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Abstract 

 
Background: 

Single Nucleotide Polymorphisms (SNPs) are an important source of human genome 
variability. The non-synonymous SNPs occurring in coding regions resulting in single 
amino acid polymorphisms (SAPs) may affect protein function and lead to pathology. 
Several methods attempt to estimate the impact of SAPs using different sources of 
information. Although sequence-based predictors have shown good performances, the 
quality of the prediction can be further improved introducing new features derived from 
the protein three-dimensional structure. 
Results: 

In this paper, we present a structure-based machine learning approach to predict 
disease-related SAPs. We have trained a Support Vector Machine (SVM) on a set of 
3,342 disease-related mutations and 1,644 neutral polymorphisms from 784 protein 
chains.  We use SVM input features from the protein sequence, structure and function 
information. After dataset balancing, the structure-based method reaches an overall 
accuracy of 84%, a correlation coefficient of 0.67, and an area under the receiving 
operating characteristic curve (AUC) of 0.91. When compared with a similar sequence-
based predictor, structure-based method results in an increase of the overall accuracy 
and the AUC ~3%, and 0.06 for the correlation coefficient. 
Conclusion: 

This work demonstrates that structural information can increase the accuracy of 
detecting of disease-related SAPs. Our results also quantify the magnitude of the 
improvement on a large data. This improvement is in agreement with the previously 
observed results in the prediction of the protein stability change upon mutation.   
 
 
Background 
Currently the number of validated Single Nucleotide Polymorphisms (SNPs) is larger 
than 14 millions [1]. In general, mutations occurring in coding regions may have a 
greater impact on the gene functionality than those occurring in non-coding regions [2]. 
Only a small fraction of SNPs (~61,000) corresponds to the subset of annotated 
missense coding SNPs [3]. For this subset of Single Amino acid Polymorphisms (SAPs), 
curators of the Swiss Institute of Bioinformatics provide a classification dividing SAPs in 
disease-related and neutral according to peer-reviewed bibliography. In the last few year 
several methods have been developed to predict the impact of a given single point 



protein mutation [4-16].  These algorithms are able to predict the protein stability change 
[10, 11, 16], the variation in protein functional activity [6] and the insurgence of human 
pathologies [4, 5, 7-9, 12-15]. The majority of the methods rely on information derived 
from protein sequence [4, 8, 9, 14], others use protein structure data [12, 17] and 
knowledge-based information [7, 13, 15]. In this paper we focus our attention on SAPs 
presenting a new machine learning based method to predict disease-related SAPs using 
together protein sequence, structural and functional information. We quantified the 
improvement of the performance resulting from the use of protein structure information.   
 
 
Results 

 

Performance of the method 

In the last decades machine learning approaches have been successfully used to 
address several biological problems and develop new prediction methods. We modified 
a previously developed predictor introducing new three-dimensional structure 
information. In particular we use new features to describe the structural environment of 
the mutation considering a radius shell of 6 Å around the C-α. To quantify the 
improvement of the accuracy resulting from the use of 3D structure information, we 
compare the performances of a structure-based method (SVM-3D) with a sequence-
based one (SVM-SEQ). In Tab. 1 different accuracy measures for both predictors are 
reported. The structure-based method results in 3% better overall accuracy and 0.06 
better correlation. Comparing the ROC curves (Fig. 1 A), SVM-3D results in 0.02 better 
Area Under the Curve (AUC) with respect to SVM-SEQ. If 10% of wrong predictions are 
accepted SVM-3D has 6% more true positive. The output returned by the SVM has been 
used to calculate the Reliability Index (RI) and filter prediction. If predictions with RI>5 
are selected the SVM-3D method results in 90% overall accuracy, 0.81 correlation 
coefficient on 74% of the whole dataset (see Fig 1 B). Analyzing the predictions of SVM-
SEQ and SVM-3D methods we found that outputs agree in the 88% of the cases. On this 
subset the overall accuracy is 86% and the correlation coefficient of the method is 0.73. 
For the remaining 12% of the predictions, SVM-SEQ method results in a very poor 
overall accuracy and correlation respectively 37% and -0.25. SVM-3D performs slightly 
better than a random predictor resulting in 63% overall accuracy and a 0.25 correlation 
(see Tab 2). 
 
Structure environment analysis 

Protein three-dimensional structural information is an important feature to predict the 
effect of SAPs. The analysis of the protein structure provides information about the 
environment of the mutation. In fact, the effect of the mutation depends on the position of 
the mutated residue, if it is buried in the hydrophobic core or exposed on the surface of 
the protein.  In Fig. 2 panel A the distributions of the relative solvent accessible area 
(RSA) for disease-related and neutral variants are plotted. The two distributions have 
mean RSA values of 20.6 and 35.7 respectively for disease-related and neutral variants 
(see Fig 2 panel A). They are significantly different and the Kolmogorov-Smirnov test 
returns a p-value of 2.8*10-71. We calculated the overall accuracy and correlation 
coefficient of our method dividing the dataset in 10 bins according to RSA value of the 
mutated residue. The SVM-3D method shows better performance in the prediction of 
buried (RSA<20) and highly exposed (RSA>80) residues (see Fig 2 panel B).  
 



Scoring the residue interactions 

The protein three-dimensional structure information is important to calculate the 
interactions between residues far in the sequence but close in the 3D space. We defined 
two types of interactions: the lost interactions are those missing after the wild-type 
mutation and the new interactions formed by the mutant residue. In this section we 
compared the frequency of lost and new interactions related to disease or neutral 
mutations. We calculated the log odd score for lost and new interactions respectively in 
panels A and B (see Fig. 3).  According to these results, the most deleterious lost 
contacts are between and Cys-Cys and newly formed interactions between Trp-Trp are 
the most damaging ones. The missing Cys-Cys interactions could lead to the loss of a 
disulphide bond and the mutation of a residue into a Tryptophan when close to another 
Tryptophan could result in stereo-chemical problems. 
An example of missing Cys-Cys interaction has been observed in the mutation of 
Cys163 in the Glycosylasparaginase (Swiss-Prot:ASPG_HUMAN). This mutation is 
responsible for the insurgence of the Aspartylglucosaminuria (MIM:208400).  Looking at 
the protein structure (Fig 4), we found that the mutation of the Cys163 to Serine results 
in the loss of the disulfide bridge between Cys163 and Cys179 (respectively Cys140 and 
Cys156 in the PDB structure 1APY chain A). Interesting example of possible damaging 
newly formed interaction can be observed in the Thyroid hormone receptor (Swiss-
Prot:THB_HUMAN) where the mutation of Arg243 into Tryptophan is cause of the 
Thyroid hormone resistance (MIM:188570,274300).  Analyzing the protein structure 
(1 !" chain A) we found that the new Tryptophan could be close to another one in 
position 239. This mutation could result in stereo-chemical problems in the pocket 
around the position 243 (see Fig 5). Both the examples are correctly predicted by 
structure-based method and wrongly predicted by the sequence-based algorithm. 
  
Conclusion 

We developed a new machine learning approach based on protein structure information 
to predict the effect of SAPs. The method has been compared to a previously developed 
sequence-based predictor to quantify the increase of accuracy achieved by protein 
structure information. Using a balanced set of 6,630 mutations the structure-based 
method results in about 3% higher accuracy and AUC and 0.06 higher correlation with 
respect to sequence-based one. Although the increase the accuracy is not extremely 
high the introduction of structure information can be particularly useful in specific 
situation providing insight about the disease mechanism like in the cases discussed 
above. The prediction improvement is in agreement with the previously results observed 
in the prediction of the protein stability change upon mutation [10]. 
 
Methods 

 

Datasets 

The preformaces of machine learning methods strongly depend from the training set. 
This is the reason why the selection of a representative set of SAPs is a pivotal issue in 
the development of predictive algorithms. A previous analysis of different SAPs 
databases has shown that annotated set of variants from Swiss-Var database is the best 
available one [18]. According to this observation, we selected our set of SAP from Swiss-
Var release 57.9 (Oct 2009) and we map all the variants on the protein structures 
available in the Protein Data Bank (PDB) [19]. To reduce the number of sequence 
alignments between Swiss-Prot sequences and sequences derived from the PDB, we 



use a precompiled list of correspondences between Swiss-Prot and PDB codes available 
at the ExPASY web site. Using this list we aligned each pair of sequences using Blast 
algorithm [20] and filtering out alignment with: i) gaps, ii) sequence identity lower than 
100% and iii) shorter than 40 residues. The remaining alignments are used to calculate 
the correspondence between the Swiss-Prot and PDB residue numerations. In case a 
mutation maps in more than one protein structure, the one with best resolution has been 
selected.  After this filtering procedure we obtain a set of 4,986 mutations from 784 
protein chains. The dataset of variants mapped into protein structures is composed by 
3,342 disease-related SAPs and 1,644 neutral polymorphisms. To keep the dataset 
balanced we doubled the number of neutral variants considering their reverse mutation 
as neutral. The final set results in 6,630 mutations about equally distributed between 
disease-related and neutral SAPs. 
 
Implemented SVM-based predictors 

The proposed task is to predict whether a given single amino acid polymorphism is a 
neutral or disease-related. The task is treated as a binary classification problem for the 
protein upon mutation. The Support Vector Machine (SVM) input features for the 
structural-based predictor include: the amino acid mutation, the mutation structural 
environment, the sequence-profile derived features, and a functional-based log-odds 
score calculated considering the GO classification. The final input vector consists 48 
elements:  

• 20 components encoding for the mutations  (Mut) 
• 21 local protein structure information  (3D) 
• 5 inputs features derived from sequence profile (Prof) 
• 2 elements encoding for the number of GO term associated to the protein and the 

GO log-odd score (LGO).  
A similar sequence-based SVM predictor has been used to measure the increase of 
accuracy resulting from the use of protein three-dimensional structure information. The 
structure-based SVM differs only in the 21 elements vector encoding for the local protein 
structure environment (3D) that replaces the 20 elements vector encoding for the 
sequence environment. More details about the SVM input features have been described 
in supplementary materials. 
 

Interaction score 

The residues interactions are defined considering all the residues within a radius shell of 
6 Å around the C-α of the mutated residue. According to this we calculate a log odd 
score dividing the frequency of lost interactions related to disease by the same type of 
interactions that have no pathological effect.   
Although the mutations could be responsible for protein structural changes, as first 
approximation, we consider the position of the C-α of the new residue will not change 
significantly after the mutation. Hence, we consider new interactions those between the 
mutant residue and the residues previously interacting with the wild-type. A score of the 
possible damaging effect of lost or new interactions are calculated as follow 
 
 LCk=log2[f(ck(i,j),D)/f(ck(i,j),N)]     [1] 
 



where fk(ck(i,j),D) and f(ck(i,j),N) are the frequencies of contacts between residues i and j 
respectively for disease-related (D) and neutral (N) variants and k is equal to l or n 
respectively for lost and new interactions. 
 
Accuracy measures 

The performances of our methods are evaluated using a 20-fold cross-validation 
procedure on the whole SAPs dataset. The dataset has been divided keeping the ratio of 
the disease-related to the neutral polymorphism mutations similar to the original 
distribution of the whole set.  Furthermore, all the proteins in the datasets are clustered 
according to their sequence similarity with the blastclust program in the BLAST suite [20] 
by adopting the default value of length coverage equal to 0.9 and the percentage 
similarity threshold equal to 30%. We kept all the mutations belonging to a protein in the 
same training set to overestimate the performance. Classical accuracies measures such 
as the overall accuracy (Q2), the sensitivity (S), the probability of correct predictions (P), 
the Matthewʼs correlation coefficient (C), the false and true positive rates (FPR, TPR) 
and the area under the ROC curve (AUC) are used to score the performance of our 
predictors. A Reliability Index (RI) score has been calculated to select more reliable 
predictions. More details about the definition of the statistical index used in this work are 
provided in the supplementary materials. 
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FIGURES 

 
 

 
 
Figure 1. Performance of the SVM-based method. ROC curves of the sequence (SVM-SEQ) and 

structure-based methods (A) and prediction accuracy of SVM-3D as function of the Reliability 
Index (RI). 

 
 

 
 
Fig. 2. Analysis of the protein three-dimensional structure environment. Distribution of relative 

solvent accessible area (RSA) for disease-related and neutral variants (A) and prediction 
accuracy as a function of the RSA (B). Accuracy measures (Q2, C) are defined in 
supplementary material.  DB is the fraction of the whole dataset for disease-related (D) and 
neutral (N) mutations. 

 
 
 
 



 
 
Fig. 3 Log odd score for lost residues interactions (A) and for newly formed interactions (B). The 

red zones correspond to damaging lost or new interactions. Bleu points correspond to neutral 
interactions. 

 
 

 
 
 
Figure 4. Structure of the Glycosylasparaginase (PDB code 1APY chain A) and details of the 

interactions around Cys163 (Cys140 in the PDB structure) 
 



 
 
 
Figure 5. Structure of the Thyroid hormone receptor (PDB code 1NAX chain A) and details of the 

interactions around the Arg243. 
 
 
 
 



TABLES 

 
Table 1. Performances of the sequence (SVM-SEQ) and structure (SVM-3D) based methods. 
 

 
 
 
 

 
The accuracy measures are defined in supplementary materials. D, N stands for disease-related 
and neutral variants respectively.  
 
 
 
Table 2. Performances of the methods on agree and not agree subset of predictions  
 

SEQ∩3D indicates the subset of agree predictions, SEQ-3D and 3D-SEQ are respectively the 
predictions of SVM-SEQ and SVM-3D on the not agree prediction subset. The accuracy 
measures are defined in supplementary materials. PM is the fraction of the dataset. D, N stands 
for disease-related and neutral variants respectively.   
 

  Q2 P[D] S[D] P[N] S[D] C AUC 
SVM-SEQ 0.81 0.80 0.82 0.81 0.$9 0.61 0.89 
SVM-3D 0.84 0.82 0.86 0.85 0.81 0.67 0.91 

  Q2 P[D] S[D] P[N] S[D] C AUC PM 
SEQ∩3D 0.86 0.85 0.89 0.88 0.84 0.73 0.92 88 
SEQ-3D 0.63 0.66 0.65 0.60 0.60 0.25 0.68 12 
3D-SEQ 0.37 0.40 0.35 0.34 0.40 -0.25 0.40 12 
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Support Vector Machine (SVM) input features 

 
The SVM-based methods developed in this work consider in input the following features: 
i) residue mutation; ii) protein sequence profile; iii) functional score based on Gene 
Ontology (GO) terms and iv) either sequence or structure mutation environment. 
   
Encoding residue mutation 

The input vector relative to mutation consists of 20 values: the first 20 (the 20 residue 
types) explicitly define the mutation by setting to -1 the element corresponding to the wild 
type residue and to 1 the newly introduced residue (all the remaining elements are kept 
equal to 0).  
 
Encoding mutation structure environment 

The protein structural environment is encoding with a 21 elements vector. The first 20 
elements encode for the number of each residue type, which have at least one heavy 
atom within a radius shell around the C-α of the mutated residue. After an optimization 
procedure a shell of 6 Å radius has been considered. The 21st element is the relative 
solvent accessible area calculated using the DSSP program [1]. 
 
Encoding mutation sequence environment 

The 20 element input values for the mutation sequence environment (the 20 elements 
represent the 20 residue types) encode for the number of the each residue type, to be 
found inside a window centered at the residue that undergoes mutation and that 
symmetrically spans the sequence to the left (N-terminus) and to the right (C-terminus) 
with a length of 19 residues [2].   
 
Encoding  sequence profile information   

We derive for each mutation: the frequency of the wild type, the frequency of the mutated 
residue, the number of totally and locally aligned sequences and a conservation index 
(CI) for the position at hand: the more a residue is functionally important the more is 
conserved over evolution [3]. The conservation index is calculated as: 
        



CI(i)=[Σa=1
20(fa(i)-fa)

2]1/2        [1] 
 
where fa(i) is the relative frequency of residue a at mutated position i and fa is the overall 
frequency of the same residue in the alignment. The sequence profile is computed from 
the output of the BLAST program [4] running on the uniref90 database (Oct 2009) (E-
value threshold=10-9, number of runs=1).  
 
Functional based score  

The Gene Ontology log-odds score (LGO) provides information about the correlation 
among a given mutation type (disease related and neutral) and the protein function. The 
annotation data are relative to the GO Database (version Mar 2010) and are retrieved at 
the web resource hosted at European Bionformatics Institute (EBI). To calculate the 
LGO, first we derived the GO terms from all the three branches (molecular function, 
biological process and cellular components) for all our proteins in the dataset. For each 
annotated term the appropriate ontology tree was traversed upward to retrieve all the 
parent terms with the GO-TermFinder tool (http://search.cpan.org/dist/GO-TermFinder/) 
[5] and counting a GO term only once. The log-odds score associated to each protein is 
calculated as: 
 

LGO=Σ log2[fGO(D)/fGO(N)]       [2] 
 
where fGO is the frequency of occurrence of a given GO term for the disease-related (D) 
and neutral mutations (N) adding one pseudo-count to each class. To prevent the 
overfitting, the LGO scores are evaluated considering fGO values computed over the 
training sets without including in the GO term counts of the corresponding test set.  
 
Support Vector Machine software 

The LIBSVM package (http://www.csie.ntu.edu.tw/~cjlin/libsvm/) has been used for the 
SVM implementation [6].  The selected SVM kernel is a Radial Basis Function (RBF) 
kernel K(xi,xj)=exp(-γ||xi-xj||

2) and γ and C parameters are optimized performing a grid 
like search. After input rescaling the values of the best parameters are C=8 and 
γ=0.03125 
  
 
Statistical indexes for accuracy measure 
 

The prediction accuracy is scored with several measures. In this paper the efficiency of 
our predictors have been scored using the following statistical indexes.  
The overall accuracy is: 
 

Q2=P/N           [3] 
 
where P is the total number of correctly predicted mutations and N is the total number of 
mutations. The Matthewʼs correlation coefficient C is defined as: 

 
C(s)=[p(s)n(s)-u(s)o(s)] / D       [4] 

 
where D is the normalization factor: 



 
D =[(p(s)+u(s))(p(s)+o(s))(n(s)+u(s))(n(s)+o(s))]1/2     [5] 

 
for each class s (D and N, stand for disease-related and neutral mutations respectively); 
p(s) and n(s) are the total number of correct predictions and correctly rejected 
assignments, respectively, and u(s) and o(s) are the numbers of false negative and false 
positive for the class s. 
The coverage S (sensitivity) for each discriminated class s is evaluated as: 
 

S(s)=p(s)/[p(s)+u(s)]        [6] 
 
where p(s) and u(s) are the same as in Equation 5.  
The probability of correct predictions P (or positive predictive values) is computed as: 
 

P(s)=p(s) / [p(s) + o(s)]       [7] 
 
where p(s) and o(s) are the same as in Equation 5 (ranging from 0 to 1). 
For each prediction a reliability score (RI) is calculated as follows:  
 

RI=20*abs|O(D)-0.5|        [8] 
 
where O(D) is the SVM output. Other standard scoring measures, such as the area 
under the ROC curve (AUC) and the true positive rate (TPR= Q(s)) at 10% of False 
Positive Rate (FPR= 1-P(s)) are also computed [7]. 
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