
Advances in algorithms based on CbO

Petr Krajca, Jan Outrata, Vilem Vychodil?

Department of Computer Science, Palacky University, Olomouc, Czech Republic
Tř. 17. listopadu 12, 771 46 Olomouc, Czech Republic

krajcap@inf.upol.cz,{jan.outrata,vilem.vychodil}@upol.cz

Abstract. The paper presents a survey of recent advances in algorithms
for computing all formal concepts in a given formal context which result
as modifications or extensions of CbO. First, we present an extension of
CbO, so called FCbO, and an improved canonicity test that significantly
reduces the number of formal concepts which are computed multiple
times. Second, we outline a parallel version of the proposed algorithm
and discuss various scheduling strategies and their impact on the overall
performance and scalability of the algorithm. Third, we discuss impor-
tant data preprocessing issues and their influence on the algorithms.
Namely, we focus on the role of attribute permutations and present ex-
perimental observations about the efficiency of the proposed algorithms
with respect to the number of inversions in such permutations.

1 Introduction

The major issue of widely-used algorithms for computing formal concepts, in-
cluding CbO [12–14], NextClosure [5, 6], or UpperNeighbor [16], is that some
concepts are computed multiple times which brings significant overhead. This
paper deals with various ways to reduce the overhead. Notice that recently an
increasing attention has been paid to various modifications of CbO, see [1, 10,
17].

This paper presents a survey of recent advances in three interconnected areas.
First, we present an algorithm called FCbO which achieves better performance
than CbO by reducing the total number of formal concepts that are computed
multiple times. The reduction is achieved by introducing an additional canonic-
ity test which effectively prunes the CbO tree during the computation. Second,
we elaborate on issues related to parallel execution of FCbO. We have already
proposed a parallel variant of CbO, so-called PCbO [10]. In this paper, we pro-
pose an analogous parallelization of FCbO and we discuss various workload
distribution strategies that may have impact on the overall performance of such
parallelization. Third, we focus on data preprocessing—an important issue that
is often underestimated. Namely, some algorithms for FCA (including those from
the CbO family) achieve better performance if attributes are processed in partic-
ular order. In this paper, we present a preliminary study of the role of attribute
permutations on the performance of CbO and the derived algorithms.
? Supported by grant no. P103/10/1056 of the Czech Science Foundation and by grant

no. MSM 6198959214.

326 Petr Krajca, Jan Outrata, Vilem Vychodil

Notation Throughout the paper, X = {0, 1, . . . ,m} and Y = {0, 1, . . . , n} are
finite nonempty sets of objects and attributes, respectively, and I ⊆ X×Y is an
incidence relation. The triplet 〈X, Y, I〉 is a formal context. The concept-forming
operators induced by I will be denoted by ↑I : 2X → 2Y and ↓I : 2Y → 2X ,
respectively, see [6] for details. We assume that reader has knowledge of basic
algorithms for FCA.

2 FCbO: Fast Close-by-One with New Canonicity Test

In this section we briefly describe the new canonicity test and a new algorithm
derived from CbO which uses this test. Recall that the original canonicity test
used by CbO (and NextClosure) is always used after a new formal concept is
computed. For B ⊆ Y and j 6∈ B, one checks whether

B ∩ Yj = D ∩ Yj , where D = (B ∪ {j})↓I↑I (1)

and Yj = {y ∈ Y | y < j}. FCbO employs an additional test that is performed
before D is computed, eliminating thus the computation of ↓I↑I . Notice that (1)
fails iff B � j 6= ∅, where

B � j = (D \B) ∩ Yj =
(
(B ∪ {j})↓I↑I \B

)
∩ Yj . (2)

The new canonicity test exploits the fact that if (1) fails for given B and j 6∈ B,
the monotony of ↓I↑I yields that the test will also fail for each B′ ⊇ B such that
j 6∈ B′ and B � j * B′. The conclusion can be done without computing D. If
B� j ⊆ B′, we are still compelled to perform the original canonicity test. Thus,
the new (additional) canonicity test is based on the following assertion:

Lemma 1 (See [17]). Let B ⊆ Y , j 6∈ B, and B ; j 6= ∅. Then, for each
B′ ⊇ B such that j 6∈ B′ and B ; j 6⊆ B′, we have B′ ; j 6= ∅. ut

FCbO can be seen as an extended version of CbO in that we propagate the
information about sets (2) which take part in the new test. The information is
propagated in the top-down direction. In order to apply the new test, we have
to change the search strategy of the algorithm from the depth-first search (as it
is in CbO) to a combined depth-first and breadth-first search. FCbO is repre-
sented by a recursive procedure FastGenerateFrom, see Algorithm 1, which
accepts three arguments: a formal concept 〈A, B〉 (an initial formal concept), an
attribute y ∈ Y (first attribute to be processed), and a set {Ny ⊆ Y | y ∈ Y }
of subsets of attributes Y the purpose of which is to carry information about
sets (2). Each invocation of FastGenerateFrom has its own local queue used
to store information about computed concepts. Unlike CbO, if the canonicity
tests succeed (line 7 and line 10), we do not call FastGenerateFrom recur-
sively but we store information about the concept in the queue (line 11). After
each attribute is processed, we perform the recursive calls, see lines 17–19. The
new canonicity test is performed in line 7 based on information stored in Nj ’s.
The original canonicity test is performed in line 10. If the test in line 10 fails, we
update the contents of Mj , see line 13. Note that Mj ’s can be seen as local copies

Advances in algorithms based on CbO 327

Algorithm 1: Procedure FastGenerateFrom(〈A, B〉, y, {Ny | y ∈ Y })
list 〈A, B〉 // concept 〈A, B〉 is processed, e.g., listed or stored1

// check halting condition of the current call

if B = Y or y > n then2

return3

end4

// process all attributes beginning with y
for j from y upto n do5

set Mj to Nj // Mj is a pointer to Nj6

// perform new canonicity test

if j 6∈ B and Nj ∩ Yj ⊆ B ∩ Yj then7

// compute new concept 〈C, D〉 = 〈A ∩ {j}↓I , (B ∪ {j})↓I↑I 〉
set C to A ∩ {j}↓I8

set D to C↑I9

// perform original canonicity test

if B ∩ Yj = D ∩ Yj then10

// store new concept for further processing

put 〈〈C, D〉, j〉 to queue11

else12

// update information about implied attributes

set Mj to D // Mj becomes a pointer to D13

end14

end15

end16

// perform recursive calls of FastGenerateFrom
while get 〈〈C, D〉, j〉 from queue do17

FastGenerateFrom(〈C, D〉, j + 1, {My | y ∈ Y })18

end19

// terminate current call

return20

of Nj ’s which are used as the third argument for consecutive calls of FastGen-
erateFrom. Sets Nj are used instead of (2) because it is actually easier (and
more efficient) to maintain a set of pointers to intents than to compute (and
allocate memory for) sets (2) during the computation.

FCbO is correct: when invoked with 〈∅↓I , ∅↓I↑I 〉, y = 0, and {Ny = ∅ | y ∈ Y },
Algorithm 1 lists all formal concepts in 〈X, Y, I〉 in the same order as CbO, each
of them exactly once. Let us note that FCbO can be turned into a “Fast NextClo-
sure” (i.e., an algorithm that lists concepts in the lexicographical order [5]) by
either (i) using a stack instead of a queue or by (ii) modifying the loop in line 5
so that it goes “from n downto y”. See [17] for further details on FCbO.

Example 1. Consider a context with X = {0, . . . , 3}, Y = {0, . . . , 5}, and I =
{〈0, 0〉, 〈0, 1〉, 〈0, 2〉, 〈1, 0〉, 〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈1, 5〉, 〈2, 0〉, 〈2, 1〉, 〈2, 4〉, 〈3, 1〉, 〈3, 2〉}.
This formal context induces 12 formal concepts denoted C1, . . . , C12. In case of
both CbO and FCbO, the computation can be depicted by a tree. Moreover, a

328 Petr Krajca, Jan Outrata, Vilem Vychodil

5 43

54 3

2

5 43

54 3

2

1

5

5

43

54 3

2

5

5

4 3

54 3

2

1

0

�

C8

�

C9

�

C8

�

C8

�

C8

�

C8

〈C12, 3〉

�

C5

�

C6

�

C5

�

C5

�

C5

�

C5

〈C11, 3〉

〈C10, 2〉

�

C8

�

C8

〈C9, 5〉�

C8

�

C8

�

C8

〈C8, 4〉

〈C7, 3〉

�

C5

�

C5

〈C6, 5〉 �

C5

�

C5

�

C5

〈C5, 4〉

〈C4, 3〉

〈C3, 2〉

〈C2, 1〉

〈C1, 0〉

Fig. 1. Example of an FCbO tree—a pruned CbO tree.

concepts closures closures ratio ratio
(CbO) (FCbO) (CbO) (FCbO)

mushroom 238,710 4,006,498 426,563 5.9 % 55.9 %
anon. web 129,009 27,949,552 1,475,341 0.4 % 8.7 %

debian tags 38,977 12,045,680 679,911 0.3 % 5.7 %
tit-tac-toe 59,505 221,608 128,434 26.8 % 46.3 %

Table 1. Total numbers of closures computed by CbO and FCbO.

FCbO tree is a pruned version of the CbO tree, see Fig. 1. The black-square
nodes represent concepts computed multiple times by FCbO and CbO whereas
the grey-square nodes represent concepts computed multiple times by CbO and
not computed by FCbO. Therefore, grey nodes and edges in Fig. 1 denote sub-
trees pruned using the new canonicity test. In this case, the number of concept
computed multiple times is significantly reduced.

Experimental Evaluation We have evaluated FCbO and compared CbO and
FCbO using various real data sets and artificial data sets. The impact of the new
canonicity test is presented in Table 1 comparing the total numbers of closures
computed by CbO and FCbO in selected benchmark data sets [2, 8]. The table
includes numbers of concepts and ratios of the number of computed closures
to the number of (distinct) formal concepts in the data, i.e., the frequency of
successful canonicity tests. Apparently, FCbO has a higher rate of successful
canonicity tests than CbO. Thus, in terms of the number of computed closures,
FCbO is more efficient than CbO. Since the total number of computed closures
directly influences the speed of the algorithm, FCbO is (usually) faster than
CbO [17]. The reduction of total time needed for computing all formal concepts
is apparent from Table 2. The table shows total time (in seconds) needed to

Advances in algorithms based on CbO 329

mushroom tic-tac-toe debian tags anon. web
size 8, 124× 119 958× 29 14, 315× 475 32, 710× 295

density 19 % 34 % < 1 % 1 %

FCbO 0.23 0.02 0.10 0.15
CbO 4.34 0.06 5.31 27.14

NextClosure 685.00 1.86 1,432.25 8,236.85
UpperNeighbor 4,368.19 12.54 2,159.80 11,068.52

Berry’s [3] 950.73 6.93 1,512.73 4,421.51

Table 2. Performace of algorithms (speed in seconds).

analyze the data sets. For the purpose of comparison the table contains also other
well-known algorithms. The experiments were performed on an Apple MacPro
computer equipped with two quad-core processors (Intel Xeon, 2.8 GHz) and
16 GB of RAM and all algorithms were implemented in ANSI C using bitarray
representation [11]. Notice that in the worst case, FCbO collapses into CbO (e.g.,
in case of I being the inequality relation on X = Y). FCbO is a polynomial
time-delay algorithm [7, 9] because the additional canonicity test has a linear
time-delay overhead compared to CbO, see [17] for further details on FCbO and
its performance.

3 PFCbO: Parallel FCbO and Workload Distribution

This section is devoted to parallelization issues of FCbO. Recall that in [10],
we have described PCbO which results by a parallelization of CbO. FCbO can
be turned into a parallel algorithm in much the same way as the original CbO
can be turned into PCbO. Since the procedure of parallelization is fairly simi-
lar to that presented in [10], we focus mainly on issues that are not discussed
in [10]. Namely, we compare several strategies to balance the workload distribu-
tion among independent processors and compare their efficiency.

Following the ideas from [10], a parallel variant of FCbO consists of three
stages: First, we compute and process all concepts that are derivable in less than
L steps. Second, we store all concepts derivable in exactly L steps in a new queue.
Third, we distribute concepts from the queue among P independent processors
and we let each of the processors compute the remaining concepts using FCbO.
Typically, each processor r has its own queue denoted queuer containing concepts
assigned to this processor. A parallel algorithm based on these ideas shall be
called Parallel Fast Close-byOne (PFCbO).

Clearly, the practical efficiency of both PCbO and PFCbO depends on the
choice of the strategy that distributes concepts among processors during the
third step of the computation. The decision how to assign concepts to particular
queue is generally difficult since we do not know the distribution of formal con-
cepts in the search space of all formal concepts until we actually compute them
all and reveal the structure of the call tree. As a consequence, the distribution

330 Petr Krajca, Jan Outrata, Vilem Vychodil

of workload may be in some cases unbalanced. In [10], we have used a simple
round-robin principle which turned out to be reasonably efficient. Nevertheless,
there are other schemes of the workload distribution that can be considered:

(i) round-robin—concepts are distributed to queues attached to each processor,
in the way that n-th concept is placed into a queuer where r = (n mod P)+1
and P is the number of processors. For instance, if we consider P = 4 and
concepts C1, . . . , C10, they are assigned to queues as follows:

queue1 = {C1, C5, C9}, queue2 = {C2, C6, C10},
queue3 = {C3, C7}, queue4 = {C4, C8}.

(ii) zig-zag—this strategy is similar to the previous strategy but it uses a different
formula to determine the queuer. The queuer is given by

r = min
(
n mod z, z − (n mod z)

)
+ 1 (3)

where z = 2 × P + 1 assuming that P is number of processors. For P = 4
and concepts C1, . . . , C10 the distribution of concepts is

queue1 = {C1, C8, C9}, queue2 = {C2, C7, C10},
queue3 = {C3, C6}, queue4 = {C4, C5}.

(iii) blocks—this workload distribution scheme divides the queue of all concepts
into chunks of approximately equal size and these “blocks of concepts” are
redistributed into the queues of independent processors. In this case, the
n-th concept is placed into queuer, where

r =
⌈

(n× P)
Q

⌉
(4)

with P being the number of processors, Q being the number of all concepts,
and dxe being the usual ceiling function. For instance, in case of C1, . . . , C10

(i.e., Q = 10) and four queues (i.e., P = 4), we get:

queue1 = {C1, C2}, queue2 = {C3, C4, C5},
queue3 = {C6, C7}, queue4 = {C8, C9, C10}.

(iv) fair—all concepts remain stored in one shared queue and each processor
gets concepts from the queue one by one. The benefit of this scheme is that
it allows to react on the revealing structure of the call tree. On the other
hand, this method of distributing concepts requires synchronization among
processors while accessing this queue. Note that in contrast to the above-
described schemes, this scheme has no fixed structure and the workload is
distributed non-deterministically.

(v) random—the workload is spread among processors randomly. We are con-
sidering this strategy to be referential and it is included for the purpose of
comparison.

Experimental Evaluation In order to evaluate the strategies of workload distri-
bution, we have tested our algorithm for each strategy using various data sets
and various number of processors. Table 3 depicts the time needed to compute
all formal concepts using particular strategy. Surprisingly, there are only small

Advances in algorithms based on CbO 331

round-r. blocks fair zig-zag random

debian tags 0.0974 0.0988 0.0938 0.0984 0.0986
anon. web 0.1518 0.1590 0.1500 0.1528 0.1522
mushroom 0.1772 0.2158 0.1550 0.1788 0.1820
tic-tac-toe 0.0172 0.0198 0.0168 0.0174 0.0180

random (5000× 100× 10) 0.0806 0.1194 0.0796 0.0820 0.0876
random (10000× 100× 15) 1.1380 2.1326 0.8698 1.0974 1.1670

Table 3. Performace under various workload distributions (speed in seconds).

differences among the considered schemes of the workload distribution, i.e., the
ordinary round-robin used in [10] is indeed adequate for the job. Nevertheless,
the fair strategy seems to be the most efficient. One can see that the round-robin
and zig-zag strategies provide performance slightly better than the random work-
load distribution. On the other hand, the blocks scheme of distribution provides
performance even worse than the random distribution and seems to be inappro-
priate for PFCbO.

4 Data Preprocessing Issues

Algorithms for computing concepts can be classified in many ways, see, e.g. [15].
An important attribute of algorithms for FCA is whether their performance de-
pends on the order of objects and attributes in the input data table. There-
fore, an algorithm for computing formal concepts shall be called (permuta-
tion) resistant whenever all isomorphic copies of a formal context 〈X, Y, I〉 with
Y = {0, 1, . . . , n} require the same number of elementary computation steps in
order to compute all concepts. For our purposes, an elementary computation step
will be represented by computation of a single fixpoint of the concept-forming
operators ↑I and ↓I .

One can easily see that, e.g., Lindig’s UpperNeighbor algorithm [16] is resis-
tant. On the other hand, CbO and FCbO are not resistant. Indeed, a different
order of attributes in a data table can yield different CbO and FCbO trees that
may have different numbers of nodes (notice that the loop in line 5 of Algo-
rithm 1 processes attributes from left to right). Since CbO and FCbO are not
resistant, a proper ordering of attributes before computation can further reduce
the number of concepts that are computed multiple times, thus improving the
efficiency. In this section, we investigate particular permutations of attributes
and explore the impact of inversions on the number of computed closures.

In order to describe various formal contexts with respect to the structure of
the data table, we introduce a notion of an ordered formal context and inversion:

Definition 1. An ordered formal context is a formal context 〈X, Y, I〉 where
Y = {0, . . . , n} and for all attributes

|{0}↓I | ≤ |{1}↓I | ≤ · · · ≤ |{n}↓I |. (5)

332 Petr Krajca, Jan Outrata, Vilem Vychodil

A pair of attributes 〈y1, y2〉 ∈ Y × Y such that |{y1}↓I | 6≤ |{y2}↓I | shall be called
an inversion.

Verbally, the attributes in an ordered formal context are sorted in the as-
cending order according to their support, i.e., the number of objects having
these attributes. As a consequence of the previous definition, an ordered formal
context contains no inversions.

From the point of view of formal concepts and concept lattices, the order of
objects and attributes in which they appear in the data table is not essential.
Therefore, one can reorder attributes in an arbitrary way. From the computa-
tional point of view, however, it may happen that certain orderings of attributes
yield better results in conjunction with particular argorithms than other order-
ings. In case of our algorithms, the order has an important impact on the process
of the execution of both CbO and FCbO since the canonicity test is driven by
the order of attributes. The following assertions show that for an ordered for-
mal context with pairwise distinct columns, the canonicity tests succeed for all
attribute concepts. We first prove a technical claim:

Lemma 2. Let 〈X, Y, I〉 be an ordered formal context with Y = {0, . . . , n}.
Then, for each k, j ∈ Y such that k < j, we have k ∈ {j}↓I↑I iff {k}↓I = {j}↓I .

Proof. Note that attributes from Y are integers and “<” denotes the usual
strict linear order on the set of all integers. Suppose that k ∈ {j}↓I↑I , i.e.,
{k} ⊆ {j}↓I↑I . By the antitony of ↓I , we get {k}↓I ⊇ {j}↓I↑I↓I = {j}↓I . Thus, it
remains to show the converse inclusion. Since 〈X,Y, I〉 is ordered and k < j, we
get |{k}↓I | ≤ |{j}↓I |, see (5). Hence, |{k}↓I | ≤ |{j}↓I | and {k}↓I ⊇ {j}↓I yield
{k}↓I = {j}↓I . Conversely, if {k}↓I = {j}↓I then obviously k ∈ {j}↓I↑I , proving
the claim. ut

Applying Lemma 2, we get:

Theorem 1. Let 〈X, Y, I〉 be an ordered formal context where Y = {0, . . . , n}
and {a}↓I 6= {b}↓I for any a, b ∈ Y . Then for each j ∈ Y such that j 6∈ ∅↓I↑I ,

∅↓I↑I ∩ Yj = {j}↓I↑I ∩ Yj , (6)

where Yj = {y ∈ Y | y < j}.

Proof. Take j ∈ Y such that j 6∈ ∅↓I↑I . Observe that condition (6) holds true iff
there is no attribute k ∈ Y such that k 6∈ ∅↓I↑I , k < j, and k ∈ {j}↓I↑I . Thus,
consider any k ∈ Y such that k < j. Since 〈X, Y, I〉 is ordered, our assumption
j 6∈ ∅↓I↑I yields k 6∈ ∅↓I↑I . By the assumption, {k}↓I 6= {j}↓I , i.e., Lemma 2
yields k 6∈ {j}↓I↑I , finishing the proof. ut

Theorem 1 shows that for an ordered formal context with pairwise distinct
columns, invocations of FastGenerateFrom in the first level of recursion al-
ways succeeds and generates concepts. Moreover, from the proof of Theorem 1
it follows that in any ordered formal context, the first derivation [10] does not
exists for attribute j if there is an attribute k such that k < j and {k}↓I = {j}↓I .

Advances in algorithms based on CbO 333

0 · 106

4 · 106

8 · 106

12 · 106

16 · 106

0 1000 2000 3000 4000 5000 6000 7000

co
m

pu
te

d
cl

os
ur

es

number of inversions

CbO
FCbO

2 · 105

3 · 105

4 · 105

5 · 105

0 1000 2000 3000 4000 5000 6000 7000

co
m

pu
te

d
cl

os
ur

es

number of inversions

FCbO

Fig. 2. Impact of inversion in the mushrooms data set

This has a practical consequence for the parallel variants of CbO and FCbO
in case of ordered contexts, because it allows us to determine the number of
concepts generated during the first stages of the algorithms. If the number of
attributes is significantly larger than the number of processors, and this condition
is usually fulfilled, it is sufficient to compute only the first derivations and then
distribute the workload among all processors.

Furthermore, our empirical experiments have shown an interesting tendency
that while processing ordered formal contexts, canonicity tests fail less frequently
than in case of contexts containing inversions. In addition, the experiments have
shown that with the increasing number of inversions in a data table, the average
number of computed closures grows. For instance, Fig. 2 shows how the number
of inversions in the mushroom data set affects the total number of computed
closures. The first graph (at the top) depicts this dependency for CbO and
FCbO. The second graph (at the bottom) provides a more detailed view for
FCbO. Similar tendency can be observed for other benchmark data sets.

Remark 1. Let us note that the ordering of attributes introduced by (5) has
already been used in [4] but the purpose of the ordering in [4] is different. In [4],
the authors use this particular ordering of attributes in a parallel version of
Ganter’s NextClosure algorithm to achieve soundness of the algorithm (each

334 Petr Krajca, Jan Outrata, Vilem Vychodil

0 · 107

1 · 107

2 · 107

3 · 107

4 · 107

0 500 1000 1500 2000 2500 3000 3500 4000

co
m

pu
te

d
cl

os
ur

es

number of inversions

normal
uniform

Fig. 3. Impact of inversions in two artificial data sets

concepts closures closures ratio ratio
(unordered) (ordered) (unordered) (ordered)

mushroom 238,710 426,563 299,201 55.9 % 79.7 %
anon. web 129,009 1,475,341 398,147 8.7 % 32.4 %
debian tags 38,977 679,911 298,641 5.7 % 13.0 %
tit-tac-toe 59,505 128,434 89,930 46.3 % 66.1 %

Table 4. Numbers of computed closures in case of (un)ordered attributes.

concept is then listed only once) while in our case, [4] is used for the sake of
increased efficiency.

Remark 2. We have observed a general tendency that certain data sets are more
affected by the above-discussed phenomenon than others. For instance, if 1’s in
a data table are approximately uniformly spread among attributes (i.e., each at-
tribute has approximately the same support), the ordering of attributes (usually)
does not have a considerable effect on decreasing the number of closures. Fig. 3
depicts how the increasing number of inversions affects the number of computed
closures in two artificial data sets where 1’s are distributed (i) approximately
uniformly among the attributes and (ii) approximately normally among the at-
tributes. Both data sets have the same parameters in that they consist of 1000
objects, 100 attributes, and contain 15 % of 1’s, however, the distributions of
1’s among the attributes are quite different. As one can see from Fig. 3, the im-
pact of the number of inversions on the number of computed closures is more
significant in case of normally distributed 1’s among the attributes.

Experimental Evaluation From our observations it follows that it is desirable
to incorporate a preprocessing step which transforms a formal context into a
corresponding ordered formal context. In order to evaluate the benefits of this
preprocessing step, we have used similar approach as in case of evaluation of

Advances in algorithms based on CbO 335

mushroom tic-tac-toe debian tags anon. web

PFCbO (P = 1) 0.23 0.02 0.10 0.15
PFCbO (P = 2) 0.14 0.01 0.07 0.11
PFCbO (P = 4) 0.09 0.01 0.06 0.09
PFCbO (P = 8) 0.06 0.01 0.06 0.08

PCbO (P = 1) 4.34 0.06 5.31 27.14
PCbO (P = 2) 2.39 0.03 3.59 14.77
PCbO (P = 4) 1.65 0.02 2.59 9.22
PCbO (P = 8) 0.99 0.01 1.85 5.60

Table 5. Performace with multiple processors (speed in seconds).

the new canonicity test. We have focused on the total numbers of closures and
concepts computed by FCbO while processing various ordered and unordered
data sets. The results are presented in Table 4 which also includes corresponding
ratios.

Apparently, reordering of attributes reduces the number of computed clo-
sures, and thus, can reduce time of computation. Note that the Ganter’s algo-
rithm [5, 6] is in principle equivalent to CbO. As such, it is also not permutation
resistant. Thus, the preprocessing step which reorders attributes can also in-
crease its performance.

5 Overall Evaluation

So far, we have proposed and evaluated several improvements and refinements of
the original CbO and PCbO algorithms, namely, new canonicity test, workload
distribution schemes, and reordering attributes. However, we have evaluated the
impact of each improvement separately. Therefore, we conclude this paper with
the evaluation of PFCbO which includes all these improvements.

Table 5 table shows the total time (in seconds) needed to compute all for-
mal concepts in the benchmark data sets using PCbO and PFCbO run on the
Apple MacPro computer, equipped with eight processor cores. The parameter
P indicates the number of used processors for particular experiment.

Fig. 4 demonstrates the scalability of PFCbO, i.e., the ability to decrease the
time of computation by using more processors. In the depicted two experiments,
we have used computer equipped with Sun UltraSPARC T1 processor having
eight cores (each capable to process up to 4 threads simultaneously) and 8 GB
of RAM. Fig. 4 (at the top) shows relative speed up for data sets having 10000
objects, 10 % density of 1’s in the data table and various counts of attributes.
Fig. 4 (at the bottom) shows relative speed up for data sets having 1000 objects,
100 attributes, and various densities of 1’s in the data tables. The 1’s in both
data sets spread approximately normally among the attributes. Note that each
graph contains a certain point from which the increasing number of processors
does not allow to take advantage of more processors and performance of the

336 Petr Krajca, Jan Outrata, Vilem Vychodil

algorithm may even decline due to the overhead related to the management
of multiple threads of execution. However, this is a quite common behavior of
parallel algorithms.

0

2

4

6

8

10

4 8 12 16 20 24 28 32

re
la

ti
ve

sp
ee

du
p

number of processors

100 attrs.
150 attrs.
200 attrs.
250 attrs.

0

2

4

6

8

10

4 8 12 16 20 24 28 32

re
la

ti
ve

sp
ee

du
p

number of processors

100 attrs.
150 attrs.
200 attrs.

Fig. 4. Scalability of PFCbO

References

1. Andrews S.: In-Close, a Fast Algorithm for Computing Formal Concepts. In:
Rudolph, Dau, Kuznetsov (Eds.): Supplementary Proceedings of ICCS ’09, CEUR
WS 483(2009), 14 pages.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-483/paper1.pdf

2. Asuncion A., Newman D.: UCI Machine Learning Repository. University of Cali-
fornia, Irvine, School of Information and Computer Sciences, 2007.

3. Berry A., Bordat J.-P., Sigayret A.: A local approach to concept generation. Annals
of Mathematics and Artificial Intelligence, 49(2007), 117–136.

4. Fu H., Mephu Nguifo E.: A Parallel Algorithm to Generate Formal Concepts for
Large Data. ICFCA 2004, LNCS 2961, pp. 394–401.

5. Ganter B.: Two basic algorithms in concept analysis. (Technical Report FB4-
Preprint No. 831). TH Darmstadt, 1984.

6. Ganter B., Wille R.: Formal concept analysis. Mathematical foundations. Berlin:
Springer, 1999.

Advances in algorithms based on CbO 337

7. Goldberg L. A.: Efficient Algorithms for Listing Combinatorial Structures. Cam-
bridge University Press, 1993.

8. Hettich S., Bay S. D.: The UCI KDD Archive University of California, Irvine,
School of Information and Computer Sciences, 1999.

9. Johnson D. S, Yannakakis M., Papadimitriou C. H.: On generating all maximal
independent sets. Information Processing Letters 27(3)(1988), 119–123.

10. Krajca P., Outrata J., Vychodil V.: Parallel Recursive Algorithm for FCA. In:
Belohlavek, Kuznetsov (Eds.): Proc. CLA 2008, CEUR WS 433(2008), 71–82.
http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-433/paper6.pdf

11. Krajca P., Vychodil V.: Comparison of data structures for computing formal con-
cepts. In: Proc. MDAI 2009, LNAI 5861(2009), 114–125.

12. Kuznetsov S.: Interpretation on graphs and complexity characteristics of a search
for specific patterns. Automatic Documentation and Mathematical Linguistics,
24(1)(1989), 37–45.

13. Kuznetsov S.: A fast algorithm for computing all intersections of objects in a finite
semi-lattice (Bystry$i algoritm postroeni� vseh pereseqeni$i ob�ektov iz
koneqno$i polurexetki, in Russian). Automatic Documentation and Mathemati-
cal Linguistics, 27(5)(1993), 11–21.

14. Kuznetsov S.: Learning of Simple Conceptual Graphs from Positive and Negative
Examples. PKDD 1999, pp. 384–391.

15. Kuznetsov S., Obiedkov S.: Comparing performance of algorithms for generating
concept lattices. J. Exp. Theor. Artif. Int., 14(2002), 189–216.

16. Lindig C.: Fast concept analysis. Working with Conceptual Structures–
–Contributions to ICCS 2000, pp. 152–161, 2000. Aachen: Shaker Verlag.

17. Outrata J., Vychodil V.: Fast algorithm for computing fixpoints of galois connec-
tions induced by object-attribute relational data (in preparation).

