform
the reprogramming tasks, for example identifying the impacts [8, 11] or propos-
ing programming techniques to enhance the adaptability of database programs
against schema evolution [10]. Another approach, within which our work is in-
cluded, is to minimize the impact of changes presenting different proposals [6].

Stones Falling in Water 149

The technique we have used to minimize the impact has been carried out by
means of views. As a first stage, the changes are gathered by means of views
without affecting other application programs [5]. Several authors have proposed
the use of views with this aim [13]. However, the main noteworthy characteristic
of our proposal is to inscribe it within a model driven development for databases,
considering three different abstraction levels: conceptual, logical and extensional
and within a metamodeling context.

Other recent papers use ‘some notion of view’ in order to perform database
maintenance tasks. For instance, in [1] the starting point is the existence of
materialized views that store data integrated from multiple, heterogenous data
sources. This marks an important difference with our work, since in our case
we do not deal with materialized views but pure relational views that directly
grant access to some part of one database schema. Besides, neither an evolution
setting, nor an explicit conceptual level are considered in [1]. The paper [12]
uses a database conceptual level, by means of a new E/R variant (called EDM)
and a conceptual query language (called Entity SQL). However, the concept of
view used in that paper is a kind of bridge between queries expressed in Entity
SQL and queries expressed in pure SQL, and it does not correspond to the usual
notion of relational view that we use in the present paper.

In any case, views do not completely solve the problem due to the well–
known problem of view updatability [9]. Several authors have proposed rules to
determine when a view is updatable [3, 9]. To deal with this problem, we propose,
as the main contribution of this paper, a second stage so that an algorithm
detects when an operation obliges a modification of the schema and another
algorithm determines only the compulsory schema changes in order to minimize
the applications impact. In this way changes are delayed as far as possible.

The view updatability is defined in a general way by several authors whereas
we use it in a specific context of schema evolution within a lazy propagation
mechanism. In this case we have decided to base our proposal on the one we
consider the most complete [9]. But this is defined in ER and we have translated
it to the relational model.

Lastly, we highlight that when the changes cannot be delayed any more, views
are used to determine the conceptual changes that have to be propagated. For
this reason views codify the changes to be undertaken, which is not considered
by other authors. Furthermore a DML extensional operation that obliges the
extensional schema database to be changed is translated to the most abstract
level and then propagated in a forward fashion. The novelty of this proposal is
to transform a backward maintenance task [7] into a forward maintenance task.

7 Conclusions and Further Work

The use of views can reduce the impact that database modifications produce on
application programs, since changes in the database are delayed until absolutely
necessary. However, it can happen that these changes ultimately become manda-
tory because of the problem of updatability of views. In the present paper, we

150 E. Domnguez, J. Lloret, Á. L. Rubio, and M. A. Zapata

have presented an approach that, on the one hand detects when such changes
convert into compulsory ones, and, on the other hand indicates how to perform
database maintenance using the tools and facilities provided by the MeDEA ar-
chitecture. The overall contribution means that database engineers are provided
with an infrastructure that allows them to perform semi-automated evolution
and maintenance tasks in such a way that the structure and extension of the
database is altered only when it is absolutely necessary. This situation allows
applications using these modified databases to continue functioning unchanged
for a longer time period.

From here, several lines of work are opened up. Our proposal is inspired in
part by the work [9], which uses views at the conceptual level. Since we only
use views at the logical level, it would be interesting to analyze the impact
that the introduction of views at the conceptual level would have on our overall
proposal. Another distinct line, but related with the above, would be to introduce
a query language at the conceptual level so that updatability problems could be
addressed directly at this level.

References

1. S. Chen, X. Zhang and E. A. Rundensteiner, A Compensation–Based Approach for
View Maintenance in Distributed Environments, IEEE Transactions on Knowledge

and Data Engineering 18(8), 1068–1081, 2006.
2. C. A. Curino, H. J. Moon, C. Zaniolo, Graceful Database Schema Evolution: the

PRISM Workbench, Proceedings of the VLDB Endowment, 1 (1), 761-772, 2008.
3. U. Dayal, P. A. Bernstein, On the Correct Translation of Update Operations on

Relational Views, ACM Transactions on Database Systems 7(3), 1982, 381-416.
4. E. Domı́nguez, J. Lloret, A. L. Rubio, M. A. Zapata, MeDEA: A database evolution

architecture with traceability, Data Knowledge Engineering, 65(3), 2008, 419–441.
5. E. Domı́nguez, J. Lloret, A. L. Rubio, M. A. Zapata, Model–Driven, View–Based

Evolution of Relational Databases, DEXA’08 , LNCS 5181, 2008, 822-836.
6. J. Henrard, J. M. Hick, P. Thiran, J. L. Hainaut, Strategies for Data Reengineering,

Procs. of the 9th Working Conference on Reverse Engineering, 211-220, 2002.
7. J. M. Hick, J. L. Hainaut, Database application evolution: A transformational

approach, Data Knowledge Engineering, 59 (3), 2006, 534–558.
8. A. Karahasanovic, Identifying Impacts of Database Schema Changes on Applica-

tions, Proceedings of the 8th Doctoral Consortium at the CAiSE, 93-104, 2001
9. T. W. Ling, M.L. Lee, View Update in Entity-Relationship Approach, Data Knowl-

edge Engineering 19(2), 1996, 135–169
10. L. Liu, R. Zicari, W. Hürsch, K. J. Lieberherr, The Role of Polymorphic Reuse

Mechanisms in Schema Evolution in an Object-Oriented Database, IEEE Trans-

actions on Knowledge and Data Engineering 9(1), 50-67, 1997.
11. A. Maule, W. Emmerich and D. S. Rosenblum, Impact Analysis of Database

Schema Change, In 30th Intl. Conf. on Software Engineering, 451-460, 2008.
12. S. Melnik, A. Adya and P. A. Bernstein, Compiling Mappings to Bridge Applica-

tions and Databases, ACM Transactions on Database Systems 33(4), 22, 2008.
13. Y. G. Ra, E. A. Rundensteiner, A Transparent Object–Oriented Schema Change

Approach Using View Evolution, Intl. Conf. on Data Engineering, 165-172, 1995.

