
Finding and specifying relations between ontology
versions

Michel Klein 1 and Atanas Kiryakov2 and Damyan Ognyanoff3 and Dieter Fensel4

Abstract. Interoperability between different existing ontologies is
import to leverage the use of ontologies. However, the interoperabil-
ity between differentversionsof ontologies is at least as important.
Especially when ontologies are used in a distributed and dynamic
context as the Web, we can expect that ontologies will rapidly evolve
and thus may cause incompatibilities. This paper describes a system
that helps to keep different versions of web-based ontologies inter-
operable. To achieve this, the system allows ontology engineers to
compare versions of ontology and to specify the conceptual relations
between the different versions of concepts. Internally, the system
maintains the transformations between ontologies, some meta-data
about the version, as well as the conceptual relation between con-
cepts in different versions. This paper briefly describes the system,
presents the mechanism that we used to find and classify changes in
RDF-based ontologies, and discusses how this may be used to spec-
ify relations between ontologies that improve their interoperability.

1 ONTOLOGY EVOLUTION THREATENS
INTEROPERABILITY

Ontologies have become popular because of their promise of knowl-
edge sharing and reuse [10]. Interoperability between ontologies is
an important issue, because the reuse of knowledge often implies that
different existing ontologies are used together. This requires that the
knowledge represented in the ontologies is not conflicting. However,
ontology interoperability is not only important between different ex-
isting ontologies, it is also an issue between differentversionsof an
ontology. This is especially relevant when ontologies are used in the
context of the Semantic Web [5].

In this vision, ontologies have a role in defining and relating con-
cepts that are used to describe data on the web. The distributed and
dynamic character of the web will cause that many versions and vari-
ants of ontologies will arise. Ontologies are often developed by sev-
eral persons and continue to evolve over time. Moreover, domain
changes, adaptations to different tasks, or changes in the conceptu-
alization might cause modifications of the ontology. This will likely
cause incompatibilities in the applications and ontologies that refer
to them, and will give wrong interpretations to data or make data
inaccessible [11].

To handle ontology changes, a change management system is
needed that keeps track of changes and versions of ontologies. More-
over, it is necessary to maintain the links between the versions and
variants that specify the relations and updates between the versions.

1 Vrije Universiteit Amsterdam, michel.klein@cs.vu.nl
2 OntoText, Sofia, Atanas.Kiryakov@sirma.bg
3 OntoText, Sofia, damyan@sirma.bg
4 Vrije Universiteit Amsterdam, dieter@cs.vu.nl

These links can be used to re-interpret data and knowledge under
different versions. The ontologies and their relations together form a
webof ontologies. The specification of these links is thus very im-
portant.

In this paper, we present a web-based system that supports the
user in specifying the conceptual relation between version of con-
cepts. The system, called OntoView, also maintains those links, to-
gether with the transformations between them. It use them to provide
a transparent interface to different versions of ontologies, both at a
specification level as at a conceptual level. It can also export the dif-
ferences between versions as separate “mapping ontologies”, which
can be used as adapters for the re-interpretation of data and other
ontologies. The goal of this system is not to provide a central reg-
istry for ontologies, but to allow ontology engineers to store their
versions and variants of ontologies and relate them to other (pos-
sibly remote) ontologies. The resulting mapping relations between
versions can also be exported and used outside the system.

Most of the ideas underlying the versioning system are not de-
pending on a specific ontology language. However, the implemen-
tation of specific parts of the system will be dependent on the used
ontology language, for example the mechanism to detect changes.
Throughout this article, we will use DAML+OIL5 [8, 9] and RDF
Schema (RDFS) [7] as ontology languages. These two languages are
widely considered as basis for future ontology languages for the Web.

The rest of the paper is organized as follows. In the next section,
we discuss some issues about update relations between ontologies. In
section 3, we give an overview of the versioning system and describe
its the main functions. Section 4 describes the main feature of the
system: comparing ontologies. In that section, we explain the mech-
anism we used to find changes in RDF-based ontologies and present
some of the rules that we used to encode change types. Finally, we
conclude the paper in section 6.

2 THE UPDATE RELATION BETWEEN
ONTOLOGIES

There are three important aspects to discuss when considering an
update relation between ontologies. First, this isthe difference be-
tween update relations and conceptual relations inside an ontol-
ogy.

Ontologies usually consist of a set of class (or concept) definitions,
property definitions and axioms about them. The classes, properties
and axioms are related to each other and together form a model of
a part of the world. A change constitutes a new version of the on-
tology. This new version defines an orthogonal relation between the

5 Available fromhttp://www.daml.org/language/

http://www.daml.org/language/


definitions of concepts and properties in the original version of the
ontology and those in the new version. This is depicted in Figure 1.

Figure 1. Orthogonal relations between classes in two version of an ontol-
ogy (dashed arrows)

The relations between concepts inside an ontology, e.g. between
classA and classB, is thus a fundamentally different relation from
the update relation between two versions of a concept, e.g. between
classA1.0 and classA2.0. In the first case, the relation is a purely
conceptual relation in the domain; in the second case, however, the
relation describes meta-information about the change of the concept.

Nevertheless, two version of a concept still havesomeconceptual
relation. This relation, however, is not determined by the update it-
self, but accompanying information of an update relation. There are
other characteristics of an update relation, too. We distinguish the
following properties that can be associated with an update relation:

• transformation or actual change: a specification of what has ac-
tually changed in an ontological definition, specified by a set of
change operations (cf. [1]), e.g., change of a restriction on a prop-
erty, addition of a class, removal of a property, etc.;

• conceptual relation: the logical relation between constructs in the
two versions of the ontology, e.g., specified by equivalence rela-
tions, subsumption relations, or logical rules;

• descriptive meta-data likedate, author, andintention of the up-
date: this describes the when, who and why of the change;

• valid context: a description of the context in which the update is
valid. In its simplest form, this might consist of the date when the
change is valid in the real world, conform tovalid datein temporal
databases [15] (in this terminology, the “date” in the descriptive
meta-data is calledtransaction date). More extensive descriptions
of the context, in various degrees of formality, are also possible.

A well-designed ontology change specification mechanism should
take all these characteristics into account.

Another issue to discuss about ontology updates is thepossible
discrepancy between changes in the specification and changes
the conceptualization. We have seen that a ontology is aspecifi-
cation of a conceptualization. The actual specification of concepts
and properties is thus aspecific representationof the conceptualiza-
tion: the same concepts could also have been specified differently.
Hence, a change in the specification does not necessarily coincide
with a change in the conceptualization [11], and changes in the spec-
ification of an ontology are not per definition ontological changes.

For example, there are changes in the definition of a concept which
are not meant to change the concept, and, the other way around, a
concept can change without a change in its logical definition. An ex-
ample of the first case is attaching a slot “fuel-type” to a class “Car”.
Both class-definitions still refer to the same ontological concept, but
in the second version it is described more extensively. On the other

hand, a natural language definition of a concept might change, e.g.
the new definition of “chair” might exclude reclining-chairs” without
a logical change of the concept.

The intention of a change is made explicit by categorizing them
into the following categories [16]:

• conceptual change: a change in the way a domain is interpreted
(conceptualized), which results in different ontological concepts
or different relations between those concepts;

• explication change: a change in the way the conceptualization is
specified, without changing the conceptualization itself.

A change cannot be automatically classified as belonging to one of
these categories, because it is basically a decision of the modeler.
However, heuristics can be applied to suggest the effects of changes.
We will discuss that later on.

A third, somewhat different, aspect of an update is thepackaging
of changes, i.e., the way in which updates are applied to an ontol-
ogy. This is an important practical issue for the development of an
ontology change management system.

We can distinguish two different dimensions with respect to the
packaging of the change specification. One dimension is thegran-
ularity of the specification: this can be either the level of a single
“definition” or the level of a “file” as a whole.

The second dimension is themethodof specification. There are
several methods thinkable:

• a “transformation specification”: an update specified by a list of
change operations (e.g., add A, change B, delete C);

• a “replacement”: an update specified by replacing the old version
of a concept or an ontology with a new version; this is an implicit
change specification;

• a “mapping”: an update specified as a mapping between the orig-
inal ontology and another one. Although this is not a update in
the regular sense, an explicit mapping to another ontology can be
considered as an update to the viewpoint of that ontology.

This gives several possible change specifications. For example, a
change can be specified individually, as a mapping between one spe-
cific definition in one ontology and another definition in another on-
tology, but it can also be done at a file level, by defining the transfor-
mation of the ontology.

Notice that the packaging methods are not equivalent, i.e., they do
not give the same information about the update relation. It is clear
that the mapping provides a conceptual relation between versions of
concepts that is not specified in a transformation.

3 GENERAL DESCRIPTION OF ONTOVIEW

OntoView is a web-based system under development that provides
support for the versioning of online ontologies, which might help
to solve some of the problems of evolving ontologies on the web.
Its main function is to help the a user to manage changes in ontolo-
gies and keep ontology versions as much interoperable as possible.
It does that by comparing versions of ontologies and highlighting the
differences. It then allows the users to specify the conceptual relation
between the different versions of concepts. This function is described
more extensively in the next section.

It also provides a transparent interface to arbitrary versions of on-
tologies. To achieve this, the system maintains an internal specifica-
tion of the relation between the different variants of ontologies, with
the aspects that were defined in section 2: it keeps track of themeta-
data, theconceptual relationsbetween constructs in the ontologies
and thetransformations between them.

2



OntoView is inspired by the Concurrent Versioning System
CVS [4], which is used in software development to allow collabo-
rative development of source code. The first implementation is also
based on CVS and its web-interface CVSWeb6. However, during the
ongoing development of the system, we are gradually shifting to a
complete new implementation that will be build on a solid storage
system for ontologies, e.g., Sesame7.

Besides the ontology comparison feature, the system has the fol-
lowing functions:

• Reading changes and ontologies.OntoView will accept changes
and ontologies via several methods. Currently, ontologies can be
read in as a whole, either by providing a URL or by uploading
them to the system. The user has to specify whether the provided
ontology is new or that it should be considered as an update to
an already known ontology. In the first case, the user also has to
provide a “location” for the ontology in the hierarchical structure
of the OntoView system.
Then, the user is guided through a short process in which he is
asked to supply the meta-data of the version (as far as this can not
be derived automatically, such as the date and user), to character-
ize the types of the changes (see below in section 4), and to decide
about the identifier of the ontology.
In the future, OntoView will also accept changes by reading in
transformations, mapping ontologies, and updates to individual
definitions. These update methods provides the system with dif-
ferent information than the method described above. For that rea-
son, this also requires an adaptation of the process in which the
user gives additional information.

• Identification. Identification of versions of ontologies is very im-
portant. Ontologies describe a consensual view on a part of the
world and function as reference for that specific conceptualiza-
tion. Therefore, they should have a unique and stable identifica-
tion. A human, agent or system that conforms to a specific ontol-
ogy, should be able to refer to it unambiguously.
Usually, the XML Namespace mechanism [6] is used for the iden-
tification of web-based ontologies. This means that an ontology
is identified by a URI, i.e. a unique pointer on the web. In prac-
tice, people tend to use the location (the URL) of the ontology
file on the web as identifier. OntoView also uses the namespace
mechanism for identification, but does not necessarily use the lo-
cation of the ontology file. If a change does not constitute a con-
ceptual change, the new version gets a new location, but does not
get a new identifier. For example, the location of an ontology can
change from “../example/1.0/rev0” to “../example/1.0/rev1”, while
the identifier is still “../example/1.0”.
OntoView supports two ways of persistent and unique identi-
fication of web-based ontologies. First, it can in itself guaran-
tee the uniqueness and persistency of namespaces that start with
“http://ontoview.org/”, because the system is located at the domain
ontoview.org . Second, because the location and identification
of ontologies are only loosely coupled, it can also store ontologies
with arbitrary namespaces. In this case, the ontology engineer is
responsible for guaranteeing the uniqueness. The ontologies with
arbitrary namespaces are not directly retrievable by their names-
pace, but can be accessed via a search function.

• Analyzing effects of changes.Changes in ontologies do not only
affect the data and applications that use them, but they can also

6 Available from http://stud.fh-heilbronn.de/˜zeller/
cgi/cvsweb.cgi/

7 A demo is available athttp://sesame.aidministrator.nl

have unintended, unexpected and unforeseeable consequences in
the ontology itself [13].
OntoView provides some basic support for the analysis of these ef-
fects. First, on request it can also highlight the places in the ontol-
ogy where conceptually changed concepts or properties are used.
For example, if a property “hasChild” is changed, it will high-
light the definition of the class “Mother”, which uses the property
“hasChild”. In the future, this function should also exploit the tran-
sitivity of properties to show the propagation of possible changes
through the ontology.
Further, we expect to extend the system with a reasoner to au-
tomatically verify the changes and the specified conceptual rela-
tions between versions. For example, we could couple the sys-
tem with FaCT [3] and exploit the Description Logic semantics of
DAML+OIL to check the consistency of the ontology and look for
unexpected implied relations.

• Exporting changes.The main advantage of storing the concep-
tual relations between versions of concepts and properties is the
ability to use these relations for the re-interpretation of data and
other ontologies that use the changed ontology. To facilitate this,
OntoView can export differences between ontologies as sepa-
rate mapping ontologies, which can be used as adapters for data
sources or other ontologies. They only provide a partial mapping,
because not all changes can be specified conceptually.
The exported mapping ontologies are represented with the stan-
dard constructs of the ontology langauge. Because in OntoView
the conceptual relation and the actual transformation are stored
separately, it is not necessary to extend the ontology language with
more advanced mapping- or transformation primitives than those
already available.
The meta-data about the ontology update is specified as a set of
properties of the conceptual relations themselves. In DAML+OIL,
this meant that we had to re-ify the mapping statements.8 This
method has two advantages. First, when specified over re-ified
statements, the meta-data does not interfere with the actual onto-
logical knowledge, as would be the case when meta-data is spec-
ified as characteristics of classes and properties. Second, because
the meta-data is data about themappings themselves, agents or
systems that understand the meta-data can use this to decide which
mappings are applicable in a specific context and which are not.
In the future, it should also be possible to exporttransforma-
tions between two versions of an ontology. A transformation is
a complete specification of all the change operations. This can
be used to re-execute changes and to update ontologies that have
some overlap with the versioned ontology in exactly the same way
as the original one. However, transformations facilitates data re-
interpretations only to a very small extent. A mapping ontology
provides better re-interpretation, because it also captures human
knowledge about the relations.

4 COMPARING ONTOLOGIES

One of the central features of OntoView is the ability to compare
ontologies at a structural level. The comparison function is inspired
by UNIX diff , but the implementation is quite different. Standard
diff compares file version at line-level, highlighting the lines that

8 The DAML+OIL semantics do not currently cover reification because of
the undecidability of second-order logic. However, there is an awareness
that use reification for “tagging” purposes — as we do — is different from
full second-order logic. Seehttp://www.daml.org/language/
features.html .

3

ontoview.org
http://stud.fh-heilbronn.de/~zeller/cgi/cvsweb.cgi/
http://stud.fh-heilbronn.de/~zeller/cgi/cvsweb.cgi/
http://sesame.aidministrator.nl
http://www.daml.org/language/features.html
http://www.daml.org/language/features.html


textually differ in two versions. OntoView, in contrast, compares ver-
sion of ontologies at astructural level, showing which definitions of
ontological concepts or properties are changed. An example of such
a graphical comparison of two versions of a DAML+OIL ontology is
depicted in Figure 2.9

4.1 Types of change

The comparison function distinguishes between the following types
of change:

• Non-logical change, e.g. in a natural language description. In
DAML+OIL, this are changes in the rdfs:label of an concept or
property, or in a comment inside a definition. An example is the
first highlighted change in Figure 2 (class “Animal’).

• Logical definition change. This is a change in the definition of
a concept that affects its formal semantics. Examples of such
changes are alterations of subClassOf, domain, or range state-
ments. Additions or deletions of local property restrictions in a
class are also logical changes. The second and third change in the
figure is (class “Male” and property “hasParent”) are examples of
such changes.

• Identifier change. This is the case when a concept or property is
given a new identifier, i.e. a renaming.

• Addition of definitions.
• Deletion of definitions.

Most of these changes can be detected completely automatically, ex-
cept for the identifier change. Each type of change is highlighted in
a different color, and the actually changed lines are printed in bold-
face. We describe the mechanism that we use to detect and classify
changes in the next paragraphs.

4.2 Detecting changes

There are two main problems with the detection of changes in on-
tologies. The first problem is the abstraction level at which changes
should be detected. Abstraction is necessary to distinguish between
changes in the representation that affect the meaning, and those that
don’t influence the meaning. It is often possible to represent the
same ontological definition in different ways. For example, in RDF
Schema, there are several ways to define a class:

<rdfs:Class rdf:ID="ExampleClass"/>

or:

<rdf:Description rdf:ID="ExampleClass">
<rdf:type rdf:resource="...chema#Class"/>

</rdf:Description>

Both are valid ways to define a class and have exactly the same mean-
ing. Such a change in the representation would not change the ontol-
ogy. Thus, detecting changes in therepresentationalone is not suffi-
cient.

However abstracting too far can also be a problem: considering
thelogical meaningonly is not enough. In [2] is shown that different
sets of ontological definitions can yield the same set of logical ax-
ioms. Although the logical meaning is not changed in such cases, the

9 This example is based on fictive changes to the DAML example on-
tology, available fromhttp://www.daml.org/2001/03/daml+
oil-ex.daml .

ontology definitely is. Finding the right level of abstraction is thus
important.

Second, even when we found the correct level of abstraction for
change detection, the conceptual implication of such a change is not
yet clear. Because of the difference between conceptual changes and
explication changes (as described in section 2), it is not possible to
derive the conceptual consequence of a change completely on basis
of the visible change only (i.e., the changes in the definitions of con-
cepts and properties). Heuristics can be used to suggest conceptual
consequences, but the intention of the engineer determines the actual
conceptual relation between versions of concepts.

In the next two sections, we explain the algorithm that we used
to compare ontologies at the correct abstraction level, and how users
can specify the conceptual implication of changes.

4.3 Rules for changes

The algorithm uses the fact that the RDF data model [12] underlies a
number of popular ontology languages, including RDF Schema and
DAML+OIL. The RDF data model basically consists of triples of the
form <subject, predicate, object> , which can be linked
by using the object of one triple as the subject of another. There are
several syntaxes available for RDF statement, but they all boil down
to the same data model. An set of related RDF statements can be
represented as a graph with nodes and edges. For example, consider
the following DAML+OIL definition of a class “Person”.

<daml:Class rdf:ID="Person">
<rdfs:subClassOf rdf:resource="#Animal"/>
<rdfs:subClassOf>

<daml:Restriction>
<daml:onProperty rdf:resource="#hasParent"/>
<daml:toClass rdf:resource="#Person"/>

</daml:Restriction>
</rdfs:subClassOf>

</daml:Class>

When interpreted as a DAML+OIL definition, it states that a “Per-
son” is a kind of ”Animal” and that the instances of its hasParent
relation should be of type “Person”. However, for our algorithm, we
are first of all interested in the RDF interpretation of it. That is, we
only look at the triples that are specified, ignoring the DAML+OIL
meaning of the statements. Interpreted as RDF, the above definition
results in the following set of triples:

subject predicate object
Person rdf:type daml:Class
Person rdfs:subClassOf Animal
Person rdfs:subClassOf anon-resource
anon-resource rdf:type daml:Restriction
anon-resource daml:onProperty hasParent
anon-resource daml:toClass Person

This triple set is depicted as a graph in Figure 3. In this figure, the
nodes are resources that function as subject or object of statements,
whereas the arrows represent properties.

The algorithm that we developed to detect changes is the follow-
ing. We first split the document at the first level of the XML docu-
ment. This groups the statements by their intended “definition”. The
definitions are then parsed into RDF triples, which results in a set of
small graphs. Each of these graphs represent a specific definition of
a concept or a property, and each graph can be identified with the
identifier of the concept or the property that it represents.

4

http://www.daml.org/2001/03/daml+oil-ex.daml
http://www.daml.org/2001/03/daml+oil-ex.daml


Figure 2. Comparing two ontologies

Figure 3. An RDF graph of a DAML class definition.

Then, we locate for each graph in the new version the correspond-
ing graph in the previous version of the ontology. Those sets of
graphs are then checked according to a number of rules. Those rules
specify the “required” changes in the triples set (i.e., the graph) for a
specific type of change, as described in section 4.1.

Rules have the following format:

IF exist:old
<A, Y, Z >*

not-exist:new
<X, Y, Z >

THEN change-type A

They specify a set of triples that should exists in one specific version,
and a set that should not exists in another version (or the other way

around) to signal a specific type of change. With this rule mecha-
nism, we were able to specify almost all types of change, except the
identifier change. Here we also used some heuristics, based on the
location of the definition in the file. We list two example rules below.

A change in the value of a local property:

IF exist:old
<X, rdfs:subClassOf, Y1>
<Y1, rdf:type, daml:#Restriction>
<Y1, daml:onProperty, Y2>
<Y1, daml:toClass, Z>

not-exist:new
<Y1, daml:toClass, Z>

THEN logicalChange.localPropertyValue X

5



A change in the property type:

IF exist:old
<X, rdf:type, rdf:#Property>
<X, rdf:type, daml:#UniqueProperty>

not-exist:new
<X, rdf:type, daml:#UniqueProperty>

THEN logicalChange.propertytype X

The rules are specific for a particular RDF-based ontology lan-
guage (in this case DAML+OIL), because they encode the interpre-
tation of the semantics of the language for which they are intended.
For another language other rules would have been necessary to spec-
ify other differences in interpretation. The semantics of the language
are thus encoded in the rules. For example, the last example not looks
at changes in values of predicates (as the first does), but at a change
in the type of property. This is a change that is related to the specific
semantics of DAML+OIL.

Also, notice that the mechanism relies on the “materialization” of
all rdf:type statements that are encoded in the ontology (some-
times called “knowledge compilation”). The last example depend on
the existence of a statement<X,rdf:type,rdf:#Property> .
However, this statement can only be derived using the semantics of
the rdfs:subPropertyOf statement, which — informally spo-
ken10 — says that if a property is an instance of typeX, then it is
also an instance of the supertypes ofX. The application of the rules
thus has to be preceded by the materialization of the superclass- and
superproperty hierarchies in the ontology. For this materialization,
the entailment rules in the RDF Model Theory11 can be used.

4.4 Specifying the conceptual implication of
changes

The comparison function also allows the user tocharacterizethe
conceptual implication of the changes. For the first three types of
changes that were listed in section 4.1, the user is given the option
to label them either as “identical” (i.e., the change is an explica-
tion change), or as “conceptual change”, using the drop-down list
next to the definition (Figure 2). In the latter case, the user can spec-
ify the conceptual relation between the two version of the concept.
For example, the change in the definition of “hasParent” could by
characterized with the relationhasParent 1.1 subPropertyOf
hasParent 1.3.

5 DISCUSSION

There are a few other issues and choices about the design of the sys-
tem that we want to discuss. First, we purposely do not provide sup-
port for finding mappings between arbitrary ontologies. The intention
of our system is to provide users with a system to manage versions
of ontologies and maintain their relations. Finding the relations is a
different task. However, it might be possible to incorporate this func-
tion in a future version of the system, e.g. by interfacing it with a
ontology mapping tool.

Another issue is the visualization of the changes. The current ver-
sions shows the changes by highlighting the textual definitions that
are changed. More advanced visualization techniques are possible.
For example, one could think of techniques that render ontologies in
a graphical representation and highlight the changes in the picture.

10 The precise semantics of RDF Schema are still under discussion.
11 http://www.w3.org/TR/rdf-mt/

We did not yet specify the way in which a “valid context” is
described. Such a context will have several dimensions, of which
“time” is only one. This is something what still has to be done. With-
out such a specification, it is difficult to assess the validness of a
conceptual relation between concepts in different versions. We can
assume that such a relation is at least valid between two successive
versions, but we do not know whether such mapping is allowed to
“propagate” via other mappings to other ontologies. Research on this
is necessary.

A situation in which versioning support is also necessary is the
collaborative development of an ontology [14]. We think that On-
toView is also useful in this situation, especially because all the con-
ceptual implications of versions have to be characterized individually
by users. This integrates the conflict resolution in the update proce-
dure.

A side remark about the use of a versioning system for collabora-
tive ontology development is that this gives an evolutionary way of
ontology building. Each person can have its own conceptualization,
which is conceptually linked to the conceptualizations of others. In
this sense, the combination of versions and adaptations in itself forms
asharedconceptualization of a domain.

Finally, we want to mention that the system is still under construc-
tion. In section 3 we extensively depicted the foreseen functional-
ity of OntoView. However, as became clear of some of the descrip-
tions, not everything is already realized. The basis functions are im-
plemented, but a number of more advanced functions are still being
developed.

6 CONCLUSION

When ontologies are used in a distributed and dynamic context, ver-
sioning support is essential ingredient to maintain interoperability. In
this paper we have analyzed the versioning relation, described its as-
pects, and depicted a system that provides support for the versioning
of online ontologies.

We described how this systems supports helps users to compare
ontologies, and what the problems and challenges are. We presented
a algorithm to perform a comparison for RDF-based ontologies. This
algorithm doesn’t operate on the representation of the ontology, but
on the data model that is underlying the representation. By grouping
the RDF-triples per definition, we still retained the necessary repre-
sentational knowledge. We also explained how users can specify the
conceptual implication of changes to help interoperability. This hon-
ors the fact that it is not possible to derive all conceptual implications
of changes automatically.

The analysis of a versioning relation between ontologies revealed
several dimensions of it. In the system that we described, all these
dimensions are maintained separately: the descriptivemeta-data,
the conceptual relationsbetween constructs in the ontologies, and
thetransformations between the ontologies themselves. This multi-
dimensional specification allows both complete transformations of
ontology representations and partial data re-interpretations, which
help interoperability. The conceptual differences can be exported and
used stand alone, for example to adapt data sources and ontologies.

The described system is not yet finished and should be developed
further. We believe that it will significantly simplify the change man-
agement of ontologies and thus help the interoperability of evolving
ontologies on the web.

6

http://www.w3.org/TR/rdf-mt/


REFERENCES
[1] Jay Banerjee, Won Kim, Hyoung-Joo Kim, and Henry F. Korth, ‘Se-

mantics and Implementation of Schema Evolution in Object-Oriented
Databases’,SIGMOD Record (Proc. Conf. on Management of Data),
16(3), 311–322, (May 1987).

[2] Sean Bechhofer, Carole Goble, and Ian Horrocks, ‘DAML+OIL is not
enough’, inProceedings of the International Semantic Web Working
Symposium (SWWS), Stanford University, California, USA, (July 30 –
August 1, 2001).

[3] S. Bechhofer, I. Horrocks, P. F. Patel-Schneider, and S. Tessaris, ‘A
proposal for a description logic interface’, inProceedings of the In-
ternational Workshop on Description Logics (DL’99), eds., P. Lambrix,
A. Borgida, M. Lenzerini, R. M̈oller, and P. Patel-Schneider, pp. 33–36,
Linköping, Sweden, (July 30 – August 1 1999).

[4] Brian Berliner, ‘CVS II: Parallelizing software development’, inPro-
ceedings of the Winter 1990 USENIX Conference, ed., USENIX Asso-
ciation, pp. 341–352, Washington, DC, USA, (January 22–26, 1990).
USENIX.

[5] Tim Berners-Lee, Jim Hendler, and Ora Lassila, ‘The semantic web’,
Scientific American, 284(5), 34–43, (May 2001).

[6] Tim Bray, Dave Hollander, and Andrew Layman. Namespaces in XML.
http://www.w3.org/TR/REC-xml-names/ , January 1999.

[7] D. Brickley and R. V. Guha, ‘Resource Description Framework (RDF)
Schema Specification 1.0’, Candidate recommendation, World Wide
Web Consortium, (March 2000).

[8] Dieter Fensel, Ian Horrocks, Frank van Harmelen, Stefan Decker,
Michael Erdmann, and Michel Klein, ‘OIL in a nutshell’, inKnowl-
edge Engineering and Knowledge Management; Methods, Models and
Tools, Proceedings of the 12th International Conference EKAW 2000,
eds., Rose Dieng and Olivier Corby, number LNCS 1937 in Lecture
Notes in Artificial Intelligence, pp. 1–16, Juan-les-Pins, France, (Octo-
ber 2–6, 2000). Springer-Verlag.

[9] Dieter Fensel and Mark A. Musen, ‘The semantic web: A new brain for
humanity’,IEEE Intelligent Systems, 16(2), (2001).

[10] T. R. Gruber, ‘A translation approach to portable ontology specifica-
tions’, Knowledge Acquisition, 5(2), (1993).

[11] Michel Klein and Dieter Fensel, ‘Ontology versioning for the Seman-
tic Web’, in Proceedings of the International Semantic Web Working
Symposium (SWWS), Stanford University, California, USA, (July 30 –
August 1, 2001).

[12] O. Lassila and R. R. Swick, ‘Resource Description Framework (RDF):
Model and Syntax Specification’, Recommendation, World Wide Web
Consortium, (February 1999). See http://www.w3.org/TR/REC-rdf-
syntax/.

[13] Deborah L. McGuinness, Richard Fikes, James Rice, and Steve Wilder,
‘An environment for merging and testing large ontologies’, inKR2000:
Principles of Knowledge Representation and Reasoning, eds., An-
thony G. Cohn, Fausto Giunchiglia, and Bart Selman, pp. 483–493, San
Francisco, (2000). Morgan Kaufmann.

[14] Helena Sofia Pinto and Jo ao Pavão Martins, ‘Evolving ontologies in
distributed and dynamic settings’, inProceedings of the Eighth Inter-
national Conference on Principles of Knowledge Representation and
Reasoning (KR2002), Toulouse, France, (April 22–25, 2002).

[15] John F. Roddick, ‘A survey of schema versioning issues for database
systems’, Information and Software Technology, 37(7), 383–393,
(1995).

[16] Pepijn R. S. Visser, Dean M. Jones, T. J. M. Bench-Capon, and M. J. R.
Shave, ‘An analysis of ontological mismatches: Heterogeneity versus
interoperability’, inAAAI 1997 Spring Symposium on Ontological En-
gineering, Stanford, USA, (1997).

7

http://www.w3.org/TR/REC-xml-names/

	1 ONTOLOGY EVOLUTION THREATENS INTEROPERABILITY
	2 THE UPDATE RELATION BETWEEN ONTOLOGIES
	3 GENERAL DESCRIPTION OF ONTOVIEW
	4 COMPARING ONTOLOGIES
	4.1 Types of change
	4.2 Detecting changes
	4.3 Rules for changes
	4.4 Specifying the conceptual implication of changes

	5 DISCUSSION
	6 CONCLUSION

