MoDELS 2010 ACES-MB Workshop Proceedings

Virtual Verification of System Designs against
System Requirements

Wladimir Schamai, Philipp Helle, Peter Fritzson, and Christiaan J.J. Paredis

! EADS Innovation Works, Germany wladimir.schamai@eads.net
2 EADS Innovation Works, UK philipp.helle@airbus.com
3 Department of Computer and Information Science, Linkoping University, Sweden
petfr@ida.liu.se
4 Georgia Institute of Technology, Atlanta, USA chris.paredis@me.gatech.edu

Abstract. System development and integration with a sufficient ma-
turity at entry into service is a competitive challenge in the aerospace
sector. With the ever-increasing complexity of products, this can only be
achieved using efficient model-based techniques for system design as well
as for system testing. However, natural language requirements engineer-
ing is an established technique that cannot be completely replaced for a
number of reasons. This is a fact that has to be considered by any new
approach. Building on the general idea of model-based systems engineer-
ing, we aim at building an integrated virtual verification environment for
modeling systems, requirements, and test cases, so that system designs
can be simulated and verified against the requirements in the early stages
of system development. This paper provides a description of the virtual
verification of system designs against system requirements methodology
and exemplifies its application in a ModelicaML modeling environment.

Keywords: Requirements, Verification, ModelicaML, Modelica, MBSE,
Model-based testing

1 Introduction

The ever-increasing complexity of products has had a strong impact on time to
market, cost and quality. Products are becoming increasingly complex due to
rapid technological innovations, especially with the increase in electronics and
software even inside traditionally mechanical products. This is especially true
for complex, high value-added systems such as aircraft and automobile that are
characterized by a heterogeneous combination of mechanical and electronic com-
ponents. The economic aspects of electronic subsystems (Embedded Systems)
running within these products are remarkable. For example, avionics costs are
about 30% of the overall cost of an aircraft and embedded systems represent
about 40% of avionics cost. An important component of embedded systems is
embedded software whose importance is rising almost exponentially in time:
From the 1980s Airbus A300 which had a couple of thousand lines of software
code on board, to the A380 whose software size is in the range of millions of

Oslo, Norway, October 4, 2010

53

MoDELS 2010 ACES-MB Workshop Proceedings

lines. For this aircraft, a single line of software code certified according to DO-
178b level A is estimated to cost about 100 € thus yielding an overall cost for
software of hundreds of millions of Euros. System development and integration
with sufficient maturity at entry into service is a competitive challenge in the
aerospace sector. Major achievements can be realized through efficient system
specification and testing processes. Limitations of traditional approaches relying
on textual descriptions are progressively addressed by the development of model-
based systems engineering! (MBSE) approaches. Building on this general idea
of MBSE, we aim at building a virtual verification environment for modeling
systems, requirements and test cases, so that a system design can be simulated
and verified against the requirements in the early system development stages.

1.1 Scope

For our methodology we assume that the requirements from the customer have
been elicited? as requirement statements according to common standards in
terms of quality, e.g. according to Hull et al.[4] stating that the individual re-
quirements should be unique, atomic, feasible, clear, precise, verifiable, legal, and
abstract, and the overall set of requirements should be complete, non-redundant,
consistent, modular, structured, satisfied and qualified. The methods to achieve
this have been well defined and can be considered to be established. Further-
more, the overall MBSE approach to system design, that is the development of
a system design model from textual requirements, is not within the scope of this
paper?.

Paper structure: First we establish and describe the idea of virtual verification
of system designs against system requirements (Section 2). Then we present
background information on ModelicaML and the running example (Section 3)
before we will explain the methodology in detail with the help of said running
example (Section 4). Finally, we close with a summary of the current status and
propose a number of ideas for future research (Sections 5 and 6).

2 Virtual Verification of System Designs Against System
Requirements

This chapter provides the motivation behind our work, a general description
thereof and the benefits of using the virtual verification of system design against
system requirements (vVDR) approach. Furthermore, related work is discussed.

! The International Council on Systems Engineering (INCOSE) defines MBSE as fol-
lows: "Model-based systems engineering (MBSE) is the formalized application of
modelling to support system requirements, design, analysis, verification and valida-
tion activities beginning in the conceptual design phase and continuing throughout
development and later life cycle phases”[1].

2 A description of the various requirement elicitation, i.e. capturing, techniques can
be found in [2] and [3].

3 The interested reader can find a detailed overview of existing solutions for that in
[5] and [6].

Oslo, Norway, October 4, 2010

54

MoDELS 2010 ACES-MB Workshop Proceedings

2.1 Objectives

A number of studies have demonstrated that the cost of fixing problems increases

as the lifecycle of the system under development progresses. As an example

Davis[7] reports the following well-known relative cost of repairs for software?:

Lifecycle phase Relative cost of repair

Requirements 0.1-0.2
Design 0.5
Coding 1.0
Unit test 2.0
Acceptance test 5.0
Maintenance 20.0

Fig. 1. Relative cost of repair for fixing defects in different lifecycle phases [7]

Thus, the business case for detecting defects early in the life cycle is a strong
one. Testing thus needs to be applied as early as possible in the lifecycle to keep
the relative cost of repair for fixing a discovered problem to a minimum. This
means that testing should be integrated into the system design phase so that
the system design can be verified against the requirements early on. To enable
an automatic verification of a design model against a given set of requirements,
the requirements have to be understood and processed by a computer. MBSE
typically relies on building models that substitute or complement the textual
requirements. Links between the model elements and the textual requirements
are usually kept at the requirements’ granularity level, meaning that one or more
model elements are linked to one requirement. This granularity is good enough
for basic traceability and coverage analysis but fails when an interpretation of
a requirement’s content by a computer is necessary. There is research concern-
ing the automatic translation of natural language requirements into behavioral
models to support the automation of system and acceptance testing (see e.g.
[8]) but it is not widely adopted in industrial practice[9]. Formal mathematical
methods may be used to express requirements, but their application requires
high expertise and, hence, they are not very common in industrial practice. A
recent survey came to the conclusion that ”in spite of their successes, verification
technology and formal methods have not seen widespread adoption as a routine
part of systems development practice, except, arguably, in the development of
critical systems in certain domains.”[10]. The bottom line is that natural lan-
guage is still the most common approach to express requirements in practice[9)].
We want to provide a solution to the question of how to formalize requirements
so that they can be processed and evaluated during system simulations in order

4 Other researchers have found different absolute values but they have all found the
same trend.

Oslo, Norway, October 4, 2010

55

MoDELS 2010 ACES-MB Workshop Proceedings

to detect errors or inconsistencies in a way that is easy to understand and to
apply.
2.2 vVDR Concept

Figure 2 depicts the relationship of the various engineering artifacts in the frame
of vVDR.

represent m

Textual requirements _r6ql_J|remen.ts
(Violation monitors)

satisfies

Fig. 2. Engineering data relations overview

A subset of a given set of textual requirements is selected and formalized
into so-called requirement violation monitors by identifying measurable proper-
ties addressed in the requirement statement. A requirement violation monitor is
basically an executable model for monitoring if the constraints expressed by the
requirement statement are adhered to. To test a given design model, the require-
ment violation monitors are linked to the design model using explicit assignment
statements. Furthermore, a test suite consisting of a test context and a number
of test cases has to be built manually. The test suite uses the formalized require-
ments as test oracles for the test cases, i.e., if a requirement is violated during
a test, the test case is deemed failed. The separation of requirement and system
design modeling provides a degree of independence that ensures a high fidelity
in the testing results. The test cases, requirement violation monitors and the de-
sign model can be instantiated and run automatically. Visual graphs (e.g. plots)
allow the monitoring of the requirement violation monitors during run-time to
see if the design model fails to implement a requirement.

2.3 Benefits

Our approach contributes to three main steps in the system development lifecy-
cle: requirements analysis, system design and system testing. Experience shows
that the main benefit of modeling in general is a contribution to the identifi-
cation of ambiguities and incompleteness in the input material. Even though
we assume that the textual requirements that are provided as an input to the
process adhere to a high quality standard, vVDR enables the requirements an-
alyst to further improve the quality by modeling the requirements in a formal

Oslo, Norway, October 4, 2010

56

MoDELS 2010 ACES-MB Workshop Proceedings

representation as this forces a detailed analysis of the requirements. The main
contribution of vVDR is to the quality of the system design. The automatic
verification of a design model based on the formalized requirements allows the
detection of errors in the system design. The separation of requirements mod-
eling and design modeling allow a reuse of the requirements for the verification
of several alternative system designs. Furthermore, even for one design model
the same requirements violation monitors can be instantiated several times. As
described in [11], the benefits of using a model-based testing approach during
the system design phase facilitates error tracing and impact assessment in the
later integration and testing stages by providing a seamless traceability from the
initial requirements to test cases and test results. Furthermore, it allows reusing
the artifacts from the engineering stage at the testing stage of the development
cycle which results in a significant decrease in overall testing effort. By integrat-
ing the requirements model in a test bench the test models can also be reused
for hardware-in-the-loop test setups.

2.4 Related work

In [12] an approach to the incremental consistency checking of dynamically de-
finable and modifiable design constraints is presented. Apart from focusing on
design constraints instead of design requirements which can be argued as be-
ing a marginal issue, the main difference to vVDR is that the constraints are
expressed using the design model variables whereas our approach is based on
a separation of the requirements and the design model. Only for a specific test
context are they connected using explicit assignment statements. Additionally,
the monitoring of model changes and the evaluation of the defined constraints
is done by a separate ”Model Analyzer Tool” whereas our approach relies on
out-of-the-box modeling capabilities. The Behavior Modeling Language (BML)
or more specifically the Requirement Behavior Tree technique that is a vital
part of the BML is another method for formalizing requirements into a form
that can be processed by computers[13][14]. But whereas vVDR relies on a sep-
aration between the set of independent requirements that are used to verify a
design model and the building of a design model by the system designer, the
BML methodology merges the behavior trees that each represent single require-
ments into an overall design behavior tree (DBT). In other words, the transition
from the requirements space to the solution space is based on the formalized
requirements.

3 Background

This chapter provides background information on the graphical modeling nota-
tion ModelicaML [15] and its underlying language Modelica [16] which was used
to implement our approach, and introduces the running example that will be
used to illustrate the vVDR methodology in Section 4.

Oslo, Norway, October 4, 2010

57

MoDELS 2010 ACES-MB Workshop Proceedings

3.1 Technical Background

Modelica is an object-oriented equation-based modeling language primarily aimed
at physical systems. The model behavior is based on ordinary and differential
algebraic equation (OAE and DAE) systems combined with difference equa-
tions/discrete events, so-called hybrid DAEs. Such models are ideally suited
for representing physical behavior and the exchange of energy, signals, or other
continuous-time or discrete-time interactions between system components.

The Unified Modeling Language (UML) is a standardized general-purpose
modeling language in the field of software engineering and the Systems Model-
ing Language (SysML) is an adaptation of the UML aimed at systems engineer-
ing applications. Both are open standards, managed and created by the Object
Management Group (OMG), a consortium focused on modeling and model-based
standards.

The Modelica Graphical Modeling Language is a UML profile, a language
extension, for Modelica. The main purpose of ModelicaML is to enable an ef-
ficient and effective way to create, visualize and maintain combined UML and
Modelica models. ModelicaML is defined as a graphical notation that facilitates
different views (e.g., composition, inheritance, behavior) on system models. It
is based on a subset of UML and reuses some concepts from SysML. Modeli-
caML is designed to generate Modelica code from graphical models. Since the
ModelicaML profile is an extension of the UML meta-model it can be used as
an extension for both UML and SysML?®.

3.2 Running Example: Automated Train Protection System

In this section we introduce an example, which will be used in the remainder
of this paper to demonstrate the vVDR approach. It is based on the example
from[13]. Most railway systems have some form of train protection system that
uses track-side signals to indicate potentially dangerous situations to the driver.
Accidents still occur despite a train protection system when a driver fails to
notice or respond correctly to a signal. To reduce the risk of these accidents,
Automated Train Protection (ATP) systems are used that automate the train’s
response to the track-side signals. The ATP system in our example design model
has three track-side signals: proceed, caution and danger. When the ATP system
receives a caution signal, it monitors the driver’s behavior to ensure the train’s
speed is being reduced. If the driver fails to decrease the train’s speed after a
caution signal or the ATP system receives a danger signal then the train’s brakes
are applied. The textual requirements for the ATP can be found in Appendix A.
Figure 3 shows the top-level architecture of the system consisting of a driver, a
train and train tracks, and the internal architecture of the train consisting of an
HMI system, a control system, an engine and a braking system. The behavior
of each of the components is modeled in ModelicaML.

5 SysML itself is also a UML Profile. All ModelicaML stereotypes that extend UML
meta-classes are also applicable to the corresponding SysML elements.

Oslo, Norway, October 4, 2010

58

MoDELS 2010 ACES-MB Workshop Proceedings

«model>
Train Transportation System

«components «components
drivert: Driver traini: Train

p_train ;’_‘ | p_driver

-

. ’ n,(racks,slgnafg
- z \
e p_signals)
- \
e <components I \

al tracks: Train Tracks \

-

«componerts
o_tirver ds: HMI

L | p_civer

p_control

<componerts
p_hmi engine: Engine

{ | ecomponent> p_contral
tes: Control System
p_engine
Ul <component>
[bs: Braking System
p_signals p_control

p_tracks_signals

Fig. 3. Train transportation system and train architecture in ModelicaML

4 Methodology Description

Figure 4 provides an overview of the envisaged vVDR process and includes a
mapping of the identified activities to the executing roles. The following subsec-
tions contain a description of the method steps and illustrate the methodology
using our running example.

4.1 Method Step: Select Requirements to Be Verified

From the set of agreed input requirements the requirements analyst selects re-
quirements that are to be verified by means of simulation. The selection criteria
depend on the requirement types as well as on the system design models that
are planned to be created. Generally speaking, the requirements analyst needs
to decide if the vVDR approach is suitable to test a given requirement. This step
requires a close collaboration between the requirements analyst and the system
designer. The output of this activity is a selected subset of the input require-
ments. This activity contributes to the system design modeling by clarifying the
level of detail that is required of the model for an automatic evaluation of the
selected requirements. For example, the requirements 001, 001-2 and 002 would
not be selected because appropriate models will be missing or simulation is not
best suited® for their verification. In contrast, the requirements 003-009 are good
candidates for the verification using simulations. The recommended procedure
for the selection of requirements is as follows:

5 For example, design inspection could be sufficient.

Oslo, Norway, October 4, 2010

59

MoDELS 2010 ACES-MB Workshop Proceedings

) Select and formalize textual
A -
27 requirements

Requirements analyst

& Design system

System designer
Create test context and define
test cases
N

g
\3.\ A L
« Execute test cases
System tester

Analyze and report test
results

®

Fig. 4. Methodology overview

Read a requirement

— Decide if this requirement can and shall be evaluated using a simulation
model

— Decide if this requirement is complete, unambiguous and testable by using

the kind of design models that are to be created

If yes: Mark this requirement as selected

— If no: Skip this requirement

The selected subset of requirements will then be transferred into the modeling
tool and used in the subsequent steps.

4.2 Method Step: Formalize Textual Requirements

The second step is to formalize each requirement in order to enable its automatic
evaluation during simulations. Consider requirement 006-1: ”If at any time the
controller calculates a ”caution” signal, it shall, within 0.5 seconds, enable the
alarm in the driver cabin.” Based on this statement we can:

— Identify measurable properties included in the requirement statement, i.e.,
the reception of a caution signal, the activation of the alarm and the time
frame constant,

— Formalize properties as shown in Fig. 5 and define a requirement violation
monitor as illustrated in Fig. 6.

In order to determine if a requirement is fulfilled the following assumption is
made: A requirement is implemented in and met by a design model as long as

Oslo, Norway, October 4, 2010

60

MoDELS 2010 ACES-MB Workshop Proceedings

«Requirements

id = 006-1

text = If at any time the controller calculates a
“"caution” signal, it shall, within 0.5 seconds, enable the
alarm in the driver cabin.

crequirement»
Controller behavior for caution signals 1

& alarm_is_activated: ModelicaBoolean
& caution_signal_received: ModelicaBoolean
& violated: ModelicaBoolean

Fig. 5. Formalized requirement properties in ModelicaML

its requirement violation monitor is evaluated but not violated. Now the violation
relations can be defined. This example uses a state machine” (as shown in Fig.
6) to specify when the requirement is violated. In general, it is recommended to

«modelicaStateMachinex»
R6-1: Requirement violation monitor

Y

Monitoring signal reception

‘ Start condition for the L
evaluation Unset violated /entry

[caution_signal_received]

g ‘ Waiting for alarm activation ‘
‘ evaluated = true; L Setevaluted ‘entry |

[AFTER(0.5)| and (notalarm_is_activated)]

[notcaution_signal_recdived]
Violated
Set violated /entry

‘ violated := true; L\

Fig. 6. Requirement violation monitor example

create the following attributes for each requirement:

— evaluated: Indicates if the requirement was evaluated at least once,
— violated: Indicates if this requirement was violated at least once.

The evaluated attribute is necessary, because, while a violation during a simula-
tion provides sufficient indication that a requirement is not met, a non-violation
is not enough to ensure the satisfaction of a requirement. For example, if the
value of ” caution_signal received” is never true during a particular test case sim-
ulation this can mean that:

— This requirement is not addressed by the design (i.e., the caution signals are
not received by the controller at all),

7 A ModelicaML state machine is one possible means to express the violation of a
requirement. It is also possible to use other formalisms, equations or statements for
it.

Oslo, Norway, October 4, 2010

61

MoDELS 2010 ACES-MB Workshop Proceedings

— Or this requirement is not verified by this test case because the test case
does not provide appropriate stimuli for the design model.

This method step supports the requirements analyst in improving the quality
of the selected requirements by identifying ambiguities or incompleteness issues.
For example, the following questions were raised when formalizing the original
input requirement:

— "If a caution signal is returned to the ATP controller then the alarm is
enabled within the driver’s cab. Furthermore, once the alarm has been en-
abled, if the speed of the train is not observed to be decreasing then the
ATP controller activates the train’s braking system.”

— What does decreasing mean, by which rate?

— The driver will need time to react, how much?

— The controller cannot activate things instantaneously. How much time is
allowed at the most to pass between the stimuli and the expected result?

Any issues that are identified in this step have to be resolved with the stake-
holders and all affected textual requirements have to be updated accordingly.
In our example, the updated version of this requirement has been split into two
separate requirements 006-1 and 006-2.

4.3 Method Step: Select or Create Design Model to Be Verified
against Requirements

The actual system design is not in the scope of this paper. The system designer
builds a design model for each design alternative that he comes up with®. Since
the requirements are kept separate from the design alternatives, the same re-
quirements can be reused to verify several designs, and the same requirement
violation monitors can be reused in multiple test cases.

4.4 Method Step: Create Test Models, Instantiate Models, Link
Requirement Properties to Design Model Properties

After the formalization of the requirements and the selection of one design model
for verification, the system tester starts creating test models, defining test cases
and linking requirement properties to values inside the design model. The rec-
ommended procedure is as follows:

— Define a test model that will contain test cases, a design model, the require-
ments and their requirement violation monitors.

— Define test cases for evaluating requirements. One test case can be used for
evaluating one or more requirements.

8 For ease of use, the design will normally be modelled in the same notation and the
same tool as the requirements. However, it can be imagined to build interfaces to
executable models that were built using different modelling notations in different
tools and then subsequently use vVDR to test these models.

Oslo, Norway, October 4, 2010

62

MoDELS 2010 ACES-MB Workshop Proceedings

— Create additional models if necessary, for example, models that simulate the
environment, stimulate the system or monitor specific values.

— Bind the requirements to the design model by setting the properties of a
requirement to values inside the design model using explicit assignments.

Particularly the last step will require the involvement of the system designer in
order to ensure that the requirement properties are linked properly, i.e. to the
correct properties values inside the design model. For example, the assignment
for the requirement property caution_signal_received is as follows:

caution_signal_received =
design_model.trainl.pcl.tcs.controller.tracks_signals_status ==

This means that the requirement property caution_signal_received will become
true when the controller property tracks_signals_status is equal to one”.

Another example is the assignment of the requirement property alarm_is_activated.
Here the system tester will have to decide which design property it should be
linked to. It could be accessed from the ATP controller or from the HMI system,
that is between the controller and the driver (see Fig. 3), or from the driver
HMI port directly. The answer will probably be: It should be accessed from the
driver HMI port because failures in HMI system may also affect the evaluation
result. Furthermore, it is recommended to create the following attributes and
statements'® for each test model:

— test_passed := evaluated and not violated;
Indicates if the test is passed or failed.

— evaluated := if reql.evaluated and ... and regN.evaluated then true ...;

Indicates if the test case has evaluated all requirements.
— violated := when {reql.violated,... ,reqN.violated} then true ...;
Indicates if any of requirements was violated.

These definitions enable an automated test case results evaluation by using the
requirement violation monitors of the involved requirements as a test oracle
for the test case. Figure 7 presents an example of a test case that drives the
simulation.

4.5 Method Step: Test and Observe Requirement Violations

After having created the test models, the system tester can run simulations
and observe the results. Hereby, the system tester will be interested in knowing
if test cases have passed or failed. A test case is deemed to have failed when
not all requirements were evaluated or some requirements were violated dur-
ing the execution of the test case. In our approach a Modelica simulation tool
(e.g. MathModelicall) allows a visual monitoring of the requirement violation
monitors during the simulation as shown in Fig. 8.

9717 denotes a caution signal in the design model

10 These statements are written in Modelica.
" http://www.mathcore.com

Oslo, Norway, October 4, 2010

MoDELS 2010 ACES-MB Workshop Proceedings

emodelicaStateMachines
Set drivers” speed control

Init
| setspeed control /entry
(AFTER()]

Set20% speed

Reset brakes
Driving 3 |
J GEN reset brakes event /entry |

[AFTER(S)]

_position < alarm_in_rivers_cab)]

setspeed control /entry

Diiving 1

[AFTER{2) and monitor train_position »500]
Set 100% speed
setspeed control /entry

Ty to accelerate
Set speed control = 1.0 /entry |

[monitor.train_position > 1000]

[not mission_profile.drivef_net_reacting_range]

| Alarm in drivers’ cab

]

Diiving 2

Fig. 7

" Mathbodelica Professional - [ATP._3_Simulations. Train_Simulation_Scenario_1_with_requirements 1+ - [Plot ¥(1): 1] [2)[B&)
2 B/

22 Fie Edt Vew Toos Smuste Pt Window
DeEd | @iy na
Experinent Bronser 8 x
._3_Sindstions Train_Siation Scenario_1_with_

Pt | parameters | Variobles | setigs

@ e optos.
Name st Descrpton

Speed control can

1061
6 1_Requrement_y.
st
0] cauton_signalrece.
] viated
0.2
6 2_Requrenent_y.
) slrms_acivet=d
P

Requirement
violation
indication

208 3 Xl it P e

{monitor alarm_in_drivers_cab]

. Test case example

Heb E

~ Tran_Simation_Scenario_1_weh_equrements 1: 1006_1vilted

= Tain_Simuation_Scenario_1_with requrements 1:1006_2 vioated

Fig. 8. Test execution and requirement violations observation

4.6 Method Step: Report and Analyze Test Results

After the execution of all test cases, the system tester creates a simulation report
that should, for each test model, at least include the following information:

— Which design model, test cases and requirements were included?
— Did the test cases pass?

If not, were all requirements evaluated?
If yes, are there requirements violations?

This information is the basis for discussions among the involved parties and may
lead to an iterative repetition of the system design and testing process described
here. Furthermore, it allows the precise reproduction of test results at a later
state. Additionally, these reports can be reused as a reference for later product
verification activities, i.e., the physical system testing at a test bench.

Oslo, Norway, October 4, 2010

64

MoDELS 2010 ACES-MB Workshop Proceedings

5 Current Status and Future Directions

The methodology presented in this paper has been successfully applied in several
case studies. However, the case studies included only a small number of require-
ments. In the future, a real-sized case study is planned, i.e., one that contains
more than a hundred requirements to be verified using the vVDR method to
determine the applicability and scalability of this approach. The traceability be-
tween requirements and design artifacts is a critical issue in the daily engineering
work, particularly with regards to change impact analysis. When the system de-
sign is evolving or changing then the vVDR approach presented in this paper
contributes to an efficient way of verifying the new designs against requirements
by reusing the formalized requirements and test cases for quick and easy regres-
sion testing. This is enabled by the separation of requirements and test cases
on the one hand and the design models on the other hand. However, it is still
hard to determine the impact of a requirement change on the system design.
In order to support impact analysis, a traceability of requirements to design
artifacts is necessary at an appropriate level of granularity. For example, parts
of a requirement statement, i.e.,. single words, should be linked to the different
design model elements that they are referring to. Moreover, an effective visual-
ization and dependencies exploration is necessary in order to enable an efficient
handling of changes. A model-based development approach enables an effective
and efficient reporting on and monitoring of the requirements implementation.
For example, a bidirectional traceability between requirement and design allows
the determination of the system development status and supports project risk
management and planning. While the test cases for our running example can be
easily derived directly from the input requirements, manual test case generation
becomes an increasingly tedious task for real-life specifications with hundreds
of requirements. Model-based testing provides methods for automated test case
generation some of which already work on UML models[17] and look promis-
ing to be adapted to vVDR. Requirements traceability, a higher test automation
through adaptation of model-based testing techniques as well as reporting topics
are subject to our future work.

6 Conclusion

This paper presents a method for the virtual verification of system designs
against system requirements by means of simulation. It provides a detailed de-
scription of all method steps and illustrates them using an example case study
that was implemented using ModelicaML. It points out that this method strongly
depends on the design models that are planned to be created and that not all
type of requirements can be evaluated using this method. In the vVDR ap-
proach, formalized requirements, system design and test cases are defined in
separate models and can be reused and combined into test setups in an efficient
manner. In doing so, a continuous evaluation of requirements along the system
design evolution can be done starting in the early system design stages. This ap-
proach enables an early detection of errors or inconsistencies in system design,

Oslo, Norway, October 4, 2010

65

MoDELS 2010 ACES-MB Workshop Proceedings

as well as of inconsistent, not feasible or conflicting requirements. Moreover,
the created artifacts can be reused for later product verification (i.e., physical
testing) activities.

References

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

C. Haskins, Ed., Systems Engineering Handbook: A guide for system life cycle
processes and activities. INCOSE, 2006.

D. Gause and G. Weinberg, Exploring requirements: quality before design. Dorset
House Pub, 1989.

P. Loucopoulos and V. Karakostas, System requirements engineering. McGraw-
Hill, Inc. New York, NY, USA, 1995.

E. Hull, K. Jackson, and J. Dick, Requirements engineering. Springer Verlag,
2005.

J. Estefan, “Survey of model-based systems engineering (MBSE) methodologies,”
Incose MBSE Focus Group, vol. 25, 2007.

P. Helle, A. Mitschke, C. Strobel, W. Schamai, A. Riviere, and L. Vincent, “Im-
proving Systems Specifications - A Method Proposal,” in Proceedings of CSER
2008 Conference, April 4-5 2008, Los Angeles, CA, 2010.

A. Davis, Software requirements: objects, functions, and states. Prentice-Hall, Inc.
Upper Saddle River, NJ, USA, 1993.

V. A. d. Santiago Junior, Natural language requirements: automating model-based
testing and analysis of defects. Sao José dos Campos: Instituto Nacional de
Pesquisas Espaciais, 2010.

L. Mich, M. Franch, and P. Novi Inverardi, “Market research for requirements
analysis using linguistic tools,” Requirements Engineering, vol. 9, no. 2, pp. 151—
151, 2004.

J. Woodcock, P. Larsen, J. Bicarregui, and J. Fitzgerald, “Formal methods: Prac-
tice and experience,” ACM Computing Surveys (CSUR), vol. 41, no. 4, pp. 1-36,
2009.

P. Helle and W. Schamai, “Specification model-based testing in the avionic domain
- Current status and future directions,” in Proceedings of the Sizth Workshop on
Model-Based Testing 2010, Paphos, Cyprus, 2010.

I. Groher, A. Reder, and A. Egyed, “Incremental Consistency Checking of Dy-
namic Constraints,” Fundamental Approaches to Software Engineering, pp. 203—
217, 2010.

T. Myers, P. Fritzson, and R. Dromey, “Seamlessly Integrating Software & Hard-
ware Modelling for Large-Scale Systems,” in 2nd International Workshop on
Equation-Based Object-Oriented Languages and Tools, Paphos, Cyprus, 2008.

D. Powell, “Requirements evaluation using behavior trees-findings from industry,”
in Australian Software Engineering Conference (ASWECO07), 2007.

W. Schamai, P. Fritzson, C. Paredis, and A. Pop, “Towards Unified System Mod-
eling and Simulation with ModelicaML: Modeling of Executable Behavior Us-
ing Graphical Notations,” in Proc. of the 7th International Modelica Conference,
Comeo, Italy, 2009.

P. Fritzson, Principles of object-oriented modeling and simulation with Modelica
2.1. Wiley-IEEE Press, 2004.

M. Prasanna, S. Sivanandam, R. Venkatesan, and R. Sundarrajan, “A survey on
automatic test case generation,” Academic Open Internet Journal, vol. 15, 2005.

Oslo, Norway, October 4, 2010

66

MoDELS 2010 ACES-MB Workshop Proceedings

A ATP requirements

ID

Requirement Text (based on [13])

001

The ATP system shall be located on board the train.

001-2

The ATP system shall consist of a central controller and five boundary
subsystems that manage the sensors, speedometer, brakes, alarm and a
reset mechanism.

002

The sensors shall be attached to the side of the train and read informa-
tion from approaching track-side signals, i.e. they detect what the signal
is signaling to the train driver.

002-2

Within the driver cabin, the train control display system shall display
the last track-side signal values calculated by the controller.

003

Three sensors shall generate values in the range of 0 to 3, where 0, 1 and
2 denote the danger, caution, and proceed track-side signals respectively.
Each sensor shall generate the value 3 if a track-side signal that is out
of the range 0..2 is detected.

004

The controller shall calculate the majority of the three sensor readings.
If no majority exists then the value shall be set to "undefined” (i.e. 3).

005

If the calculated majority is ”proceed” (i.e. 0) then the controller shall
not take any action with respect to the activation of the braking system.

006-1

If at any time the controller calculates a ”caution” signal, it shall, within
0.5 seconds, enable the alarm in the driver cabin.

006-2

If the alarm in the driver cabin has been activated due to a ”caution”
signal and the train speed is not decreasing by at least 0.5m/s? within
two seconds of the activation, then the controller shall within 0.5 seconds
activate the automatic braking.

007-1

If at any time the controller calculates a ”danger” signal it shall within
0.5 seconds activate the braking system and enable the alarm in the
driver cabin.

007-2

If the alarm in the driver cabin has been activated due to a ”caution”
signal, it shall be deactivated by the controller within 0.5 seconds if a
”proceed” signal is calculated and the automatic braking has not been
activated yet.

008

If at any time the automatic braking has been activated, the controller
shall ignore all further sensor input until the system has been reset.

009

If the controller receives a reset command from the driver, then it shall
within 1 second, deactivate the train brakes and disable the alarm within
the driver cabin.

Oslo, Norway, October 4, 2010

67

