
DBTropes—a linked data wrapper approach incorporating
community feedback

Malte Kiesel
DFKI GmbH, Kaiserslautern, Germany

malte.kiesel@dfki.de

Gunnar Aastrand Grimnes
DFKI GmbH, Kaiserslautern, Germany

gunnar.grimnes@dfki.de

ABSTRACT
A common approach for serving Linked Data is to modify
existing services to translate and export the underlying data
as RDF. However, for many existing data sources on the web
such an approach is not feasible: large installations might
not be suitable for the changes necessary, programmers pos-
sibly are not able to adapt the software, or the data might
not be suited for direct translation to RDF.
DBTropes.org is a wrapper to TV Tropes, a wiki describing
works of fiction by associating features—known as “Tropes”.
DBTropes is an independent service only using public data
available via HTTP and translating it to RDF. Since the
TV Tropes wiki does not provide structured data, the ex-
tracted data is noisy, and the interpretation of the data is
sometimes ambiguous. DBTropes features a user interface
that allows correcting and amending the data extracted from
TV Tropes. This allows the extracted data to stay in sync
with the original wiki, while also allowing the linked-data
community to fix extraction errors.

Introduction
The Web of Data is a model for publishing structured
data online. Dereferenceable URIs are used as identifiers,
and either human- or machine-readable content is served
over HTTP, using HTTP redirection to provide content-
negotiation [2]. The motivation for the Web of Data is to
solve the chicken and egg problem for the semantic web: As
long as no interesting data is available, no-one will write
services that consume it.

We describe our experience of making the data from an ex-
isting collaborative wiki available as linked data. Although
our end-result is specific to the TV Tropes wiki, the chal-
lenges and solutions we used are general. In particular, our
choice of a live wrapper of the wiki, as well as allowing the
community to fine-tune the wrapping process, raise many
interesting issues that are applicable outside this use-case.

The Need for Wrappers
Most data on the World Wide Web is available as websites
for human consumption, marked up using the HTML. Ren-
dering this content is easy for machines—however, machine
support in using the data is limited to simple tasks such as
keyword search. Some services such as Flickr or Delicious
provide access to structured data underlying the HTML rep-

resentation of their data through programming APIs. Very
few services publish their data according to the linked data
principles. However, most services do not expose their data
in a machine-readable form at all.
The lack of linked data-exposing services is due to a mul-
titude of reasons stemming from technical, social, but also
economical reasons:

• Some services are very large and complex—extending
the software running it to also serve linked data is dif-
ficult.

• For complicated domains, mapping the underlying
data representation to linked data formats is nontriv-
ial, and additional ontological information is needed
for linked data representation.

• The data contained in the service is not available as
structured data but only as plain text or other media.

• Making data available as linked data is just not a pri-
ority for the website’s community or administrative
people.

Fortunately, in case the data is available under a liberal
license, such as the GNU Free Documentation License1

(GFDL) or most of the Creative Commons (CC) licenses2,
wrapping the data into a service separate from the origi-
nal website might be possible. Wrapping solves some of the
problems explained above:

• Even large services can be wrapped since the linked
data service is independent from the original website,
not obstructing the original service or imposing tran-
sition problems.

• Extraction and data enrichment methods that are not
(yet) available as off-the-shelf solutions can be em-
ployed in the wrapper, not jeopardizing the original
service’s availability or integrity.

• Specialized communities can form: The community be-
hind the original service typically has other priorities
and expertise than the community using the data ex-
posed as linked data.

1http://www.gnu.org/copyleft/fdl.html
2http://creativecommons.org/choose/—in general any
CC-license that allows derived works are suitable



Online Wrapping: DBTropes
As a case study, we built an online wrapper to the TV Tropes
wiki, resulting in the DBTropes.org linked data source3.
Unique to our wrapping approach, the DBTropes site also
has a HTML front-end for end-users. This allows users to
tweak the way resources are processed, removing incorrectly
extracted facts and linking our pages to the rest of the web
of data.

TV Tropes is a catalog of tricks of the trade for writing
fiction, known as tropes. According to the tvtropes.org in-
troduction page:

Tropes are devices and conventions that a writer can rea-
sonably rely on as being present in the audience members’
minds and expectations.

The wiki includes dozens of thousands of tropes and items.
Each trope-page contains a description of the trope, as well
as links to related tropes and links to example items (movies,
games, etc.) where this trope occurs, almost always with a
comment explaining why that trope is relevant in the con-
text.

In contrast to information-sources like wikipedia, TV Tropes
does not attempt to be objectively correct and detailed.
However, the plot devices employed in a movie or the adher-
ence to realism exhibited in a book might be much more rel-
evant to a human than the purely objective information such
as release dates or movie casts. Thus, DBTropes nicely com-
plements the information contained in Wikipedia/DBpedia
and might be used for recommendation and clustering func-
tionality. In fact, DBTropes data is used in the Skipforward
project4 exactly for these purposes.

Building Blocks of the Wrapper Software
In Figure 1, the components of an online wrapper are shown
along with the data flow between them. The input HTML
cache helps relieving the wrapped website from unnecessary
load. For example, if a user of the wrapper tries differ-
ent settings, we do not want the wrapper to retrieve the
wrapped web page multiple times. Also, in case the wrap-
per website gets crawled by a search engine bot or a linked
data browser, we need to make sure the load imposed on
the wrapped website stays as low as possible. The HTML
parser extracts information from the fetched HTML pages.
In the case of DBTropes, we used a set of XPath5 expres-
sions for this step. For other use cases, general screen scrap-
ing techniques can be employed (see Piggy Bank [1], an RDF
screen scraping framework). The interpreter generates RDF
from these data snippets. Typically, additional information
for generating RDF is needed—this information is fetched
and updated in the processing information store. The de-
pendency manager controls updating wrapped pages in case
metadata/processing information data changes. The RDF
filter hides RDF statements marked as invalid by user feed-
back. Users can also correct some other information such as
the page type in the TV Tropes scenario.

3http://dbtropes.org/
4http://skipforward.opendfki.de/
5http://www.w3.org/TR/xpath

Input
HTML
Cache

HTML
Parser

Inter-
preter

RDF
Store

HTML
Generator

Output
HTML
Cache

Depen-
dency

Manager

Processing
Information

Store

Output
RDF

Cache

RDF
Filter

User
Feedback
Processor

Wrapped
Website

Linked
Data

Consumer

User /
Contributor

Figure 1: The components of the online wrapper.
Arrows show information flow. Caching manage-
ment not shown.

Statistics and Discussion
As of July 2010, DBTropes contains information about more
than 13,000 movies and other items, about 18,000 tropes,
and almost 1,200,000 trope occurrences6. The full RDF
dump contains about 7,000,000 statements in almost
1.5 GBytes of RDF data (N-TRIPLES format).

We did an analysis of precision and recall of the trope ex-
traction process. This covered randomly selected item and
trope pages with about 580 trope occurrences all in all.

In the test set’s trope pages, 460 trope occurrences were
counted manually. 100 of these were deemed not to be ex-
tractable automatically in any case (because the items men-
tioned were present only as plain text and not represented
as a wiki link, etc.). DBTropes extracted 300 trope occur-
rences. Most trope occurrences identified but not extracted
(58) were due to DBTropes not having enough data to esti-
mate the type of the page linked to—in this case, DBTropes
errs on the side of caution and drops the statement, giving a
notice. This leads to a recall of about 83%. Of the extracted
occurrences, 14 were invalid, yielding 95.3% precision.

In the test set’s item pages, 120 trope occurrences were
counted manually. Apart from 4 of them, all seemed ex-
tractable with reasonable effort. DBTropes extracted 104
trope occurrences, having dropped 11 occurrences due to
missing type data. Of the extracted occurrences, 4 were
invalid. This leads to 89.7% recall and 96.2% precision.

We were able to remove all invalid occurrences using the
interactive DBTropes user feedback features after measure-
ments, resulting in 100% precision. Adding a feature that
allows users to add new information would also be possible,
potentially increasing recall. However, this is something we
expect to be done much better through the wrapped ser-
vice (editing the TV Tropes wiki in this case) since, as the
evaluation shows, most misses are due to missing primary
information in the original wiki.

1. REFERENCES
[1] D. Huynh, S. Mazzocchi, and D. Karger. Piggy bank:

Experience the semantic web inside your web browser.
Web Semantics: Science, Services and Agents on the
World Wide Web, 5(1):16–27, 2007.

[2] Leo Sauermann and Richard Cyganiak. Cool uris for
the semantic web. w3c interest group note 03.
http://www.w3.org/TR/cooluris/, December 2008.

6A feature instance/trope occurrence is a statement of the
type “item X features trope Y” or vice versa.


