
A Survey on how Description Logic Ontologies

Benefit from FCA

Barış Sertkaya

SAP Research Center Dresden, Germany
baris.sertkaya@sap.com

Abstract. Although the notion of a concept as a collection of objects
sharing certain properties, and the notion of a conceptual hierarchy are
fundamental to both Formal Concept Analysis and Description Logics,
the ways concepts are described and obtained differ significantly between
these two research areas. Despite these differences, there have been sev-
eral attempts to bridge the gap between these two formalisms, and at-
tempts to apply methods from one field in the other. The present work
aims to give an overview on the research done in combining Description
Logics and Formal Concept Analysis.

1 Introduction

Formal Concept Analysis (FCA) [28] is a field of applied mathematics that aims
to formalize the notions of a concept and a conceptual hierarchy by means of
mathematical tools. On the other hand Description Logics (DLs) [3] are a class of
logic-based knowledge representation formalisms that are used to represent the
conceptual knowledge of an application domain in a structured way. Although
the notion of a concept as a collection of objects sharing certain properties, and
the notion of a conceptual hierarchy are fundamental to both FCA and DLs,
the ways concepts are described and obtained differ significantly between these
two research areas. In DLs, the relevant concepts of the application domain are
formalized by so-called concept descriptions, which are expressions built from
unary predicates (that are called atomic concepts), and binary predicates (that
are called atomic roles) with the help of the concept constructors provided by
the DL language. Then in a second step, these concept descriptions are used
to describe properties of individuals occurring in the domain, and the roles are
used to describe relations between these individuals. On the other hand, in FCA,
one starts with a so-called formal context, which in its simplest form is a way of
specifying which attributes are satisfied by which objects. A formal concept of
such a context is a pair consisting of a set of objects called extent, and a set of
attributes called intent such that the intent consists of exactly those attributes
that the objects in the extent have in common, and the extent consists of exactly
those objects that share all attributes in the intent.

There are several differences between these approaches. First, in FCA one
starts with a purely extensional description of the application domain, and then



A Survey on how Description Logic Ontologies Benefit from FCA 3

derives the formal concepts of this specific domain, which provide a useful struc-
turing. In a way, in FCA the intensional knowledge is obtained from the exten-
sional part of the knowledge. On the other hand, in DLs the intensional definition
of a concept is given independently of a specific domain (interpretation), and the
description of the individuals is only partial. Second, in FCA the properties are
atomic, and the intensional description of a formal concept (by its intent) is
just a conjunction of such properties. DLs usually provide a richer language for
the intensional definition of concepts, which can be seen as an expressive, yet
decidable sublanguage of first-order predicate logic.

Despite these differences, there have been several attempts to bridge the gap
between these two formalisms, and attempts to apply methods from one field to
the other. For example, there have been efforts to enrich FCA with more complex
properties similar to concept constructors in DLs [60, 45, 44, 23, 46]. On the other
hand, DL research has benefited from FCA methods to solve some problems
encountered in knowledge representation using DLs [1, 55, 10, 12, 48, 14, 49, 52,
16, 7, 53, 50, 4, 5, 13]. The present work aims to give an overview on these works
done for bridging the gap between the two formalisms. In Section 2 we give a
short introduction to DLs without going into technical details. We assume that
the reader is familiar with FCA. We do not introduce FCA, we refer the reader
to [28] for details. In Section 3 we summarize the existing work done by other
researchers in the field. In Section 4 we summarize our own contributions to the
field, and conclude with Section 5.

2 Description Logics

Description Logics (DLs) [3] are a class of knowledge representation formalisms
that are used to represent the terminological knowledge of an application domain
in a structured way. Since their introduction, DLs have been used in various ap-
plication domains such as medical informatics, software engineering, configura-
tion of technical systems, natural language processing, databases and web-based
information systems. But their most notable success so far is the adoption of
the DL-based language OWL1[34] as the standard ontology language for the
semantic web [17].

Syntax In DLs, one formalizes the relevant notions of an application domain by
concept descriptions. A concept description is an expression built from atomic
concepts, which are unary predicates, and atomic roles, which are binary predi-
cates, by using the concept constructors provided by the particular DL language
in use. DL languages are identified with the concept constructors they allow. For
instance the smallest propositionally closed language allowing for the construc-
tors ⊓ (conjunction), ⊔ (disjunction), ¬ (negation), ∀ (value restriction) and ∃
(existential restriction) is called ALC.

1 Web Ontology Language. See http://www.w3.org/TR/owl-features



4 Barış Sertkaya

Typically, a DL knowledge base consists of a terminological box (TBox ),
which defines the terminology of an application domain, and an assertional box
(ABox ), which contains facts about a specific world. In its simplest form, a
TBox is a set of concept definitions of the form A ≡ C that assigns the concept
name A to the concept description C. We call a finite set of general concept
inclusion (GCI) axioms a general TBox. A GCI is an expression of the form
C ⊑ D, where C and D are two possibly complex concept descriptions. It states
a subconcept/superconcept relationship between the two concept descriptions.
An ABox is a set of concept assertions of the form C(a), which means that the
individual a is an instance of the concept C, and role assertions of the form
R(a, b), which means that the individual a is in R-relation with individual b.

For instance the following TBox contains the definition of a landlocked coun-
try, which is a country that only has borders on land, and the definition of an
ocean country that has a border to an ocean.

T := {LandlockedCountry ≡ Country ⊓ ∀hasBorderTo.Land

OceanCountry ≡ Country ⊓ ∃hasBorderTo.Ocean}

The following ABox states the facts about the individuals Portugal, Austria,
and Atlantic Ocean.

A := {LandlockedCountry(Austria),Country(Portugal),Ocean(Atlantic Ocean),
hasBorderTo(Portugal, Atlantic Ocean)}

Semantics The meaning of DL concepts is given by means of an interpretation
I, which is a tuple consisting of a domain ∆I and an interpretation function
·I . The interpretation function maps every concept occurring in the TBox to
a subset of the domain, every role to a binary relation on the domain, and
every individual name occurring in the ABox to an element of the domain.
The meaning of complex concept descriptions is given inductively based on the
constructors used in the concept description.

For instance, the concept description Country⊓ ∃hasBorderTo.Ocean is inter-
preted as the intersection of the set of countries and the set of elements of the
domain that have a border to an ocean. We say that an interpretation I is a
model of a TBox T if it satisfies all concept definitions in T , i.e., for every con-
cept definition A ≡ C in T , it maps A and C to the same subset of the domain.
Similarly, we say that I is a model of an ABox A, if it satisfies all concept and
role assertions in A, i.e., for every concept assertion A(a) in A, the interpretation
of a is an element of the interpretation of A, and for every role assertion r(a, b)
the interpretation of r contains the pair consisting of the interpretations of a

and b. The semantics of DL ABoxes is the open-world semantics, i.e., absence of
information about an individual is not interpreted as negative information, but
it only indicates lack of knowledge about that individual.

Inferences In an application, once we get a description of the application do-
main using DLs as described above, we can make inferences, i.e., deduce implicit



A Survey on how Description Logic Ontologies Benefit from FCA 5

consequences from the explicitly represented knowledge. The basic inference on
concept descriptions is subsumption. Given two concept descriptions C and D,
the subsumption problem C ⊑ D is the problem of checking whether the concept
description D is more general than the concept description C. In other words,
it is the problem of determining whether the first concept always, i.e., in every
interpretation denotes a subset of the set denoted by the second one. We say
that C is subsumed by D w.r.t. a TBox T , if in every model of T , D is more
general than C, i.e., the interpretation of C is a subset of the interpretation of
D. We denote this as C ⊑T D. For instance, in the example above, the concepts
LandlockedCountry and OceanCountry are both trivially subsumed by the concept
Country.

The typical inference problem for ABoxes is instance checking, which is
the problem of deciding whether the interpretation of a given individual is an
element of the interpretation of a given concept in every common model of
the TBox and the ABox. For instance, from T and A given above it follows
that Portugal is an ocean country, although A does not contain the assertion
OceanCountry(Portugal). Modern DL systems like FaCT++ [57], Racer [29],
Pellet [54], KAON2 [40], Hermit [41] and CEL [9] provide their users with in-
ference services that solve these inference problems, which are also known as
standard inferences.

3 Existing work on DLs and FCA

The existing work done by other researchers towards bridging the gap between
FCA und DLs, and attempts to apply methods from one field to the other can
roughly be collected under two categories:

– efforts to enrich the language of FCA by borrowing constructors from DL
languages [60, 45, 44, 23, 46]

– efforts to employ FCA methods in the solution of problems encountered in
knowledge representation with DLs [1, 55, 10, 48–50, 4, 21, 20, 5]

Below we are going to discuss some of these efforts briefly.

3.1 Enriching FCA with DL constructors

Theory-driven logical scaling In [45], Prediger and Stumme have used DLs in
Conceptual Information Systems, which are data analysis tools based on FCA.
They can be used to extract data from a relational database and to store it
in a formal context by using so-called conceptual scales. Prediger and Stumme
have combined DLs with attribute exploration in order to define a new kind of
conceptual scale. In this approach, DLs provide a rich language to specify which
FCA attributes cannot occur together, and a DL reasoner is used during the
attribute exploration process as an expert to answer the implication questions,
and to provide a counterexample whenever the implication does not hold.



6 Barış Sertkaya

Terminological attribute logic In [44], Prediger has worked on introducing
logical constructors into FCA. She has enriched FCA with relations, existen-
tial and universal quantifiers, and negation, obtaining a language like the DL
ALC, which she has called terminologische Merkmalslogik (terminological at-
tribute logic2). In the same work she has also presented applications of her ap-
proach in enriching formal contexts with new knowledge, applications in many
valued formal contexts, and applications for so-called scales, which are formal
contexts that are used to obtain a standard formal context from a many valued
formal context.

Relational concept analysis In [46], Rouane et al. have presented a com-
bination of FCA and DLs that is called relational concept analysis. It is an
adaptation of FCA that is intended for analyzing objects described by relational
attributes in data mining. The approach is based on a collection of formal con-
texts called relational context family and relations between these contexts. The
relations between the contexts are binary relations between pairs of object sets
that belong to two different contexts. Processing these contexts and relations
with relational concept analysis methods yields a set of concept lattices (one
for each input context) such that the formal concepts in different lattices are
linked by relational attributes, which are similar to roles in DLs, or associations
in UML. One distinguishing feature of this approach from the other efforts that
introduce relations into FCA is that the formal concepts and relations between
formal concepts of different contexts can be mapped into concept descriptions in
a sublanguage of ALE , which is called FL−E in [46]. FL−E allows for conjunc-
tion, value restriction, existential restriction, and top and bottom concepts. In
this approach, after the formal concepts and relations have been obtained and
mapped into FL−E concept descriptions, DL reasoning is used to classify and
check the consistency of these descriptions.

3.2 Applying FCA methods in DLs

Subsumption hierarchy of conjunctions of DL concepts In [1], Baader
has used FCA for an efficient computation of an extended subsumption hierarchy
of a set of DL concepts. More precisely, he used attribute exploration for comput-
ing the subsumption hierarchy of all conjunctions of a set of DL concepts. The
main motivation for this work was to determine the interaction between defined
concepts, which might not easily be seen by just looking at the subsumption
hierarchy of defined concepts. In order to explain this, the following example
has been given: assume that the defined concept NoDaughter stands for those
people who have no daughters, NoSon stands for those people who have no sons,
and NoSmallChild stands for those people who have no small children. Obviously,
there is no subsumption relationship between these three concepts. On the other
hand, the conjunction NoDaughter ⊓ NoSon is subsumed by NoSmallChild, i.e.,

2 This translation is ours.



A Survey on how Description Logic Ontologies Benefit from FCA 7

if an individual a belongs to NoSon and NoDaughter, it also belongs to NoS-

mallChild. However, this cannot be derived from the information that a belongs
to NoSon and NoDaughter by just looking at the subsumption hierarchy. This
small example demonstrates that runtime inferences concerning individuals can
be made faster by precomputing the subsumption hierarchy not only for defined
concepts, but also for all conjunctions of defined concepts.

To this purpose, Baader defined a formal context whose attributes were the
defined DL concepts, and whose objects were all possible counterexamples to
subsumption relationships, i.e., interpretations together with an element of the
interpretation domain. This formal context has the property that its concept
lattice is isomorphic to the required subsumption hierarchy, namely the sub-
sumption hierarchy of conjunctions of the defined DL concepts. However, this
formal context has the disadvantage that a standard subsumption algorithm can
not be used as expert for this context within attribute exploration. In order to
overcome this problem, the approach was reconsidered in [12] and a new for-
mal context that has the same properties but for which a usual subsumption
algorithm could be used as expert was introduced.

Subsumption hierarchy of conjunctions and disjunctions of DL con-

cepts In [55], Stumme has extended the abovementioned subsumption hierarchy
further with disjunctions of DL concepts. More precisely, he presented how the
complete lattice of all possible combinations of conjunctions and disjunctions
of the concepts in a DL TBox can be computed by using FCA. To this aim,
he used another knowledge acquisition tool of FCA instead of attribute explo-
ration, namely distributive concept exploration [56]. In the lattice computed by
this method, the supremum of two DL concepts in the lattice corresponds to the
disjunction of these concepts.

Subsumption hierarchy of least common subsumers In [10] Baader and
Molitor have used FCA for supporting bottom-up construction of DL knowledge
bases. In the bottom-up approach, the knowledge engineer does not directly de-
fine the concepts of her application domain, but she gives typical examples of a
concept, and the system comes up with a concept description for these examples.
The process of computing such a concept description consists of first computing
the most specific concepts that the given examples belong to, and then comput-
ing the least common subsumer of these concepts. Here the choice of examples
is crucial for the quality of the resulting concept description. If the examples are
too similar, the resulting concept description will be too specific; conversely, if
they are too distinct, the resulting concept description will be too general. In
order to overcome this, Baader and Molitor have used attribute exploration for
computing the subsumption hierarchy of all least common subsumers of a given
set of concepts. In this hierarchy one can easily see the position of the least con-
cept description that the chosen examples belong to, and decide whether these
examples are appropriate for obtaining the intended concept description. How-
ever, there may be exponentially many least common subsumers, and depending



8 Barış Sertkaya

on the DL in use, both the least common subsumer computation and subsump-
tion test can be expensive operations. The use of attribute exploration provides
us with complete information on how this hierarchy looks like without explicitly
computing all least common subsumers and classifying them.

Relational exploration In his Ph.D thesis [49], Rudolph has combined DLs
and FCA for acquiring complete relational knowledge about an application do-
main. In his approach, which he calls relational exploration, he uses DLs for
defining FCA attributes, and FCA for refining DL knowledge bases. More pre-
cisely, DLs makes use of the interactive knowledge acquisition method of FCA,
and FCA benefits from DLs in terms of expressing relational knowledge.

In [48, 49], Rudolph uses the DL FLE for this purpose, which is the DL
that allows for the constructors conjunction, existential restriction, and value
restriction. In his previous work [47], he uses the DL EL, which allows for the
constructors conjunction and existential restriction. In both cases, he defines
the semantics by means of a special pair of formal contexts called binary power
context family, which are used for expressing relations in FCA. Binary power
context families have also been used for giving semantics to conceptual graphs.
In order to collect information about the formulae expressible in FLE , in [48,
49] he defines a formal context called FLE-context. The attributes of this formal
context are FLE-concept descriptions, and the objects are the elements of the
domain over which these concept descriptions are interpreted. In this context,
an object g is in relation with an attribute m if and only if g is in the interpre-
tation of m. Thus, an implication holds in this formal context if and only if in
the given model the concept description resulting from the conjunction of the
attributes in the premise of the implication is subsumed by the concept descrip-
tion formed from the conclusion. This is how implications in FLE-contexts give
rise to subsumption relationships between FLE concept descriptions.

In order to obtain complete knowledge about the subsumption relationships
in the given model between arbitrary FLE concepts, Rudolph gives a multi-step
exploration algorithm. In the first step of the algorithm, he starts with an FLE-
context whose attributes are the atomic concepts occurring in a knowledge base.
In exploration step i + 1, he defines the set of attributes as the union of the set
of attributes from the first step and the set of concept descriptions formed by
universally quantifying all attributes of the context at step i w.r.t. all atomic
roles, and the set of concept descriptions formed by existentially quantifying all
concept intents of the context at step i w.r.t all atomic roles. Rudolph points out
that, at an exploration step, there can be some concept descriptions in the at-
tribute set that are equivalent, i.e., attributes that can be reduced. To this aim,
he introduces a method that he calls empiric attribute reduction. In principle,
it is possible to carry out infinitely many exploration steps, which means that
the algorithm will not terminate. In order to guarantee termination, Rudolph re-
stricts the number of exploration steps. After carrying out i steps of exploration,
it is then possible to decide subsumption (w.r.t. the given model) between any
FLE concept descriptions up to role depth i just by using the implication bases



A Survey on how Description Logic Ontologies Benefit from FCA 9

obtained as a result of the exploration steps. In addition, he also characterizes
the cases where finitely many steps are sufficient to acquire complete information
for deciding subsumption between FLE concept descriptions with arbitrary role
depth. Rudolph argues that his method can be used to support the knowledge
engineers in designing, building and refining DL ontologies. This method has
been implemented in the tool Relexo.3

Exploring Finite Models in the DL ELgfp In [4] Baader and Distel have
extended classical FCA in order to provide support for analyzing relational
structures by using efficient FCA algorithms. In this approach the atomic at-
tributes are replaced by complex formulae in some logical language, and data
is represented using relational structures rather than just formal contexts. This
extension is later instantiated with atrributes defined in the DL EL, and with
relational structures defined over a signature of unary and binary predicates, i.e.,
models for EL. In this setting an implication corresponds to a GCI in EL. This
approach at the first sight seems to be very close to the approach introduced
in [48, 49]. One of the main differences between these approaches is that in [4]
the authors use one context with infinitely many complex attributes, whereas
in [49] Rudolph uses an infinite family of contexts, each having finitely many
attributes that are obtained by restricting the role depth of concepts. In [4] the
authors additionally show that for the DLs EL and ELgfp, which extends EL
with cyclic concept definitions interpreted with greatest fixpoint semantics, the
set of GCIs holding in a finite model always has a finite basis. That is, there is
always a finite subset of the infinitely many GCIs from which the rest follows.
Later in [5] the authors have shown how to compute this basis efficiently by
using methods from FCA. In a follow-up paper [22], Distel has described how
this method can be modified to allow ABox individuals as counterexamples to
GCIs.

4 Contributions to combining DLs and FCA

Our contribution to the DL research by means of FCA methods falls mainly
under two topics: 1) supporting bottom-up construction of DL knowledge bases,
2) completing DL knowledge bases. In Section 4.1 we briefly describe the use of
FCA in the former, and in Section 4.2 we briefly describe the use of FCA in the
latter contribution.

4.1 Supporting bottom-up construction of DL Ontologies

Traditionally, DL knowledge bases are built in a top-down manner, in the sense
that first the relevant notions of the domain are formalized by concept descrip-
tions, and then these concept descriptions are used to specify properties of the
individuals occurring in the domain. However, this top-down approach is not

3 http://relexo.ontoware.org



10 Barış Sertkaya

always adequate. On the one hand, it might not always be intuitive which no-
tions of the domain are the relevant ones for a particular application. On the
other hand, even if this is intuitive, it might not always be easy to come up
with a clear formal description of these notions, especially for a domain expert
who is not an expert in knowledge engineering. In order to overcome this, in [8]
a new approach, called “bottom-up approach”, was introduced for constructing
DL knowledge bases. In this approach, instead of directly defining a new con-
cept, the domain expert introduces several typical examples as objects, which
are then automatically generalized into a concept description by the system.
This description is then offered to the domain expert as a possible candidate for
a definition of the concept. The task of computing such a concept description
can be split into two subtasks:

– computing the most specific concepts of the given objects,
– and then computing the least common subsumer of these concepts.

The most specific concept (msc) of an object o is the most specific concept de-
scription C expressible in the given DL language that has o as an instance. The
least common subsumer (lcs) of concept descriptions C1, . . . , Cn is the most spe-
cific concept description C expressible in the given DL language that subsumes
C1, . . . , Cn. The problem of computing the lcs and (to a more limited extent)
the msc has already been investigated in the literature [8, 39, 2].

The methods for computing the least common subsumer are restricted to
rather inexpressive descriptions logics not allowing for disjunction (and thus not
allowing for full negation). In fact, for languages with disjunction, the lcs of a
collection of concepts is just their disjunction, and nothing new can be learned
from building it. In contrast, for languages without disjunction, the lcs extracts
the “commonalities” of the given collection of concepts. Modern DL systems
like FaCT++ [33, 57], Racer [29], Pellet [54], and Hermit [41] are based on very
expressive DLs, and there exist large knowledge bases that use this expressive
power and can be processed by these systems. In order to allow the user to re-use
concepts defined in such existing knowledge bases and still support the user in
defining new concepts with the bottom-up approach sketched above, in [15, 14,
16] we have proposed the following extended bottom-up approach: assume that
there is a fixed background terminology defined in an expressive DL; e.g., a large
ontology written by experts, which the user has bought from some ontology
provider. The user then wants to extend this terminology in order to adapt it
to the needs of a particular application domain. However, since the user is not
a DL expert, he employs a less expressive DL and needs support through the
bottom-up approach when building this user-specific extension of the background
terminology. There are several reasons for the user to employ a restricted DL in
this setting: first, such a restricted DL may be easier to comprehend and use for
a non-expert; second, it may allow for a more intuitive graphical or frame-like
user interface; third, to use the bottom-up approach, the lcs must exist and make
sense, and it must be possible to compute it with reasonable effort.

To make this more precise, consider a background terminology (TBox) T
defined in an expressive DL L2. When defining new concepts, the user employs



A Survey on how Description Logic Ontologies Benefit from FCA 11

only a sublanguage L1 of L2, for which computing the lcs makes sense. However,
in addition to primitive concepts and roles, the concept descriptions written in
the DL L1 may also contain names of concepts defined in T . Let us call such con-
cept descriptions L1(T )-concept descriptions. Given L1(T )-concept descriptions
C1, . . . , Cn, we want to compute their lcs in L1(T ), i.e., the least L1(T )-concept
description that subsumes C1, . . . , Cn w.r.t. T . In [14, 16] we have considered the
case where L1 is the DL ALE and L2 is the DL ALC, and shown the following
result:

– If T is an acyclic ALC-TBox, then the lcs w.r.t. T of ALE(T )-concept de-
scriptions always exists.

Unfortunately, the proof of this result does not yield a practical algorithm. Due
to this, in [14, 16, 53] we have developed a more practical approach. Assume
that L1 is a DL for which least common subsumers (without background TBox)
always exist. Given L1(T )-concept descriptions C1, . . . , Cn, one can compute a
common subsumer w.r.t. T by just ignoring T , i.e., by treating the defined names
in C1, . . . , Cn as primitive and computing the lcs of C1, . . . , Cn in L1. However,
the common subsumer obtained this way will usually be too general. In [14, 16,
53], work we presented a method for computing “good” common subsumers w.r.t.
background TBoxes, which may not be the least common subsumers, but which
are better than the common subsumers computed by ignoring the TBox. In the
present work we do not give the gcs algorithm in detail. We only demonstrate it
on an example. The algorithm is described in detail in [16].

Example 1. As a simple example, consider the ALC-TBox T :

NoSon ≡ ∀has-child.Female,

NoDaughter ≡ ∀has-child.¬Female,

SonRichDoctor ≡ ∀has-child.(Female ⊔ (Doctor ⊓ Rich)),
DaughterHappyDoctor ≡ ∀has-child.(¬Female ⊔ (Doctor ⊓ Happy)),

ChildrenDoctor ≡ ∀has-child.Doctor,

and the ALE-concept descriptions

C := ∃has-child.(NoSon ⊓ DaughterHappyDoctor),
D := ∃has-child.(NoDaughter ⊓ SonRichDoctor).

By ignoring the TBox, we obtain the ALE(T )-concept description ∃has-child.⊤
as a common subsumer of C,D. However, if we take into account that both
NoSon ⊓ DaughterHappyDoctor and NoDaughter ⊓ SonRichDoctor are subsumed
by the concept ChildrenDoctor, then we obtain the more specific common sub-
sumer ∃has-child.ChildrenDoctor. The gcs of C,D is even more specific. In fact,
the least conjunction of (negated) concept names subsuming both NoSon ⊓
DaughterHappyDoctor and NoDaughter ⊓ SonRichDoctor is

ChildrenDoctor ⊓ DaughterHappyDoctor ⊓ SonRichDoctor,



12 Barış Sertkaya

and thus the gcs of C,D is

∃has-child.(ChildrenDoctor ⊓ DaughterHappyDoctor ⊓ SonRichDoctor).

The conjunct ChildrenDoctor is actually redundant since it is implied by the
remainder of the conjunction. ⋄

In order to implement the gcs algorithm, we must be able to compute the
smallest conjunction of (negated) concept names that subsumes two such con-
junctions C1 and C2 w.r.t. T . In principle, one can compute this smallest con-
junction by testing, for every (negated) concept name whether it subsumes both
C1 and C2 w.r.t. T , and then take the conjunction of those (negated) concept
names for which the test was positive. However, this results in a large number
of (possibly expensive) calls to the subsumption algorithm for L2 w.r.t. (general
or (a)cyclic) TBoxes. Since, in our application scenario (bottom-up construction
of DL knowledge bases w.r.t. a given background terminology), the TBox T is
assumed to be fixed, it makes sense to precompute this information.

This is where FCA comes into play. By using the attribute exploration
method [24] (possibly with background knowledge [25–27]), we compute the
abovementioned smallest conjunction, which is required for computing a gcs. To
this purpose we define a formal context whose concept lattice is isomorphic to the
subsumption hierarchy we are interested in. In general, the subsumption relation
induces a partial order, and not a lattice structure on concepts. However, in the
case of conjunctions of (negated) concept names, all infima exist, and thus also
all suprema, i.e., this hierarchy is a complete lattice. The experimental results
in [16] have shown that the use of this hierarchy and its use in gcs computation
are indeed quite efficient.

4.2 Completing DL Ontologies

The standardization of OWL [34] as the ontology language for the semantic
web [17] led to the fact that several ontology editors like Protégé [38], and
Swoop [37] now support OWL, and ontologies written in OWL are employed
in more and more applications. As the size of these ontologies grows, tools that
support improving their quality become more important. The tools available un-
til now use DL reasoning to detect inconsistencies and to infer consequences, i.e.,
implicit knowledge that can be deduced from the explicitly represented knowl-
edge. There are also promising approaches that allow to pinpoint the reasons
for inconsistencies and for certain consequences, and that help the ontology en-
gineer to resolve inconsistencies and to remove unwanted consequences [51, 36,
35, 32, 11, 43]. These approaches address the quality dimension of soundness of
an ontology, both within itself (consistency) and w.r.t. the intended application
domain (no unwanted consequences). In [6, 7] we have considered a different qual-
ity dimension: completeness. We have provided a basis for formally well-founded
techniques and tools that support the ontology engineer in checking whether an
ontology contains all the relevant information about the application domain, and
to extend the ontology appropriately if this is not the case.



A Survey on how Description Logic Ontologies Benefit from FCA 13

As already mentioned, a DL knowledge base (nowadays often called ontol-
ogy) usually consists of two parts, the terminological part (TBox), which defines
concepts and also states additional constraints (GCIs) on the interpretation of
these concepts, and the assertional part (ABox), which describes individuals and
their relationship to each other and to concepts. Given an application domain
and a DL knowledge base describing it, we can ask whether the knowledge base
contains all the relevant information about the domain:

– Are all the relevant constraints that hold between concepts in the domain
captured by the TBox?

– Are all the relevant individuals existing in the domain represented in the
ABox?

As an example, consider the OWL ontology for human protein phosphatases
that has been described and used in [59]. This ontology was developed based on
information from peer-reviewed publications. The human protein phosphatase
family has been well characterised experimentally, and detailed knowledge about
different classes of such proteins is available. This knowledge is represented in the
terminological part of the ontology. Moreover, a large set of human phosphatases
has been identified and documented by expert biologists. These are described as
individuals in the assertional part of the ontology. One can now ask whether the
information about protein phosphatases contained in this ontology is complete:
are all the relationships that hold among the introduced classes of phosphatases
captured by the constraints in the TBox, or are there relationships that hold
in the domain, but do not follow from the TBox? Are all possible kinds of
human protein phosphatases represented by individuals in the ABox, or are
there phosphatases that have not yet been included in the ontology or even not
yet have been identified?

Such questions cannot be answered by an automated tool alone. Clearly,
to check whether a given relationship between concepts—which does not follow
from the TBox—holds in the domain, one needs to ask a domain expert, and the
same is true for questions regarding the existence of individuals not described in
the ABox. The rôle of the automated tool is to ensure that the expert is asked as
few questions as possible; in particular, she should not be asked trivial questions,
i.e., questions that could actually be answered based on the represented knowl-
edge. In the above example, answering a non-trivial question regarding human
protein phosphatases may require the biologist to study the relevant literature,
query existing protein databases, or even to carry out new experiments. Thus,
the expert may be prompted to acquire new biological knowledge.

The attribute exploration method of FCA has proved to be a successful
knowledge acquisition method in various application domains. One of the earliest
applications of this approach is described in [58], where the domain is lattice
theory, and the goal of the exploration process is to find, on the one hand, all
valid relationships between properties of lattices (like being distributive), and,
on the other hand, to find counterexamples to all the relationships that do not
hold. To answer a query whether a certain relationship holds, the lattice theory
expert must either confirm the relationship (by using results from the literature



14 Barış Sertkaya

or by carrying out a new proof for this fact), or give a counterexample (again,
by either finding one in the literature or constructing a new one).

Although this sounds very similar to what is needed in our case, we cannot
directly use this approach. The main reason is the open-world semantics of de-
scription logic knowledge bases. Consider an individual i from an ABox A and
a concept C occurring in a TBox T . If we cannot deduce from the TBox T and
A that i is an instance of C, then we do not assume that i does not belong to C.
Instead, we only accept this as a consequence if T and A imply that i is an in-
stance of ¬C. Thus, our knowledge about the relationships between individuals
and concepts is incomplete: if T and A imply neither C(i) nor ¬C(i), then we
do not know the relationship between i and C. In contrast, classical FCA and
attribute exploration assume that the knowledge about objects is complete: a
cross in row g and column m of a formal context says that object g has attribute
m, and the absence of a cross is interpreted as saying that g does not have m.

There has been some work on how to extend FCA and attribute exploration
from complete knowledge to the case of partial knowledge [25, 18, 30, 31, 19, 49],
and how to evaluate formulas in formal contexts that do not contain complete in-
formation [42]. However, these works are based on assumptions that are different
from ours. In particular, they assume that the expert cannot answer all queries
and, as a consequence, the knowledge obtained after the exploration process may
still be incomplete and the relationships between concepts that are produced in
the end fall into two categories: relationships that are valid no matter how the
incomplete part of the knowledge is completed, and relationships that are valid
only in some completions of the incomplete part of the knowledge. In contrast,
our intention is to complete the knowledge base, i.e., in the end we want to have
complete knowledge about these relationships. What may be incomplete is the
description of individuals used during the exploration process.

In [7, 53] we have introduced an extension of FCA that can deal with partial
knowledge. This extension is based on the notion of a partial context that consists
of a set of partial object descriptions (pod). A pod is a tuple (A,S) where A

represents the set of attributes that the pod is known to have, and S represents
the set of attributes that the pod is known not to have. A and S are disjoint and
their union need not be the whole attribute set, i.e., for some attributes it might
be unknown whether the pod has this attribute or not. We say that a pod (A,S)
refutes an implication L → R if L ⊆ A and R∩S 6= ∅. We also say that a partial
context refutes an implication if there is a pod in this partial context that refutes
this implication. Based on these, we define the notion of an undecided implication,
which is an implication that does not follow from a given set of implications, and
that is not refuted by a partial context. Then the attribute exploration method
for partial contexts can be formulated as enumerating undecided implications as
efficient as possible. In [7, 53] we have described a version of attribute exploration
algorithm that works for this setting, and proved that this algorithm terminates
and it is correct. Later we have shown that given a DL knowledge base (T ,A),
any individual in A gives rise to a pod, and thus A induces a partial context.
This enables us to use our attribute exploration algorithm on partial contexts for



A Survey on how Description Logic Ontologies Benefit from FCA 15

Acountries Asian EU European G8 Mediterranean

Syria + - - - +

Turkey + - + - +

France - + + + +

Germany - + + + -

Switzerland - - + - -

USA - - - + -

Table 1. The partial context before completion

finding completing DL knowledge bases. As a result of running this algorithm
on a DL knowledge base, the knowledge base is complete w.r.t. an intended
interpreation, i.e., if an implication holds in this interpreation then it also follows
from the TBox, and if not then the ABox contains a counterexample to this
implication. For details of the attribute exploration on partial contexts and its
application to DL ontologies we refer the reader to [7, 53], and demonstrate on
a small example how it works.

Example 2. Let our TBox Tcountries contain the following concept definitions:

AsianCountry ≡ Country ⊓ ∃hasTerritoryIn.{Asia}
EUmember ≡ Country ⊓ ∃memberOf.{EU}

EuropeanCountry ≡ Country ⊓ ∃hasTerritoryIn.{Europe}
G8member ≡ Country ⊓ ∃memberOf.{G8}

IslandCountry ≡ Country ⊓ ¬∃hasTerritoryIn.Continent

MediterrenaenCountry ≡ Country ⊓ ∃hasBorderTo.{MediterrenaenSea}

Moreover, let our ABox Acountries contain the individuals Syria, Turkey, France,
Germany, Switzerland, USA and assume we are interested in the subsumption
relationships between the concept names AsianCountry, EUmember, European-

Country, G8member and MediterreneanCountry. Table 1 shows the partial context
induced by Acountries, and Table 2 shows the questions asked by the completion
algorithm and the answers given to these questions. In order to save space, the
names of the concepts are shortened in both tables. The questions with positive
answers result in extension of the TBox with the following GCIs:

G8member ⊓ MediterraneanCountry ⊑ EUmember ⊓ EuropeanCountry

EUmember ⊓ G8member ⊑ EuropeanCountry

AsianCountry ⊓ EUmember ⊑ MediterraneanCountry

AsianCountry ⊓ EUmember ⊓
EuropeanCountry ⊓ MediterraneanCountry ⊑ G8member

Moreover, the questions with negative answers result in extension of the
ABox with the individuals Russia, Cyprus, Spain and Japan. The partial context
induced by the resulting ABox A′

countries is shown in Table 3. The resulting



16 Barış Sertkaya

Question Answer Counterex.

{G8, Mediterranean} → {EU, European}? yes -

{European, G8} → {EU}? no Russia

{EU} → {European, G8}? no Cyprus

{EU, G8} → {European}? yes -

{EU, European} → {G8}? no Spain

{Asian, G8} → {European}? no Japan

{Asian, EU} → {Mediterranean}? yes -

{Asian, EU, European, Mediterranean} → {G8}? yes -

Table 2. Execution of the ontology completion algorithm (Tcountries,Acountries)

A′

countries Asian EU European G8 Mediterranean

Syria + - - - +

Turkey + - + - +

France - + + + +

Germany - + + + -

Switzerland - - + - -

USA - - - + -

Russia + - + + -

Cyprus + + - - +

Spain - + + - +

Japan + - - + -

Table 3. The partial context after completion

knowledge base (T ′
countries,A

′
countries) is complete w.r.t. the initially selected

concept names.
⋄

Based on on the described approach, we implemented a first experimental
version of a DL knowledge base completion tool as an extension for the Swoop
ontology editor using Pellet as the underlying reasoner. A first evaluation of this
tool on the OWL ontology for human protein phosphatases with biologists as
experts, was quite promising, but also showed that the tool must be improved in
order to be useful in practice. In particular, we have observed that the experts
sometimes make errors when answering queries. Thus, the tool should support
the expert in detecting such errors, and also make it possible to correct errors
without having to restart the completion process from scratch. Another usability
issue on the wish list of our experts was to allow the postponement of answering
certain questions, while continuing the completion process with other questions.

In a follow-up paper [13] we have addressed these usability issues. We have
improved the method in such a way that at any time during completion the
expert can pause the process, see all of her previous answers or changes to the
knowledge base, ’undo’ some of those changes, and continue completion. Here



A Survey on how Description Logic Ontologies Benefit from FCA 17

we of course paid attention that the expert does not have to answer the same
questions she has answered before pausing the process. We have achieved this
by saving previous answers, and using them as background knowledge when the
expert continues completion. The other wish of our experts, namely postponing
questions was solved pausing completion, changing the order of attributes, and
restarting the completion with previous answers as background knowledge. In
theory, this method might not postpone a question, thus the expert might be
asked the last question again. However, in practice the method turned out to be
useful in many cases when the expert was not able to answer a particular question
and wanted to get another one. We have implemented our ontology completion
method together with these usability issues as a plugin for the Protégé ontology
editor under the name OntoComP.4

5 Conclusion

We have summarized the work done in combining DLs and FCA. The research
done in this field mainly falls under two categories: 1) efforts to enrich the lan-
guage of FCA by borrowing constructors from DL languages, and 2) efforts to
employ FCA methods in the solution of problems encountered in knowledge rep-
resentation with DLs. For each of these categories we have given pointers and
shortly described the relevant work in the literature. We have also described our
own contributions, which are mainly under the second category.

Recent developments in information technologies like social networks, Web
2.0 applications and semantic web applications are bringing up new challenges
for representing vast amounts of knowledge and analyzing huge amounts of data
rapidly generated by these applications. The two research areas we have dis-
cussed here, namely DLs and FCA, are lying at the core of representing knowl-
edge, and analyzing data, respectively. We are confident that these new chal-
lenges will enable new fruitful cooperations between these two research fields.

References

1. F. Baader. Computing a minimal representation of the subsumption lattice of
all conjunctions of concepts defined in a terminology. In G. Ellis, R. A. Levinson,
A. Fall, and V. Dahl, editors, Knowledge Retrieval, Use and Storage for Efficiency:
Proceedings of the 1st International KRUSE Symposium, pages 168–178, 1995.

2. F. Baader. Least common subsumers and most specific concepts in a descrip-
tion logic with existential restrictions and terminological cycles. In G. Gottlob
and T. Walsh, editors, Proceedings of the 18th International Joint Conference on
Artificial Intelligence (IJCAI’03), pages 319–324. Morgan Kaufmann, 2003.

3. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, and P. F. Patel-Schneider, edi-
tors. The Description Logic Handbook: Theory, Implementation, and Applications.
Cambridge University Press, 2003.

4 http://ontocomp.googlecode.com



18 Barış Sertkaya

4. F. Baader and F. Distel. A finite basis for the set of EL-implications holding
in a finite model. In R. Medina and S. Obiedkov, editors, Proceedings of the
6th International Conference on Formal Concept Analysis, (ICFCA 2008), volume
4933 of Lecture Notes in Artificial Intelligence, pages 46–61. Springer-Verlag, 2008.

5. F. Baader and F. Distel. Exploring finite models in the description logic ELgfp. In
S. Ferré and S. Rudolph, editors, Proceedings of the 7th International Conference
on Formal Concept Analysis, (ICFCA 2009), volume 5548 of Lecture Notes in
Artificial Intelligence, pages 146–161. Springer-Verlag, 2009.

6. F. Baader, B. Ganter, U. Sattler, and B. Sertkaya. Completing description logic
knowledge bases using formal concept analysis. In Proceedings of the Third Interna-
tional Workshop OWL: Experiences and Directions (OWLED 2007). CEUR-WS,
2007.

7. F. Baader, B. Ganter, B. Sertkaya, and U. Sattler. Completing description logic
knowledge bases using formal concept analysis. In M. M. Veloso, editor, Pro-
ceedings of the Twentieth International Joint Conference on Artificial Intelligence
(IJCAI’07), pages 230–235. AAAI Press, 2007.

8. F. Baader, R. Küsters, and R. Molitor. Computing least common subsumers in
description logics with existential restrictions. In Proceedings of the 16th Interna-
tional Joint Conference on Artificial Intelligence (IJCAI’99), pages 96–101, 1999.

9. F. Baader, C. Lutz, and B. Suntisrivaraporn. CEL—a polynomial-time reasoner for
life science ontologies. In U. Furbach and N. Shankar, editors, Proceedings of the
3rd International Joint Conference on Automated Reasoning (IJCAR’06), volume
4130 of Lecture Notes in Artificial Intelligence, pages 287–291. Springer-Verlag,
2006.

10. F. Baader and R. Molitor. Building and structuring description logic knowledge
bases using least common subsumers and concept analysis. In B. Ganter and G. W.
Mineau, editors, Proceedings of the 8th International Conference on Conceptual
Structures (ICCS 2000), volume 1867 of Lecture Notes in Computer Science, pages
292–305. Springer-Verlag, 2000.

11. F. Baader and R. Peñaloza. Axiom pinpointing in general tableaux. Journal of
Logic and Computation, 2010. To appear.

12. F. Baader and B. Sertkaya. Applying formal concept analysis to description logics.
In P. Eklund, editor, Proceedings of the 2nd International Conference on Formal
Concept Analysis (ICFCA 2004), volume 2961 of Lecture Notes in Computer Sci-
ence, pages 261–286, Sydney, Australia, 2004. Springer-Verlag.

13. F. Baader and B. Sertkaya. Usability issues in description logic knowledge base
completion. In S. Ferré and S. Rudolph, editors, Proceedings of the 7th Interna-
tional Conference on Formal Concept Analysis, (ICFCA 2009), volume 5548 of
Lecture Notes in Artificial Intelligence, pages 1–21. Springer-Verlag, 2009.

14. F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common subsumer
w.r.t. a background terminology. In J. J. Alferes and J. A. Leite, editors, Proceed-
ings of the 9th European Conference on Logics in Artificial Intelligence (JELIA
2004), volume 3229 of Lecture Notes in Computer Science, pages 400–412, Lisbon,
Portugal, 2004. Springer-Verlag.

15. F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common subsumer
w.r.t. a background terminology. In V. Haarslev and R. Möller, editors, Proceedings
of the 2004 International Workshop on Description Logics (DL2004), volume 104
of CEUR Workshop Proceedings, Whistler, Canada, 2004. CEUR-WS.org.

16. F. Baader, B. Sertkaya, and A.-Y. Turhan. Computing the least common subsumer
w.r.t. a background terminology. Journal of Applied Logic, 5(3), 2007.



A Survey on how Description Logic Ontologies Benefit from FCA 19

17. T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):34–43, 2001.

18. P. Burmeister and R. Holzer. On the treatment of incomplete knowledge in formal
concept analysis. In B. Ganter and G. W. Mineau, editors, Proceedings of the 8th
International Conference on Conceptual Structures, (ICCS 2000), volume 1867 of
Lecture Notes in Computer Science, pages 385–398. Springer-Verlag, 2000.

19. P. Burmeister and R. Holzer. Treating incomplete knowledge in formal concept
analysis. In Formal Concept Analysis, volume 3626 of Lecture Notes in Computer
Science, pages 114–126. Springer-Verlag, 2005.

20. A. Coulet, M. Smäıl-Tabbone, A. Napoli, and M.-D. Devignes. Ontology refinement
through role assertion analysis: Example in pharmacogenomics. In F. Baader,
C. Lutz, and B. Motik, editors, Proceedings of the 21st International Workshop
on Description Logics, (DL2008), volume 353 of CEUR Workshop Proceedings.
CEUR-WS.org, 2008.

21. A. Coulet, M. Smäıl-Tabbone, A. Napoli, and M.-D. Devignes. Role assertion
analysis: a proposed method for ontology refinement through assertion learning. In
Proceedings of the Fourth Starting AI Researchers’ Symposium, (STAIRS 2008),
volume 179 of Frontiers in Artificial Intelligence and Applications, pages 47–58.
IOS Press, 2008.

22. F. Distel. An approach to exploring description logic knowledge bases. In
L. Kwuida and B. Sertkaya, editors, Proceedings of the 8th International Confer-
ence on Formal Concept Analysis, (ICFCA 2010), volume 5986 of Lecture Notes
in Artificial Intelligence, pages 209–224. Springer-Verlag, 2010.

23. S. Ferré, O. Ridoux, and B. Sigonneau. Arbitrary relations in formal concept anal-
ysis and logical information systems. In F. Dau, M.-L. Mugnier, and G. Stumme,
editors, Proceedings of the 13th International Conference on Conceptual Structures,
(ICCS 2005), volume 3596 of Lecture Notes in Computer Science, pages 166–180.
Springer-Verlag, 2005.

24. B. Ganter. Two basic algorithms in concept analysis. Technical Report Preprint-
Nr. 831, Technische Hochschule Darmstadt, Darmstadt, Germany, 1984.

25. B. Ganter. Attribute exploration with background knowledge. Theoretical Com-
puter Science, 217(2):215–233, 1999.

26. B. Ganter and R. Krauße. Pseudo models and propositional Horn inference. Techni-
cal Report MATH-AL-15-1999, Institut für Algebra, Technische Universität Dres-
den, Dresden, Germany, 1999.

27. B. Ganter and R. Krauße. Pseudo-models and propositional Horn inference. Dis-
crete Applied Mathematics, 147(1):43–55, 2005.

28. B. Ganter and R. Wille. Formal Concept Analysis: Mathematical Foundations.
Springer-Verlag, Berlin, Germany, 1999.

29. V. Haarslev and R. Möller. RACER system description. In Proceedings Interna-
tional Joint Conference on Automated Reasoning (IJCAR 2001), pages 701–706,
2001.

30. R. Holzer. Knowledge acquisition under incomplete knowledge using methods from
formal concept analysis: Part I. Fundamenta Informaticae, 63(1):17–39, 2004.

31. R. Holzer. Knowledge acquisition under incomplete knowledge using methods from
formal concept analysis: Part II. Fundamenta Informaticae, 63(1):41–63, 2004.

32. M. Horridge, B. Parsia, and U. Sattler. Laconic and precise justifications in owl.
In A. P. Sheth, S. Staab, M. Dean, M. Paolucci, D. Maynard, T. W. Finin, and
K. Thirunarayan, editors, Proceedings of the 7th International Semantic Web Con-
ference, (ISWC 2008), volume 5318 of Lecture Notes in Computer Science, pages
323–338. Springer-Verlag, 2008.



20 Barış Sertkaya

33. I. Horrocks. Using an expressive description logic: FaCT or fiction? In Proceedings
of the 6th International Conference on the Principles of Knowledge Representation
and Reasoning (KR’98), pages 636–647, 1998.

34. I. Horrocks, P. F. Patel-Schneider, and F. van Harmelen. From SHIQ and RDF
to OWL: the making of a web ontology language. Journal of Web Semantics,
1(1):7–26, 2003.

35. A. Kalyanpur, B. Parsia, M. Horridge, and E. Sirin. Finding all justifications of
OWL DL entailments. In Proceedings of the 6th International Semantic Web Con-
ference, 2nd Asian Semantic Web Conference, (ISWC 2007 + ASWC 2007), vol-
ume 4825 of Lecture Notes in Computer Science, pages 267–280. Springer-Verlag,
2007.

36. A. Kalyanpur, B. Parsia, E. Sirin, and B. C. Grau. Repairing unsatisfiable con-
cepts in OWL ontologies. In Y. Sure and J. Domingue, editors, The Semantic
Web: Research and Applications. Proceedings of the 3rd European Semantic Web
Conference (ESWC 2006), volume 4011 of Lecture Notes in Computer Science,
pages 170–184. Springer-Verlag, 2006.

37. A. Kalyanpur, B. Parsia, E. Sirin, B. C. Grau, and J. A. Hendler. Swoop: A web
ontology editing browser. Journal of Web Semantics, 4(2):144–153, 2006.

38. H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen. The protégé OWL
plugin: An open development environment for semantic web applications. In S. A.
McIlraith, D. Plexousakis, and F. van Harmelen, editors, Proceedings of the 3rd
International Semantic Web Conference, (ISWC 2004), volume 3298 of Lecture
Notes in Computer Science, pages 229–243. Springer-Verlag, 2004.

39. R. Küsters and R. Molitor. Computing least common subsumers in ALEN . In
Proceedings of the Seventeenth International Joint Conference on Artificial Intel-
ligence, (IJCAI 2001), pages 219–224. Morgan Kaufmann, 2001.

40. B. Motik. Reasoning in Description Logics using Resolution and Deductive
Databases. Ph.D. dissertation, Universität Karlsruhe (TH), Germany, 2006.

41. B. Motik, R. Shearer, and I. Horrocks. Hypertableau Reasoning for Description
Logics. Journal of Artificial Intelligence Research, 36:165–228, 2009.

42. S. A. Obiedkov. Modal logic for evaluating formulas in incomplete contexts. In
Proceedings of the 10th International Conference on Conceptual Structures, (ICCS
2002), volume 2393 of Lecture Notes in Computer Science, pages 314–325. Springer-
Verlag, 2002.

43. R. Peñaloza and B. Sertkaya. On the complexity of axiom pinpointing in the EL
family of Description Logics. In F. Lin and U. Sattler, editors, Proceedings of the
Twelfth International Conference on Principles and Knowledge Representation and
Reasoning (KR-10). Morgan Kaufmann, 2010.

44. S. Prediger. Terminologische Merkmalslogik in der Formalen Begriffsanalyse. In
G. Stumme and R. Wille, editors, Begriffliche Wissensverarbeitung – Methoden
und Anwendungen, pages 99–124, Heidelberg, Germany, 2000. Springer-Verlag.

45. S. Prediger and G. Stumme. Theory-driven logical scaling: Conceptual information
systems meet description logics. In E. Franconi and M. Kifer, editors, Proceedings
of the 6th International Workshop on Knowledge Representation meets Databases
(KRDB’99), 1999.

46. M. H. Rouane, M. Huchard, A. Napoli, and P. Valtchev. A proposal for combining
formal concept analysis and description logics for mining relational data. In S. O.
Kuznetsov and S. Schmidt, editors, Proceedings of the 5th International Conference
on Formal Concept Analysis, (ICFCA 2007), volume 4390 of Lecture Notes in
Computer Science, pages 51–65. Springer-Verlag, 2007.



A Survey on how Description Logic Ontologies Benefit from FCA 21

47. S. Rudolph. An FCA method for the extensional exploration of relational data. In
B. Ganter and A. de Moor, editors, Contributions to International Conference on
Conceptual Structures 2003 (ICCS 2003), pages 197–210. Shaker Verlag, 2003.

48. S. Rudolph. Exploring relational structures via FLE . In K. E. Wolff, H. D. Pfeiffer,
and H. S. Delugach, editors, Proceedings of the 12th International Conference on
Conceptual Structures (ICCS 2004), volume 3127 of Lecture Notes in Computer
Science, pages 196–212. Springer-Verlag, 2004.

49. S. Rudolph. Relational exploration: Combining Description Logics and Formal
Concept Analysis for knowledge specification. Ph.D. dissertation, Fakultät Mathe-
matik und Naturwissenschaften, TU Dresden, Germany, 2006.

50. S. Rudolph. Acquiring generalized domain-range restrictions. In R. Medina and
S. Obiedkov, editors, Proceedings of the 6th International Conference on Formal
Concept Analysis, (ICFCA 2008), volume 4933 of Lecture Notes in Artificial In-
telligence, pages 32–45, 2008.

51. S. Schlobach and R. Cornet. Non-standard reasoning services for the debugging
of description logic terminologies. In G. Gottlob and T. Walsh, editors, Proceed-
ings of the Eighteenth International Joint Conference on Artificial Intelligence (IJ-
CAI’03), pages 355–362. Morgan Kaufmann, 2003.

52. B. Sertkaya. Computing the hierarchy of conjunctions of concept names and their
negations in a description logic knowledge base using formal concept analysis. In
Supplementary Proceedings of the 4th International Conference on Formal Concept
Analysis, (ICFCA 2006), Dresden, Germany, 2006.

53. B. Sertkaya. Formal Concept Analysis Methods for Description Logics. Ph.D.
dissertation, Institute of Theoretical Computer Science, TU Dresden, Germany,
2007.

54. E. Sirin and B. Parsia. Pellet: An OWL DL reasoner. In Proceedings of the 2004
International Workshop on Description Logics (DL2004), volume 104 of CEUR
Workshop Proceedings. CEUR-WS.org, 2004.

55. G. Stumme. The concept classification of a terminology extended by conjunction
and disjunction. In N. Y. Foo and R. Goebel, editors, Proceedings of the 4th Pacific
Rim International Conference on Artificial Intelligence (PRICAI’96), volume 1114
of Lecture Notes in Computer Science, pages 121–131. Springer-Verlag, 1996.

56. G. Stumme. Distributive concept exploration - a knowledge acquisition tool in
formal concept analysis. In O. Herzog and A. Günter, editors, Proceedings of the
22nd Annual German Conference on Artificial Intelligence (KI’98), volume 1504
of Lecture Notes in Computer Science, pages 117–128. Springer-Verlag, 1998.

57. D. Tsarkov and I. Horrocks. FaCT++ description logic reasoner: System descrip-
tion. In U. Furbach and N. Shankar, editors, Proceedings of the International Joint
Conference on Automated Reasoning (IJCAR 2006), volume 4130 of Lecture Notes
in Artificial Intelligence, pages 292–297. Springer-Verlag, 2006.

58. R. Wille. Restructuring lattice theory: An approach based on hierarchies of con-
cepts. In I. Rival, editor, Ordered Sets, pages 445–470. Reidel, Dordrecht-Boston,
1982.

59. K. Wolstencroft, A. Brass, I. Horrocks, P. W. Lord, U. Sattler, D. Turi, and
R. Stevens. A little semantic web goes a long way in biology. In Proceedings
of the 4th International Semantic Web Conference, (ISWC 2005), volume 3729 of
Lecture Notes in Computer Science, pages 786–800. Springer-Verlag, 2005.

60. M. Zickwolff. Rule Exploration: First Order Logic in Formal Concept Analysis.
Ph.D. dissertation, TH Darmstadt, Germany, 1991.


