
User-Defined Rules in a Distributed Address Book

Hannes Mühleisen and Adrian Paschke

Freie Universität Berlin
Department of Computer Science

Königin-Luise-Str. 24/26, 14195 Berlin, Germany
{muehleis,paschke}@inf.fu-berlin.de

Abstract. The Semantic Web as an evolution of the World Wide Web allows its
users to share content over the boundaries of applications and web sites. However,
current web-based systems for the controlled distribution of private information
require the presence of information on centralized systems. A potential risk for
the user is the central system operator which has full access to all stored infor-
mation. Moreover, if a malicious user gets unauthorized access to the operator’s
management rights, the information stored by all users is exposed. In this paper,
we demonstrate our alternative approach of a distributed address book, where
users can store their information on a system under their own control. A special
focus in our implementation was on the usability, in particular for the complex
rule generation and processing chain, so that any user familiar with social net-
work software is able to formulate access policies.

1 Introduction and Motivation

The Semantic Web as an evolution of the World Wide Web allows its users to share
content over the boundaries of applications and web sites. To achieve this goal, the re-
sources of the WWW are annotated using machine-readable meta data. The principles
of Linked Data [2] describe a set of conventions how this meta data should be struc-
tured and published, so information can be re-combined and processed at an arbitrary
location.

Conventional web-based systems for the controlled distribution of private informa-
tion require the presence of information on centralized systems. In order to control the
access to the managed information, these systems usually support secured data storage,
access policies for the stored data and user authentication. Examples for such systems
include various social networks: all users sign in on a central website to store their
information there. Users configure their privacy settings on that website, for instance
to reveal their telephone number only to a particular group of authorized users. How-
ever, a potential risk for the user is the central system operator which has full access
to all stored user information. The user cannot necessarily trust the operator. Moreover,
if a malicious user gets unauthorized access to the operator’s management rights, the
information stored by all users is exposed and each user’s privacy is endangered.

We have developed a decentralized method for enforcing distributed user-defined
access policies on Semantic Web data encoded in the Resource Description Format
(RDF) [4] in a concept called the “Policy enabled Linked Data Server” PeLDS [6,5]. In

this paper, we demonstrate our alternative approach of a distributed address book, where
users can store their information on a system under their own control. Integration with
other users on other systems is easily possible, and the access to the stored information
can be controlled by the users themselves.

The remainder of this paper is structured as follows: Section 2 describes the basic
concepts for protecting information published as linked data with the definition and
enforcement of access policies. Our back-end system, the Policy-enabled Linked Data
Server is introduced shortly. Subsequently, Section 3 describes our Distributed Address
Book application, its system architecture and user interaction concept. Finally, Section 4
concludes this paper.

2 Linked Data with Access Policies

Access policies are rules which describe the situations in which different pieces of in-
formation are made available to others. In order to express access policies for an RDF
graph, the user has to describe those parts of the graph to be affected by a particular
rule. This process can be compared to a “classification” of a document with sensitive
contents. We have identified two levels for feasible data classification in Semantic Web
data: the data model level and the semantic level. RDF Graphs can be decomposed into
triples containing a subject, a predicate and an object element. These triples belong to
the data model level. Resource descriptions, their affiliation with concepts and relation-
ships to other resources are on the semantic level.

The Semantic Web Rule Language (SWRL) is a W3C member submission of the
RuleML Datalog rule interchange language with additional OWL literals for Semantic
Web ontology data [3]. SWRL rules can be evaluated by a reasoning program such as
Pellet1, KAON2 or RacerPro. SWRL rules can be represented using an RDF graph, and
thus allow easy rule handling along with the RDF graphs containing the information
to be protected. SWRL supports a number of predicates designed to enable access to
the information encoded in RDF. Our PeLDS concept uses SWRL for the expression of
access policies.

2.1 The Policy enabled Linked Data Server

The main feature for our concept of a Policy-enabled Linked Data Server is to provide
a semantic storage system which allows its users to specify which elements of their
RDF graphs are published to which user. This is achieved by calculating a temporary
constructive view on the stored graphs that contains only those elements the querying
user has been authorized to retrieve by the publishing user. To facilitate the easy de-
scription of access policies, we have developed a rule-based access policy format based
on SWRL [6, Sec. 4.1].

Users publishing data on the system can define an access policy for each dataset
they have created. The system guarantees the enforcement of a valid policy during each
operation involving this dataset. Each rule consists of a label, a rule antecedent describ-
ing the condition under which the rule is satisfied and a consequent. Both the antecedent

1 http://clarkparsia.com/pellet

http://clarkparsia.com/pellet

and the consequent contain a collection of logical predicates joined by the logical AND
condition. In addition to all of SWRL’s predicates, our policy language supports cus-
tom predicates enabling data classification for single triples and resources as well as
instances of specific classes.

Listing 1.1 gives an example of an access policy containing a single rule. The rule
expresses the following notion: the user “Bob” is permitted to access the phone number
of the user “Alice”’. The rule is labeled phoneRule and contains two antecedent pred-
icates. The first predicate specifies the ?action resource to be an instance of the con-
cept QueryAction, the second predicate requires the actor resource to have http://-
example.com/bob as the value for its actor property. The consequent consists of a
data classification predicate covering all triples with resource http://example.com-
/alice, property ex:phone, and arbitrary values.

phoneRule :
QueryAct ion (? a c t i o n) && a c t o r (? a c t i o n , h t t p : / / example . com / bob)
=> p e r m i t t r i p l e (h t t p : / / example . com / a l i c e , ex : phone , ∗) ;

Listing 1.1. Example access policy

3 The Distributed Address Book

Our demonstration application is a distributed address book designed as a web-based
application which is run from a standard web browser. As one would expect from an
address book application, users can add, view and remove contacts, and also organize
their contacts into groups. Users are able to change their own address book entry. In
contrast to most previous systems, users are able to securely integrate their contact
information with other users using different installations of the application without any
form of previous setup. A special focus in our implementation was on the usability, in
particular for the complex rule generation and processing chain, so that any user familiar
with social network software is able to formulate access policies. The address book is
using the PeLDS system only as a storage back-end, and all data concerning other users
is retrieved on-the-fly using Linked Data concepts. Users define access policies using a
set of pre-defined building blocks to secure their data.

3.1 System Architecture

Fig. 1 shows the two main parts of the Distributed Address Book: Addressbook Client is
a JavaScript application running inside the user’s web browser. The common combina-
tion of HTML and CSS is used to present information to the user. The client is sending
HTTP requests to the corresponding Addressbook Server. This server is a PHP applica-
tion which uses the ARC RDF library2 for dereferencing and the access to the PeLDS

2 http://arc.semsol.org

back-end storage. The PHP interpreter is run in an instance of the Apache HTTP server.
All persistent user data as well as access policies are stored inside a PeLDS instance.
The access to this data is performed using the RDF query language SPARQL [7] for
query operations and SPARQL/Update [8] for update operations.

Server

Client

Addressbook Server

ARC RDF Library

PHP Interpreter

Apache HTTP Server

PeLDS

Tomcat Servlet Container

SPARQL /
Rules

Addressbook Client

HTML / CSS / JS

Web Browser

FOAF/SSL

HTTP

Other Addressbook Server

FOAF/SSL HTTP(S)

Session

Own Component

Existing Component

User

Legend

Communication

System delimiter

Fig. 1. Distributed Address Book - Components

Only authorized users are able to view an entry according to the defined authenti-
cation and authorization mechanisms in every communication layer. Between Address-
book Client and Addressbook Server HTTP sessions are maintained which are estab-
lished after a successful user/password authentication by the user. Addressbook Server
and local or remote PeLDS instances use the FOAF+SSL authentication scheme which
employs SSL client certificates and a fully distributed certificate validation mechanism
[9].

3.2 Contact Information and Access Policy Input

User profiles consist of various fields, and the application is generating the input form
using a configuration file. This configuration defines the following properties for each
field: (1) the form elements the user inputs his data in, (2) a method to check whether
these inputs are valid, (3) a method to convert the data given by the user into RDF, (4)
a method to load the form data from RDF, and (5) a method to generate a rule conse-
quence fitting to the RDF snippet of this field. This way, the entire process of loading
the current values into the generated profile form, validating all values, and creating

the RDF graph corresponding to the submitted values is very flexible and customizable.
The application itself on the other hand defines various visibility levels, which then
form the rule antecedents. At the moment, five visibility levels are implemented and
selectable for each field:

1. Public - Field entries are made available to all users and clients, even without au-
thentication.

2. All contacts - Field entries are only visible to users, who have been added as a
contact by the current user.

3. Group (requires group selection) - Field entries are only visible to users which have
been added to the selected contacts group by the current user.

4. Contact (requires contact selection) - Field entries are only visible to the selected
user.

5. hidden - Field entries are only visible to the user that has created them.

contacts profile logout
My profile

Web ID: http://contacts.pelds.org/ruleml

Visibility

Name Bob RuleML Public

Phone +1-(617)-253-5702 All contacts

GPS-Position 38.83 Lat. / -77.11 Long. Group Family

Save changes
© 2009 Hannes Mühleisen - powered by ARC2, PeLDS & Linked Data

Fig. 2. Bob’s Account Settings

Fig. 2 shows an example for the profile view for the user “Bob”. Three fields are
defined, “Name”, “Phone”, and “GPS-Position”. Bob has chosen for his name to be
visible to everybody, his phone number to be visible to all his contacts, and his GPS
Position only to be visible to the members of the contacts group “Family” he has de-
fined. From this input, the address book generates an RDF graph shown in Listing 1.2
encoded in the N3 RDF format [1] and an access policy consisting of three rules shown
in Listing 1.3 in the PsSF language that can be evaluated by the PeLDS system.

<h t t p : / / c o n t a c t s . p e l d s . o rg / ru l eml> f o a f : name ”Bob RuleML” .
<h t t p : / / c o n t a c t s . p e l d s . o rg / ru l eml> f o a f : phone

”+1−(617)−253−5702” .
<h t t p : / / c o n t a c t s . p e l d s . o rg / ru l eml> f o a f : b a s e d n e a r : pos .

: pos r d f : t y p e geo : P o i n t .
: pos geo : l a t ” 3 8 . 8 3 ” .
: pos geo : l ong ”−77.11” .

<h t t p : / / c o n t a c t s . p e l d s . o rg / ru l eml> f o a f : knows
<h t t p : / / c o n t a c t s . p e l d s . o rg / a l i c e 2 > .

Listing 1.2. RDF graph created for Bob

The first rule in the access policy, AddressbookDocument [. . .] name, defines Bob’s
phone number to be publicly available. The rule condition sets no constraint on the
client, it just specifies the request (?action) to be a query operation. The consequence
consists of a data classification predicate permit triple, this way the triple
(http://[...]/ruleml,foaf:name,"Bob RuleML")
containing Bob’s full name is marked to be affected by this rule using the wild card “*”
and is thus made available to all other users.

The second rule, AddressbookDocument [. . .] phone makes Bob’s phone available
to contacts. The rule conditions therefore contain not only the restriction for the current
request to be a query in the first predicate (as before), but also puts constraints on
the querying user (actor), who has to be the entity responsible for the current action
according to the second predicate. The third condition predicate then requires a triple
defining the querying user to be known by Bob. The consequence is defined analog to
the first rule.

Finally, the third rule AddressbookDocument [. . .] pos describes the access condi-
tions for Bob’s GPS position, which only members of the “Family” contact group are
able to see. As in the second rule, the first three predicates of the rule condition only
match if the querying user is in the contact list of Bob, the fourth predicate then checks
for the membership of the contact in the “Family” group. The consequence contains
a more complex data classification: Since the position is a complex object consisting
of latitude and longitude, it is more efficient to perform a instance-classification on the
class geo:Point. The reference to this instance is classified using a simple triple pattern
with the foaf:based near predicate.

A d d r e s s b o o k D o c u m e n t R d f I n p u t T e x t R d f V i s i b i l i t y W o r l d n a m e :
p e l d s : QueryAct ion (? a c t i o n) =>
p e r m i t t r i p l e (h t t p : / / c o n t a c t s . p e l d s . o rg / ru l eml , f o a f : name , ∗) ;

A d d r e s s b o o k D o c u m e n t R d f I n p u t T e x t R d f V i s i b i l i t y A l l C o n t a c t s p h o n e :
p e l d s : QueryAct ion (? a c t i o n) &&
p e l d s : a c t o r (? a c t i o n , ? a c t o r) &&
f o a f : knows (h t t p : / / c o n t a c t s . p e l d s . o rg / ru l eml , ? a c t o r) =>
p e r m i t t r i p l e (h t t p : / / c o n t a c t s . p e l d s . o rg / ru l eml , f o a f : phone , ∗) ;

A d d r e s s b o o k D o c u m e n t R d f I n p u t P o s R d f V i s i b i l i t y G r o u p p o s :
p e l d s : QueryAct ion (? a c t i o n) &&
p e l d s : a c t o r (? a c t i o n , ? a c t o r) &&
f o a f : knows (h t t p : / / c o n t a c t s . p e l d s . o rg / ru l eml , ? a c t o r) &&
f o a f : member (h t t p : / / c o n t a c t s . p e l d s . o rg / r u l e m l / group / f ami ly ,

? a c t o r) =>
p e r m i t t r i p l e (h t t p : / / c o n t a c t s . p e l d s . o rg / ru l eml ,

f o a f : b a s e d n e a r , ∗) &&
p e r m i t i n s t a n c e (geo : P o i n t) ;

Listing 1.3. Access Policy for Bob

3.3 Access to Contact Information

Users can add contacts to their address book using their URL as an identifier and link
to the remote contact data. Contrary to current systems, our Distributed Address Book
allows the addition of users on different Addressbook servers. Data retrieval is then per-
formed on the fly using Linked Data dereferencing. The information retrieved is con-
trolled by the respective PeLDS instances, and the Addressbook Client component au-
thenticates itself against every remote node it retrieves data from using the FOAF+SSL
verification method.

As shown in Fig. 3, the Addressbook client displays a contact and a group list to
the user, which can then choose a contact to display his or her details. Continuing our
example from the previous section, Alice has successfully logged into the Distributed
Address Book and added Bob as a contact using his URL. Also, she has created a
group “Family”, and added Bob to it. Now, she selected the group “Family” in the left
column to list all contacts, and then chose the contact “Bob RuleML” in the center
colum to display Bob’s contact details in the right column. Bob’s name, phone number,
and current positions are displayed. Alice is able to see all this, because Bob’s access
policy permits her to see this information.

contacts profile logout

Groups

All contacts

Family

Friends

Sports

Work

Contacts

Bob RuleML Bob RuleML
Phone: +1-(617)-253-5702

Position Lat.: 38.83, Long.: -77.11 Show in map...

Web ID: http://contacts.pelds.org/ruleml

+ + delete

Contacts

© 2009 Hannes Mühleisen - powered by ARC2, PeLDS & Linked Data

Fig. 3. Alice’s Contacts View

4 Conclusion

We have motivated the need for an architectural change in web-based computer systems
storing private information. We have introduced our concept of protecting information
published as Linked Data using access policies consisting of declarative access rules.
Our concept of the Policy enabled Linked Data Server was described shortly. The main
topic of this paper was the architecture and user interaction of our prototype of a Dis-
tributed Address Book. The Distributed Address Book enables its users to store contact
information on a system they trust, and also makes secure integration with users of
other systems possible. Users are able to create access policies themselves by follow-
ing the template structure offered to them in the application. From the user’s choices,
an individual access policy is compiled, stored, and enforced. The described system is

available on-line at http://contacts.pelds.org, its source code can be down-
loaded at http://www.pelds.org.

Acknowledgments We would like to acknowledge the contributions of Martin Kost
and Johann-Christoph Freytag. This work has been partially supported by the ”Inno-
Profile Corporate Semantic Web” project funded by the German Federal Ministry of
Education and Research (BMBF) and the BMBF Innovation Initiative for the New Ger-
man Laender - Entrepreneurial Regions.

References

1. Berners-Lee, T.: Notation 3 (1998), http://www.w3.org/DesignIssues/
Notation3.html, http://www.w3.org/DesignIssues/Notation3.html accessed on 2010-04-
20

2. Berners-Lee, T.: Linked data (2006), http://www.w3.org/DesignIssues/
LinkedData.html, http://www.w3.org/DesignIssues/LinkedData.html accessed on
2010-04-20

3. Horrocks, I., Patel-Schneider, P.F., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL:
A semantic web rule language (2004), http://www.w3.org/Submission/SWRL/,
http://www.w3.org/Submission/SWRL accessed on 2010-04-20

4. Manola, F., Miller, E., McBride, B.: RDF primer (2004), http://www.w3.org/TR/
rdf-primer/

5. Mühleisen, H.: Zugriffsrichtlinien und Authentifizierung für Linked-Data-Systeme. Master’s
thesis, Humboldt-Universität zu Berlin, http://muehleisen.org/da-hm-ld.pdf (2009), http:
//muehleisen.org/da-hm-ld.pdf

6. Mühleisen, H., Kost, M., Freytag, J.C.: SWRL-based Access Policies for Linked Data. In:
Kärger, P., Olmedilla, D., Passant, A., Polleres, A. (eds.) Proceedings of the Second Workshop
on Trust and Privacy on the Social and Semantic Web (SPOT2010). vol. 576 (2010), http:
//CEUR-WS.org/Vol-576/paper1.pdf

7. Prud’hommeaux, E., Seaborne, A.: SPARQL query language for RDF (2008), http://
www.w3.org/TR/rdf-sparql-query/

8. Seaborne, A., Manjunath, G., Bizer, C., Breslin, J., Das, S., Davis, I., Harris, S., Idehen, K.,
Corby, O., Kjernsmo, K., Nowack, B.: SPARQL Update (2008), http://www.w3.org/
Submission/2008/SUBM-SPARQL-Update-20080715/

9. Story, H., Harbulot, B., Jacobi, I., Jones, M.: FOAF+SSL: RESTful authentication for the
social web (2009), submitted to Semantic Web Conference 2009

http://contacts.pelds.org
http://www.pelds.org
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/Notation3.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/DesignIssues/LinkedData.html
http://www.w3.org/Submission/SWRL/
http://www.w3.org/TR/rdf-primer/
http://www.w3.org/TR/rdf-primer/
http://muehleisen.org/da-hm-ld.pdf
http://muehleisen.org/da-hm-ld.pdf
http://CEUR-WS.org/Vol-576/paper1.pdf
http://CEUR-WS.org/Vol-576/paper1.pdf
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/TR/rdf-sparql-query/
http://www.w3.org/Submission/2008/SUBM-SPARQL-Update-20080715/
http://www.w3.org/Submission/2008/SUBM-SPARQL-Update-20080715/

	User-Defined Rules in a Distributed Address Book

