
Dataset Dynamics Compendium:
A Comparative Study

Jürgen Umbrich1, Boris Villazón-Terrazas2, and Michael Hausenblas1

1 Digital Enterprise Research Institute, National University of Ireland, Galway
2 OEG-DIA, Facultad de Informática, Universidad Politécnica de Madrid, Spain.

Abstract. At the time of writing there exists no consensus about the ap-
proaches to detect, propagate and describe changes in resources and datasets
of the Linked Open Data Web. This survey gives a comprehensive overview of
the current technical solutions and a comparison of such based requirements
we derived from use cases the community came up with. We give a detailed
overview about the aspects of discovery, granularity level, and description of
the changes, as well as the detection algorithms and notification mechanisms.
Moreover, we present a high-level dataset dynamics stack that integrates the
current technical solutions for dealing with changes in datasets of the Web of
Data.

1 On the Importance of Dynamics of Linked Datasets

So far, Linked Data principles and practices are being adopted by an increasing
number of data providers, getting as result a global data space on the Web containing
billions of RDF triples [8]. However, there are still various research challenges that
must be overcome. One particular research challenge is datasets dynamics, and the
Linked Data community is realizing the importance of this research area in the last
recent months.

Although, there are some efforts to solve this problem in databases, e.g. [28], [18],
and [6], among others; they do not cover all the aspects of the Linked Data datasets.
This is because linked data can be classified as a self-organising ecosystem, i.e. many
units participate in a parallel and distributed manner by creating, publishing and
interlinking information. Moreover, enterprises or organisations which are using the
paradigm of integrating data by applying the Linked Data principles have to face and
deal with the adhering dynamics.

The topic of dataset dynamics covers all kinds of aspects related to changes of
and between Linked Data resources and datasets. This research area includes: (1) the
design of vocabularies to describe dynamic characteristics and changes of datasets,
(2) the auto-discovery of those descriptions, (3) web-scale communication methods
for the interaction between consumers and producers for different change granularity
levels and (4) algorithms to compute efficiently deltas between two data snapshots.

The players participating in the Linked Data ecosystem are manifold; for instance,
the research community, Web 2.0 portals, and Facebook among others. The research
community around Linked Data and its efforts to provide tools for data publishers
to share their data as Linked Data. The result of these efforts are several software
libraries which convert information from arbitrary formats into RDF, for example:
D2R Server3, XLWrap4, Any235, etc.

Also, more and more Web 2.0 portals start to expose their data as Linked Data,
for example widely used content management systems like Drupal 76 and knowledge

3 http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
4 http://xlwrap.sourceforge.net/
5 http://any23.org/
6 http://drupal.org/node/725382



management system like SemWiki7, News portal and multimedia domains, such as
the New York Times or BBC, publish their articles and programs according to the
principles of Linked Data. Moreover, companies adapt to describe their products
using the GoodRelation ontology8 which leads to better search results for the major
search engines like Google or Yahoo. Governments contribute by integrating their
data into the LOD cloud. All these players continuously contribute information to
the LOD cloud.

The data producers and consumers put a tremendous effort into the interlinking
of the valuable information pieces. Furthermore, data publishers continuously try to
improve the quality of their data by changing vocabularies, adding new information
and relations, or deleting obsolete ones.

Clearly, one can assume and even observe that Linked Data is very dynamic. How-
ever, at the time of writing there is no solid solution nor a clear research direction of
the big picture of the problem. There are a number of use cases, derived requirements
and proposals as we will show in this survey. Nevertheless, we can clearly state that
none of the available proposals solve the problem of handling and communicating
dataset dynamics in a sufficient way.

The contribution of this work can be summarised as follows: (1) a fundamental
overview about the topic of dataset dynamics; (2) the presentation of use cases and
requirements agreed by the Linked Data community; (3) a survey and comparison of
proposals which are addressing the issues and partial solve them; and (4) an abstract
dataset dynamics stack.

Moreover, it is worth to mention that dataset dynamics is important to provide
an “efficient” consumption of Linked Data through the discovery, synchronisation,
caching, and linkage of the datasets.

The remainder of this paper is organised as follow: Section 2 reviews some ex-
isting solutions and Section 3 presents identified use cases. Next, Section 4 discusses
requirements derived from the use cases and depicts the high-level architecture of the
solution. Then, Section 5 describes the vocabularies and mechanisms that cover the
requirements identified. Finally, Section 6 provides some conclusions.

2 Existing Deployed Systems
In this section we review some deployed systems that deal with the dataset dynamics.
These systems are the result of preliminary efforts to solve the identified problems of
handling and communicating dataset dynamics.

2.1 Sitemap Protocol

Website crawling can be made more efficient and predictable by using the Sitemap
Protocol [21], originally developed by Google and now supported by all major search
engines, as well as data search engines such as Sindice [24]. It consists of a sitemap.xml
file that is usually placed in the website root directory and contains a list of all the
URLs to be crawled. The Sitemap protocol format consists of XML tags and it defines
several elements, being the most importance in our context:
– url, entry for each URL, the remaining elements are children of this.
– changefreq, which defines how frequently the page is likely to change. This value

provides general information to search engines and may not correlate exactly to
how often they crawl the page. The sitemap will be fetched with the highest
frequency indicated by the URLs contained in it. Because of this, it can save
bandwidth if terms with the same change frequency are grouped into separate
sitemaps.

7 http://km.aifb.kit.edu/ws/semwiki2006/
8 http://www.heppnetz.de/projects/goodrelations/



– lastmod, which represents the date of last modification of the file. This date
should be in W3C Datetime9 format. For example, Sindice uses the lastmod
element to decide if the given URL has to be re-indexed or not. This is the most
important information, as it can reduce the number of requests Sindice will to
make to a specific site.

Thanks to the Sitemap protocol, websites that publish RDF datasets are ready for
effective discovery and synchronization.

2.2 DBpedia Live

DBpedia is community effort to extract information from Wikipedia and to make
this information available on the Web. Nevertheless, a manual effort is necessary
to produce a new release and the extracted information is not up-to-date. DBpedia
Live [9] is an extension of DBpedia, and is created to tackle the challenging problem
of processing tens of thousands of changes per day in order to consume the constant
stream of Wikipedia updates. Basically the DBpedia Live provides (1) up-to-date
information and (2) a mechanism for allowing the Wikipedia community to maintain
the DBpedia ontology collaboratively. The DBpedia Live framework consists of the
following main components:
– PageCollections. Abstractions of local or remote resources of Wikipedia articles.
– Destinations. They store extracted RDF triples.
– Extractors. These extractors convert a specific type of wiki markup into triples.
– Parsers. These components help the extractors by identifying datatypes, and

converting its corresponding values.
– ExtractionJobs. They consist of a page collection, extractors, and a destination.
– Extraction Manager. This component manages the process of passing Wikipedia

articles to the extractors and delivers their output to the destination.

2.3 PubSubHubbub

PubSubHubbub [16] is a decentralized real-time Web protocol that delivers data to
subscribers the moment it becomes available. This protocol extends the Atom [17]
and RSS [19] protocols for data feeds, basically it turns Atom and RSS feeds into
real-time streams.
In a nutshell this protocol has three main participants:

– Publisher, a owner of a topic. It notifies the hub when the topic feed has been
updated.

– Hub, a server which implements both sides of this protocol. There are some public
hubs, for example: App Engine10, Superfeedr11, and RabbitHub12

– Subscriber, an entity (program or human being) that wants to be notified of
changes on a topic.

Next, we present a very simple example that shows how it works:
1. A blogger or content creator creates a feed and specifies a hub.
2. A consumer subscribes to the blog using the RSS feed in the normal way.
3. New content is created and the source pings the hub saying “i have new content!”
4. The hub in turn “fat pings” the subscribers saying “Hey, the blog has new content,

here it is!”
9 http://www.w3.org/TR/NOTE-datetime

10 http://pubsubhubbub.appspot.com/
11 http://blog.superfeedr.com/api/http/pubsubhubbub/pubsubhubbub/
12 http://github.com/tonyg/rabbithub/#readme



2.4 SparqlPuSH

The goal of sparqlPuSH [22] is to enable proactive notification of changes happening
in RDF stores, whatever they deal with: new data of a particular type being added,
updated statements about a given resource, etc. To this end, sparqlPuSH relies on
the aforementioned PubSubHubbub protocol to broadcast these updates.
In a nutshell the sparqlPuSH consists in the following steps:
1. to register the SPARQL queries related to the updates that must be monitored

in a RDF store,
2. to broadcast changes when data mapped to these queries is updated in the store.

Moreover, it can be used as an interface on the top of any SPARQL endpoint and also
comes with an ARC213 interface. Finally, this push approach can become a default
model in various RDF store implementations, enabling more capabilities to monitor,
in real-time, changes related to the RDF data.

3 Use Cases
We present the uses cases which are collected from the breakout session of the W3C
LOD Track at WWW 201014. Overall, we identified four general use cases which we
describe in detail in the remainder. The use cases are ordered by increasing complexity
to handle and process changes.

3.1 Use Cases UC 1: Synchronisation

A dataset consumer wants to mirror or replicate (parts of) a dataset from the LOD
cloud. Ideally, the consumer wants to be informed about the statements that have
been added/removed at a certain time point. The notification about the changes
enables him an efficient way to keep his dataset up-to-date. Most commonly, the
synchronisation is either for a single data source or for a set of data sources.

Real World Example. The semantic web index, Sindice, wants to keep its index
always updated with the current version of the available LOD datasets, for instance
DBPedia. A notification from the DBpedia publishers enables the index systems to
decide at which time they want to update their index, instead of actively checking
periodically if there exists a new version of a dataset dump. Ideally, Sindice would get
a notification about a change of a dataset in general, and can request details about
the changes to decide if it is necessary to perform the update immediately or at late
point in time.

Requirements. The requirements to fulfill this use case are: The dataset publisher
needs adynamic description [DD] of the dataset which allows consumers to learn
about high-level dynamics and the communication mechanism [CM] to learn about
new changes. Further, the consumer has to be able to learn about this description
by using a discovery mechanism [DM]. The publisher has to provide the change
description [CD] which contains machine readable and understandable information
about what and how much has changed. Finally, all the above requirements should
be compliant with the Architecture of the Web [10] [CW] and have to scale to the
size of the Web [SW].

3.2 Use Cases UC 2: Smart Caching
A developer uses one or more datasets from the LOD cloud in her application(s).
Rather than implementing custom-code for keeping the local data in the application
up-to-date (HTTP-level, dataset-level), the developer wants to use a smart cache that
offers the functionality as required (e.g., 304/HTTP-level for small set of resources,
notification for bulk-updates).
13 http://arc.semsol.org/
14 http://www.w3.org/2010/04/w3c-track.html



Real World Example. The execution of SPARQL queries directly over the LOD
Web guarantees: on the one hand always fresh results, but is, on the other hand, very
time and resource consuming. Each query triple pattern is executed directly over the
dereferenced content of the URI constants in the triple patterns. The integration of
a smart cache into the query processor could significantly increase the performance
of such a system. The smart cache could be able to store statements or the whole
content of resources which are rather very dynamic and frequently appear in queries.
Such statements could be rdf:type statements.

Requirements. The requirements to fulfill this use case are the same as for UC1 with
additionally: The dynamic and change descriptions of the datasets have to contain
information for different granularity levels [GL], e.g., information about changes
at a statement, source or dataset level.

3.3 Use Cases UC 3: Link Maintenance

In many scenarios, we can integrate information from various datasets by using or
creating links between the these datasets. A crucial point for any application which
relies on these links is the problem that links can change or resources can disappear
or moved. The application should be able to learn if a link type changed (e.g. the
relationship between two instances was refined) or if the linked resources vanished or
its identifier changed.

Real World Example. A music website enriches the information it provides about
bands (for example http://dbpedia.org/resource/Green_Day) and artists with
multilingual biography information retrieved from DBpedia. The website keeps the
retrieved biographies in a local cache and updates them in regular intervals (e.g.,
once a day). Additionally it exposes its local information as Linked Data on the
Web not including the cached biographies, but links to the corresponding DBpedia
resources. The web application must be informed whenever the dependent resource
(a representation of it) at DBpedia changes. Especially, if the resource is updated,
deleted, or moved to another URI location (http://dbpedia.org/resource/Green_
Day_(band)). If the web application is unaware of the remote changes it risks to (i)
loose the ability to updated its cached biographies if remote resource become un-
available or (ii) expose dead or semantically invalid links in its local linked dataset.
Additionally, it would be desirable to be informed about new artists and band bi-
ographies becoming available in the course of time.

Requirements. The requirements to fulfill this use case are the requirements from
UC1 and UC2 - that is the explicit representation of the dynamics and changes (CD &
DD) and the ability to discover the descriptions (DM) and which mechanism is used
to communicate the changes (CM) in different granularity levels (GL). Further, for
such a use cases the methods should be compliant to the architecture of the WWW
and be scalable (CW & SW).

3.4 Use Cases UC 4: Vocabulary Evolution and Versioning

A given LOD dataset contains a set of resources that conform to a particular vocabu-
lary. In other words, the vocabulary provides classes and properties for expressing the
data of the dataset. Whenever the vocabulary changes (evolves), i.e. a new version
of the vocabulary is available, there has to be some support for the propagation of
the vocabulary/ontology changes to the dataset. The resources of the dataset have
to be updated, and in this way they will be conformed to the new version of the
vocabulary.



Real World Example. The FOAF ontology15 provides classes and properties for
expressing some DBpedia resources. Last January, a new version of foaf ontology
was released. This new version updates some properties, e.g., foaf:givenname to
foaf:givenName. A notification of the new version of the ontology, with its changes,
is sent to the related datasets, including DBpedia. Each dataset will decide when
perform the propagation of those changes.

Requirements. In this use case the requirements to fulfill are the same of UC1, but
taking into account the ontology/vocabulary as well: (DD) the explicit representa-
tion of the ontology/vocabulary changes, (DM & CM) the notification and change
propagation approaches that allow to discover and register/subscribe the changes of
the vocabulary/ontology, and (GL) the selection of the right granularity level of the
changes.

4 Dataset Dynamics Requirements

We identified already the core requirements to solve our presented use cases, clus-
tered into: description, mechanism to discover and communicate changes for certain
granularity levels. Further, dealing with Linked Data according to the four principles
puts also some architectural requirements in place.

Description [DD & CD]
Dealing with dataset dynamics, we clearly need a way to describe that a dataset is
dynamic and how a data consumer can learn about that something has changed and,
in addition, what has changed. The descriptions should be machine readable and
even more important understandable - that is that the description should use the
same set of RDF vocabularies. Further, the descriptions should contain the impor-
tant attributes: 1) general information about the expected frequency of changes 2)
information and pointers to notification mechanisms. In addition, the following op-
tional and welcomed attributes are: 3) information about the average change volume
and 4) the type of change,e.g., most of changes are updates of available information
or the add of information.

Granularity Levels [GL]
The majority of our use cases need or could benefit from different granularity levels
by how changes are detected and communicated. Certain applications require change
notifications on the statement level (e.g. the link type or the object value changed),
whereas for others it is sufficient enough to know that there appeared a change in
a dataset. For coarse grained levels it might be necessary to also know about the
change fraction; e.g. 50% of the dataset changed. In more detail, we identified the
necessity for the following change levels:
Mandatory Levels
d Dataset level - the dataset DS changed
r Resource level - the resource URI changed
s Statement level - the statement (URI URI VALUE ) was deleted or added (this

covers also update operations)
Optional Levels
g Graph Structural Level - e.g. adding removing named graphs which can be col-

lections of statements from different sources

Communication Mechanism [CM]
We need scalable mechanisms to communicate the change event and the changes itself.
Data consumers should be able to either actively check (pull) or listen (push) for such
events and the change descriptions. A typical publisher/subscriber mechanism with

15 http://xmlns.com/foaf/spec/



different communication channels would be ideal. There should be a communication
channel that contains information that something has changed and how much has
changed. Another grouped of channels should then contain detailed information about
the changes for different granularity levels.

Discovery Mechanism [DM]
Dataset consumers needs mechanism to discover and learn about the change descrip-
tion of a dataset and which mechanism exists to learn about changes and what has
changed. Ideally, mechanism like the Linked-based Resource Description Discover
Protocol (LRDD) is used. LRDD is a collection of three link methods and a common
relation type for associating a descriptor to the resource it describes.

Web Architecture and Scalability [SW,CW]
Approaches which deal with dynamics of Linked Data Webs (either the open Web
or in intranets) should use techniques that are compliant to the architecture of the
WWW [10] and should scale to the size of the Web. In addition, the approaches
should ideally be distributed, provide a publisher/subscriber model where possible
and allow batch operations.

consumer
consumer

C
o

m
p

li
a
n

t 
w

it
h

 t
h

e
 A

rc
h

it
e
ct

u
re

 o
f 

th
e
 W

W
W

 (
 U

R
Is

, 
 H

T
T
P

 )

consumer

consumer

consumer
consumer

consumer

dataset

Resource Dynamic Description 

dynamic semantics

Communication Mechanism

change notification

Change Description

change semantics

scalabilit
y

scalabilit
y

M : M

M : M

Fig. 1: Abstract Dataset Dynamics Stack.

Abstract Dataset Dynamics Stack
Next, we introduce the abstract and high-level dataset dynamics architecture and
technology stack as depict in Figure 1. We have datasets which are undergoing changes
as we already motivated above.
This information is consumed by software agents and humans, representative exam-
ples of such producer/consumer interactions are motivated in our use cases. The archi-
tecture stack exists of two description layers–both on the dataset and consumer side–
and communication mechanisms which enables the interaction between consumers
and dataset providers.
A dataset needs to describe its general dynamic attributes (e.g., the average expected
change frequency) and how a consumer can learn about occurring changes (cf. dy-
namic semantics in Figure 1). The consumer, on the other hand, needs to learn and
understand that a dataset has undergoing a change and what exactly has changed
(cf. change semantics in Figure 1).



Further, we can see that we have to deal with many-to-many relationship between
consumers and datasets which requires that the communication mechanisms needs
to be highly scalable on both sides. We can expect to have potentially millions of
consumers and thousands of datasets, millions of resources and billions of triples. So
each dataset can be consumed by millions of agents and each agent can consume
thousands if not millions of information pieces.
In addition, the communication mechanisms should be compliant to the architecture
of the WWW which means concrete solutions have to make use of URIs and the
HTTP protocol layer.
We deliberately omitted here the discovery layer which allows consumers to automat-
ically locate the resource dynamic description of a dataset. The aspects of resource
description discovery is surveyed in [25].

5 Survey of Approaches

In this section we describe the most significant approaches that treats the aspects
related to datasets dynamics, taking into account the identified requirements in Sec-
tion 4. We have grouped the approaches into the two identified layers of Figure 1,
descriptions and communication mechanisms.

5.1 Descriptions

There are several approaches for describing the dataset dynamics and the semantics
of changes in a dataset. Next, we present the most representative approaches we have
found in the literature. The summary of this survey and the comparison with the
requirements are listed in Table 1.

Descriptions Dynamic
description

Change
description

Granularity
levels

DaDy
√

- -
DSNotify Eventset Vocabulary

√ √
s

Talis Changeset Vocabulary
√ √

r
OWL 2 change ontology

√ √
d,r

CHAO
√ √

r
Table 1: Summary of description proposals and their coverage of the requirements.
Granularity levels: dataset (d), resource (r) and statement (s) level.

Dady
The Dataset Dynamics Vocabulary, DaDy [3], can represent information about the
regularity (regular, irregular) and frequency (no, low, mid, high) of updates and
provide a link to the update notification source URI. It is designed to be used with
voiD [2].

DSNotify Eventset
The DSNotify Eventset Vocabulary [4] [12], is a vocabulary for change events in linked
data sources, and can be used to describe timely-ordered sets of events that modify
resources in linked data resources. Eventsets16 are associated with two voiD:Datasets
a source and a target dataset.

Talis Changeset
The Talis Changeset Vocabulary [5] defines a set of terms for describing changes
to resource descriptions. In the context of this vocabulary, a resource description is
the set of triples that in some way include a description of a resource. Moreover,
the vocabulary introduces the notion of a ChangeSet which encapsulates the delta

16 A Eventset is a container of events that occur in a dataset.



between two versions of a resource description. The delta is represented by two set
of triples: additions and removals. A ChangeSet can be used to modify a resource
description by first removing all triples from the description that are in the removals
set and adding the triples in the additions set.

OWL 2 change ontology
The OWL 2 change ontology [1] is a fined-grained taxonomy of ontology changes that
considers the lowest-level atomic operations that can be performed in an ontology, but
also on other abstraction levels, for example: atomic, entity and composite changes.
This ontology allows to describe on a fine grained level how an ontology has changed
from one version to another.

CHAO
The Change and Annotations Ontology, CHAO [13], represents ontology changes
within the ontology-evolution system of Protégé. The ontology consists of two parts.
The basis is an ontology of basic change operations and there is an extension that
defines complex change operations. Instances of these ontologies record information
about chances including meta information about them, e.g., author, timestamp, an-
notations, etc.

5.2 Communication Mechanisms

The set of communication mechanisms include discovery mechanism, communication
protocols and delta computations. As mentioned earlier, we exclude the discovery
and delta computation mechanisms from this survey since they deserve a compre-
hensive survey on its own. The summary of this survey and the comparison with the
requirements are listed in Table 2.

Mechanisms Discovery
mechanism

Granularity
level

Pull Push
Atom

√
d,r -

PubSubHubbub
√

d,r,s d,r,s
SDShare

√
d,r,s -

OAI-PMH
√

d,r -
PingTheSemanticWeb

√
- r

SemanticPingback - - r
Web Hooks

√
- d,r

RDFSync - d,r,s -
SPAURL

√
- s

DSNotify
√

d,r,s -
Table 2: Summary of communication mechanism proposals and their coverage of the
requirements. Granularity levels: dataset (d), resource (r) and statement (s) level.

Current approaches for the communication between dataset consumers and pub-
lisher can be split into two kinds of notification mechanisms: 1) a pull mechanism
(e.g., feed subscription, web crawlers or monitored queries) and 2) a push mechanism
which are mainly implemented by a publisher/subscriber model. A detailed compar-
ison about push vs. pull mechanisms is given by Bhide et.al [7]. Further, the authors
propose a combination of a push and pull based approach as an nearly optimal so-
lution for the communication process (cf. PubSubHubbub). A hybrid push and pull
approach seems to be able to establish a stable system which can deal with arbitrarily
large numbers of subscribers and changes and rapid changes of the dataset.



Pull Based Approaches
In short, Pull based approaches have to deal with a large communication over-
head for the messages exchanged and a large number of clients and further, have
problems to deal with rapidly changing data.

Atom
Atom [17] is an XML-based Web content and metadata syndication format, and
an application-level protocol for publishing and editing Web resources belonging
to periodically updated websites. Atom is a relatively recent spec and is much
more robust and feature-rich than RSS [17].

SDShare
The protocol for the Syndication of Semantic Descriptions, SDShare [20], defines
how a RESTful web service can publish a series of web accessible feeds that
describe snapshots and changes to collections of semantic descriptions.

OAI-PMH
The Open Archives Initiative Protocol for Metadata Harvesting, OAI-PMH [14],
provides an application-independent interoperability framework based on meta-
data harvesting. There are two classes of participants in the OAI-PMH framework:
1) Data Providers administer systems that support the OAI-PMH as a means of
exposing metadata; and 2) Service Providers use metadata harvested via the
OAI-PMH as a basis for building value-added services.

RDFSync
RDFsync [11] is an approach for the efficient synchronization of RDF models.
Because of the RDF semantics, RDF models cannot be efficiently synchonized by
the rsync17 or similar algorithms. RDFSync is based on the decomposition of a
model into Minimum Self-Contained graphs (MSGs).

Push Based Approaches
Basically, push based mechanisms can deal very efficiently with high frequently
changing data, but on the other side these push mechanisms have to maintain the
list subscriber and the states of open connections which can cause also scalability
problems. Another problem is that the notification messages can be potentially
very large (especially if a client requests changes on a statement level).

PingTheSemanticWeb
PingTheSemanticWeb [15] is a web service archiving the location of recently cre-
ated/updated RDF documents on the Web. If one of those documents is created
or updated, its author can notify PTSW that the document has been created or
updated by pinging the service with the URL of the document.

Semantic Pingback
Semantic Pinback [23] tackles the quality, timeliness and coherence as well as
direct end user benefits of the emerging Linked Data Web. Semantic Pingback
extends the well-known Pingback method, which is technological cornerstone of
the blogosphere. It is based on the advertising of an RPC service for propagating
typed RDF links between Data Web resources.

WebHooks
WebHooks [27] are HTTP callbacks which uses HTTP POST operations to learn
that something happens and for notifications. Clients just register a webhook to a
URL and receive notifications whenever a event occurs. The publisher just needs
to send a HTTP POST to the specific URL with the event description.

17 rsync is a software application for Unix systems which synchronizes files and directories
from one location to another while minimizing data transfer using delta encoding when
appropriate.



SPARUL
The updated language for RDF graphs, Sparql/Updates [26], is able to express
updates to an RDF store. It is intended to be an standard mechanism by which
updates to a remote RDF store can be described, communicated and stored.

5.3 Comparison Overview

After having analyzed the existing descriptions and communication mechanisms, that
treats the aspects related to datasets dynamics, we present the comparison of the
existing research works according to the identified requirements described in Section
4.
Regarding the existing descriptions, we can state that: DD is covered by all the
approaches; CD is covered by the Talis ChangeSet, the OWL 2 change ontology,
and the Change and Annotations Ontology; GL is covered by (1) DSNotify Eventset
Vocabulary at statement level, (2) Talis ChangeSet at the resource description level,
(3) OWL 2 change ontology at entity and composite changes, and (4) Change and
Annotations Ontology, at basic and complex operations. Regarding the communi-
cation mechanisms, we can say that most fall into either push-based or pull-based
approaches, with only few supporting both. However, the communication mechanisms
are not mature enough.

6 Conclusion
The importance of this work is motivated by the problematic of web-scale handling
dataset dynamics; the discovery of the description of the dynamic of a dataset, how
a data consumer can learn about changes and the actual protocol to communicate
changes and methods to efficiently compute changes between two versions of a dataset.
This survey encompasses that there exists not a clear and solid solution to solve
the highlighted problems of discovering, describing and communicating the change
dynamics of Linked Data (re)sources.

We compared a number of deployed systems and technologies concerning require-
ments we derived from real world use cases the community came up with. Further, we
introduced an abstract dataset dynamics stack, which provides the community with
a framework and can potentially serve as a basis for further work into benchmarking
and comparing solutions on a wider range.
Acknowledgements
The research leading to these results has received funding from the European Com-
munity’s Seventh Framework Programme (FP7/2007-2013) under Grant Agreement
n 256975 , LOD Around-The-Clock (LATC) Support Action.

References

1. Owl 2 change ontology, 2009. http://omv.ontoware.org/OWLChanges.
2. Vocabulary of interlinked datasets, 2009. http://vocab.deri.ie/void/guide.
3. Dataset dynamics (dady) vocabulary, 2010. http://purl.org/NET/dady.
4. Dsnotify eventsets: A vocabulary for change events in linked data sources, 2010. http:

//dsnotify.org/vocab/eventset/0.1/.
5. Talis changeset vocabulary, 2010. http://vocab.org/changeset/schema.
6. J. Banerjee, W. Kim, H.-J. Kim, and H. F. Korth. Semantics and implementation of

schema evolution in object-oriented databases. In SIGMOD ’87: Proceedings of the 1987
ACM SIGMOD international conference on Management of data, pages 311–322, New
York, NY, USA, 1987. ACM.

7. M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy.
Adaptive push-pull: Disseminating dynamic web data. IEEE Transactions on Comput-
ers, 51:652–668, 2002.



8. C. Bizer, T. Heath, and T. Berners-Lee. Linked Data – The Story So Far. International
Journal on Semantic Web and Information Systems, 5(3):1–22, 2009.

9. S. Hellmann, C. Stadler, J. Lehmann, and S. Auer. Dbpedia live extraction. In Proc. of
8th International Conference on Ontologies, DataBases, and Applications of Semantics
(ODBASE), volume 5871 of Lecture Notes in Computer Science, pages 1209–1223, 2009.

10. I. Jacobs and N. Walsh. Architecture of the world wide web, volume one. World Wide
Web Consortium, Recommendation REC-webarch-20041215, December 2004.

11. C. Morbidoni, G. Tummarello, O. Erling, and R. Bachmann-Gmr. Rdfsync: efficient
remote synchronization of rdf models. In K. Aberer, K.-S. Choi, N. Noy, D. Allemang,
K.-I. Lee, L. J. B. Nixon, J. Golbeck, P. Mika, D. Maynard, G. Schreiber, and P. Cudr-
Mauroux, editors, Proceedings of the 6th International Semantic Web Conference and
2nd Asian Semantic Web Conference (ISWC/ASWC2007), Busan, South Korea, volume
4825 of LNCS, pages 533–546, Berlin, Heidelberg, November 2007. Springer Verlag.

12. P. Niko and H. Bernhard. Dsnotify: Handling broken links in the web of data. In
Nineteenth International WWW Conference (WWW2010), Raleigh, NC, USA, 2 2010.
ACM.

13. N. F. Noy, A. Chugh, W. Liu, and M. A. Musen. Musen m.: A framework for ontol-
ogy evolution in collaborative environments. In In: 5th International Semantic Web
Conference, pages 544–558. Springer-LNCS, 2006.

14. OAI-PMH. The open archives initiative protocol for metadata harvesting, 2010. http:
//www.openarchives.org/OAI/openarchivesprotocol.html.

15. PingtheSemanticWeb. The open archives initiative protocol for metadata harvesting,
2010. http://pingthesemanticweb.com/.

16. pubsubhubbub. A simple, open, web-hook-based pubsub protocol, 2010. http://code.
google.com/p/pubsubhubbub/.

17. rfc4287. The atom syndication format, 2010. http://www.ietf.org/rfc/rfc4287.txt.
18. J. F. Roddick. A survey of schema versioning issues for database systems. Information

and Software Technology, 37:383–393, 1995.
19. RSS. Really simple syndication, 1999. http://www.rss.com/.
20. SDShare. Protocol for the syndication of semantic descriptions, 2010. http://www.

egovpt.org/fg/CWA_Part_1b.
21. Sitemap. Sitemap protocol, 2008. http://sitemaps.org/.
22. SparqlPuSh. pubsubhubbub (push) interface for sparql endpoints, 2010. http://code.

google.com/p/sparqlpush/.
23. S. Tramp, P. Frischmuth, T. Ermilov, and S. Auer. Weaving a Social Data Web with

Semantic Pingback. In Proceedings of the EKAW 2010 - Knowledge Engineering and
Knowledge Management by the Masses; October, 2010, pages 135–149, 2010.

24. G. Tummarello, E. Oren, and R. Delbru. Sindice.com: Weaving the Open Linked Data.
In Proceedings of the 6th International Semantic Web Conference and 2nd Asian Se-
mantic Web Conference (ISWC/ASWC2007), Busan, South Korea, pages 547–560.

25. J. Umbrich, M. Hausenblas, P. Archer, E. Hammer-Lahav, and E. Wilde. Discovering
resources on the web - a comparison of discovery mechanism for the web of data and
the web of documents. Technical Report 1, Linked Data Research Centre, 8 2009. see
also http://uldis.deri.ie.

26. S. Update. A language for updating rdf graphs. w3c member submission, 2010. http:
//www.w3.org/Submission/SPARQL-Update/.

27. Webhooks. Webhooks, 2010. http://www.webhooks.org/.
28. R. Zicari. A framework for schema updates in an object-oriented database system. In

Building an object-oriented database system: the story of 02, pages 146–182. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1992.


