
From Recordings to Recommendations: Suggesting Live
Events in the DVR Context

Alessandro Basso, Marco Milanesio, André Panisson, Giancarlo Ruffo
Dipartimento di Informatica

Università degli Studi di Torino
Torino, Italy

{basso,milane,panisson,ruffo}@di.unito.it

ABSTRACT
Providing valuable recommendations in the DVR domain is
quite straightforward when enough information about users
and/or contents is known. In this work, we discuss the pos-
sibility of recommending future live events without knowing
anything else but past user programmed recording sched-
ules.

Categories and Subject Descriptors
H.3.3 [Information Storage and Retrieval]: Information
Search and Retrieval—Information filtering ; J.4 [Computer
Applications]: Social And Behavioral Sciences

General Terms
Algorithms, Experimentation, Human Factors.

Keywords
Digital Video Recorders, TV Broadcasts, Recommendation
Systems, Collaborative Algorithms, Implicit Data

1. INTRODUCTION
A Digital Video Recorder (DVR) is a device aimed at record-
ing digital streams to a storage. DVRs can be either hard-
ware devices, such as set-top-boxes and portable media play-
ers, or software devices, such as web/PC-based Personal
Video Recorders (PVRs), managing all user interactions and
personalizations. By using DVRs, users are no longer bound
to the broadcaster’s schedule, but are free to define their
personal lists of programs at any time.

In order to provide a better user experience by means of fo-
cused advices (e.g., recommendation of new contents), the
arisen issues can be summarized in two main categories.
First, some logging activity must be done to find common
usage patterns on which identify potential users’ interests.
Users are not willing to offer an explicit profile when using
a DVR, thus we do have, possibly, only a set of observations
on their activity. This is an important challenge for many

Copyright is held by the author/owner(s). Workshop on the Practical Use of
Recommender Systems, Algorithms and Technologies (PRSAT 2010), held
in conjunction with RecSys 2010. September 30, 2010, Barcelona, Spain.

known recommendation algorithms, that exploit user pro-
files for increasing accuracy and take into account privacy
issues as well.
Second, differently from the Video on Demand domain, the
usage of an Electronic Program Guide (EPG) is not always
assured. This fact brings two consequences: (a) there is
no knowledge on the content the user is recording and/or
watching, and (b) there is no well defined one-to-one corre-
spondence between a recording and a broadcast event. This
leads to the impossibility of directly recommending record-
ings to users.

Taking into account these considerations brings us our re-
search question: in such a domain, is it possible to give
valuable live event recommendations to users, only consid-
ering their recording activity on the DVR? Users have to be
brought to contents of interest, but, differently from other
approaches, we are not using anything but collaborative fil-
tering technique on users’ activity. Thus, the main contri-
bution of our approach is the demonstration that this can be
achieved without any knowledge on what is being broadcast,
neither EPGs nor content classifications.

2. RELATED WORK
The task of recommending live events, such as TV shows,
has been already investigated in the past years. Proposed
methods can exploit different ways to collect the required
information for user profiling, as well as can make use of
various recommendation algorithms. In particular, some ap-
proaches, such as [6], explicitly ask the users about their
interests and build suggestions on top of the resulting user
profiles. A different idea, which is adopted in several works
[2, 9, 10], makes use of implicit feedbacks, i.e., information
derived from the analysis of the user behavior while using
the DVR. Other solutions, as [4, 12, 15], propose recom-
mender systems which make use of user’s view history as
well as both explicit and implicit feedbacks. According to
authors, such a mixed technique allows to obtain the best
performance.

Another feature to tell apart existing methods for live events
recommendation is the recommender algorithm used. A
common approach relies on the content of the programs
broadcast and it is therefore called content-based. Exam-
ples in this category can be found in [10, 12]. Some authors
devised recommenders that make use of multiple content-
based techniques, as in [3, 4].
A solution able to increase novelty of recommendations is



collaborative filtering, like the works in [2, 5]. Another in-
teresting method is proposed in [9] and exploits the latent
factor model.

In this work, we focus on implicit feedbacks only and we use
a collaborative filtering approach to compute recommenda-
tions. Our aim is to minimize the information required as
input of the recommender system, without sacrificing the
novelty. The real challenge is to be able to recommend pro-
grams to users without actually knowing anything about
what is broadcast on TV, since no EPG is used (differently
from existing methods).

3. DATASET
Faucet is a PVR integrated in a podcasting service1, which
allows the recording and further downloading of Italian TV
and Radio broadcasts [1]. The activity of the users is in-
crementally collected (hourly) into a log file containing the
scheduled recordings set in the past hour as well as the oc-
curred downloads. The resulting dataset is populated by real
users expressing their preferences through the recorded pro-
grams. The dataset is publicly available at http://secnet.
di.unito.it/vcast.
Each registered user can fix the desired settings for the
recording of interest. At the end of the process, her record-
ing is scheduled for the given time and will be further avail-
able for downloading purposes. Each recording ri, thus, is
defined as a tuple < ui, ci, ti, bi, ei, pi > with the following
notation: user ui sets up a recording on channel ci, starting
from time bi and ending at time ei, with a title ti and a pe-
riodicity pi (e.g., once, every Tuesday, mon-fri). In Faucet,
channels and periodicity values are fixed (users can choose
their ci and pi from a combobox), while all other fields are
completely up to the user.
After the end time expires, the recording is made available
to the user for downloading. In case of periodic events, the
recording step can occur an undefined number of times. Af-
ter each recording step, the respective download is made
available.

4. METHODOLOGY
In this section, we want to outline what our approach is.
Given no knowledge on the broadcasts, we collect the users
activity to compute what we call discrete events, to be used
for recommendation purposes and top chart list building.

4.1 From Recordings to Events
The extraction of meaningful information from the unstruc-
tured amount of data contained in the dataset is essential
to define a set of events which map the broadcast programs.
Through the event discovery phase, we can discretize the
continuous domain of timings defined by the recordings, cre-
ating the basis for the application of a recommender algo-
rithm. The basic procedure used in the discretization was
first introduced in [1] and covers a number of subsequent
steps:

Clustering. Recordings are clustered together by consider-
ing the channel, the periodicity and the difference between
starting and ending times. All recordings belonging to the
same cluster are thus equal as channel and periodicity, whilst

1http://www.vcast.it/

similar on timings. Specific values are used to define the
maximum clustering distance for the start and the end times.
The output of this activity is a set of clusters, each identi-
fying a single event. The centroid of the cluster, i.e., the
recording that minimizes the intra-cluster timing distances,
is considered the representative of the event.

Aggregation. As the clustering occurs periodically, this
operation aims to identify newly created events character-
ized by the same channel and periodicity of the formerly
created ones, but comparable timings. Such elements refer
to the same programs and are therefore merged into unique
events, whose properties are updated by taking into account
the values of all the similar ones.

Collapsing. A further refinement phase is required to grant
the consistency of the generated events. In fact, due to the
high variability of timings, especially when a new transmis-
sion appears, events which are initially considered as non
referring to the same transmission tend to slowly and inde-
pendently converge to more stable timeframes. This implies
the need of merging them into single events.

As a result of the processing phase, given a set of recording
clustered together, each one with the same channel ci and
the same periodicity pi, we compute a discrete event ei in
the form of: < {ui}, t, ci, b, e, pi >, where {ui} is the set of
users whose recordings were clustered together; t is the user
generated title most frequent among users in {ui}; b and e
are, respectively, the starting and ending time computed as
the median value of all the clustered recordings.

4.2 From Events to Recommendations
When future events are computed from scheduled record-
ings, we are thus able to propose them to users by means of
two different charts: (1) a global chart returning those events
computed starting from the largest groups of recordings, i.e.,
those chosen by the largest sets of users; and (2) a user-based
recommendation list, returning a set of new events of pos-
sible interest to each user requesting it, computed through
a similarity function over the whole population. We call
them Most Popular and Rec2 (Recordings times Recommen-
dations), respectively. Both charts are computed by means
of the memory based collaborative filtering approach named
k -Nearest Neighbors (kNN) [14]. We apply both variants
of the kNN algorithm: the user-based one [8], by identify-
ing users interested in similar contents; and the item-based
approach [7], by focusing on items shared by two or more
users.

In kNN, the weight (i.e., a measure of interest) of an element
ei for an user uk can be defined as:

w(uk, ei) =
∑

ua∈N(uk)

r(ua, ei) · c(uk, ua), (1)

where N(uk) are the neighbors of user uk and r(ua, ei) is
equal to 1 if user ua is associated to the event ei, and 0 oth-
erwise. The coefficient c(uk, ua) represents the neighbor’s
information weight for user uk. In most of the kNN-based
algorithms [8], the coefficient used is the similarity between
uk and ua.



Most Popular. The MostPopular algorithm can be defined
by means of eq. (1), assuming the number of neighbors un-
bounded, which impliesN(uk) = U, ∀uk ∈ U ; and c(ua, ub) =
1, ∀ua, ub ∈ U , with U as the set of all users. Thus, the
weight is modified as w(uk, ei) =

∑
ua

r(ua, ei).

After calculating the weight of all elements, they are sorted
in descendant order. In the MostPopular algorithm, as the
set of neighbors is independent of the user, all users re-
ceive the same recommended elements, i.e., the most popular
ones.

Rec2. In order to provide personal suggestions, we have to
define a similarity function for grouping similar users (items)
from which choosing the appropriate elements to recom-
mend. Our definition of similarity is based only on implicit
feedbacks, resulting from observing the behavior of users: if
she records something, then we assume that she is interested
in it; otherwise, we can not infer anything about the interest
of the user for that element. We are therefore considering
binary feedbacks.

Given two users u and v and the associated discrete events
Eu and Ev, we can choose the similarity metric, S(u, v),
considering several well known measures (e.g., Dice, Cosine
and Matching) [11]. After choosing a metric, ∀u we can
compute the subset Nu ⊆ U of neighbors of user u. A user
v such that Ev ∩ Eu 6= ∅ is thus defined as a neighbor of u.
Starting from the neighborhood of u, the similarity with u is
computed for each pair < u, v > such that v ∈ Nu. Finally,
if S(u, v) > 0, we consider u similar to v. The value S(u, v)
is used to weight such a relation, therefore determining a
similarity order among the neighborhood of u, from which
choosing new events to recommend to u.

Similarly, this approach can be adopted for the item-based
similarity: two events are considered similar if the share at
least a single user that is associated to both of them.

5. EVALUATION
In the following, we evaluate the obtained results in the
event extraction process and in the recommendation of new
events to users, both in Most Popular and in Rec2.

5.1 Event Extraction
As a remainder, we are dealing with several independent,
user generated recording schedules, that we cluster together
and from which we compute the discrete events. In Figure 1,
a view of the distribution of the recordings is given: for each
detected event, the number of recordings clustered together
changes according to users’ activity. As it turns out, most
recordings (and, thus, most users) tend to be clustered and
aggregated on very few events, while there are lots of events
with very few recordings. The Most Popular algorithm ex-
ploit these inner features of the resulting discrete events to
compute the top chart.

5.2 Computing Recommendation
We measure how accurate is the recommendation in predict-
ing the elements that users would program in terms of re-
call. These values are computed as the average of all users’
recall values using the top n recommended elements [13].

100 101 102 103 104

number of recordings

10-6

10-5

10-4

10-3

10-2

10-1

100

Pr
ob

ab
ili

ty
 th

at
 a

n 
el

em
en

t h
av

e 
x 

re
co

rd
in

gs

Figure 1: Number of recordings per event
(Probability density function)

We are giving particular emphasis on the recall measure; in
fact, since we do not have explicit feedbacks regarding the
user’s interest in those items which have not been consid-
ered (i.e., not programmed, nor downloaded), precision is
not very meaningful [9].

First, we choose different similarity functions to understand
whether similarity influences the results of the user-based
kNN algorithm. From Figure 2(a) it is clear that, in this
case, all chosen similarity metrics show nearly the same per-
formance.

The second step is to find the optimal value for k. Figure
2(b) shows the results with k ∈ {100, 300, 500, 700, 2000}
in user-based kNN (Dice similarity), and the MostPopu-
lar recommender. We omit the values of k = {500, 700}
since the results are almost equal to k = 300. Compared
to the MostPopular algorithm (i.e., unbounded neighbors),
a value k = 100 is not enough to outperform it, whilst for
k = 2000, kNN starts to converge to it. Considering the top
10 recommended elements, we can achieve the best results
for k = 300, whilst k = 500 is more suitable when taking
further elements. As in most cases 10 elements are sufficient
for a recommendation, k = 300 offers a good trade-off be-
tween valuable recommendations and resource consumption
for building the neighborhood.

A comparison among user/item-based kNN and MostPop-
ular is depicted in Figure 2(c). We can observe that the
latter is clearly outperformed by the other two algorithms,
especially when more than 7 recommended items are con-
sidered. The user-based algorithm performs slightly better
than the item-based one (more noticeable with more than
15 recommended items). In general, item-based algorithms
tend to perform better because usually the number of items
is considerably lower than the users [14], but this property
does not hold in our domain.

6. CONCLUSION
In this paper we show how to recommend live events to
users without any knowledge about the broadcast content



0 5 10 15 20 25 30
top selection

0%

5%

10%

15%

20%

25%

30%

35%

Re
ca

ll

Dice similarity
Cosine similarity
Matching similarity

(a) Comparison between similarity func-
tions in user-based kNN

0 5 10 15 20 25 30
top selection

0%

5%

10%

15%

20%

25%

30%

35%

40%

Re
ca

ll

Most Popular
k=2000
k=300
k=100

(b) Recall for user-based kNN

0 5 10 15 20 25 30
top selection

0%

5%

10%

15%

20%

25%

30%

35%

40%

Re
ca

ll

User-based KNN
Item-based KNN
Most Popular

(c) Recall for kNN (k = 300) wrt Most-
Popular

Figure 2: Comparison between recommenders and recall for kNN and Most Popular.

and user’s likes. Recommendations can be given both glob-
ally and personally. It is important to underline that the
most popular events are easier to predict since users tend to
naturally focus on them, even without any specific sugges-
tion. On the contrary, granting a high novelty in personal
recommendations is a more challenging goal due to the re-
duced amount of explicit information. Nevertheless, we can
obtain interesting results even exploiting a simple approach
as the kNN. We are currently attempting other approaches
to recommendation (e.g., latent factor model) with implicit
feedbacks, with the aim of improving the prediction accu-
racy.

7. REFERENCES
[1] A. Basso, M. Milanesio, and G. Ruffo. Events

discovery for personal video recorders. In EuroITV
’09: Proceedings of the seventh european conference on
European interactive television conference, pages
171–174, New York, NY, USA, 2009. ACM.

[2] P. Baudisch and L. Brueckner. Tv scout: Guiding
users from printed guides to personalized tv program.
In In Proceedings of the 2nd Workshop on
Personalization in Future TV (May 28, Malaga,
Spain), Universidad de Malaga, pages 151–160, 2002.

[3] Y. Blanco-Fernández, J. J. Pazos-Arias, A. Gil-Solla,
M. Ramos-Cabrer, B. Barragáns-Mart́ınez,
M. López-Nores, J. Garćıa-Duque, A. Fernández-Vilas,
and R. P. Dı́az-Redondo. A multi-agent open
architecture for a tv recommender system: A case
study using a bayesian strategy. Multimedia Software
Engineering, International Symposium on, pages
178–185, 2004.

[4] A. L. Buczak, J. Zimmerman, and K. Kurapati.
Personalization: Improving ease-of-use, trust and
accuracy of a tv show recommender. In in Proceedings
of the TV’02 workshop on Personalization in TV,
Malaga, pages 3–12, 2002.

[5] P. Cremonesi and R. Turrin. Analysis of cold-start
recommendations in iptv systems. In RecSys ’09:
Proceedings of the third ACM conference on
Recommender systems, pages 233–236, New York, NY,
USA, 2009. ACM.

[6] D. Das and H. ter Horst. Recommender systems for
tv. In In Proceedings of AAAI, 1998.

[7] M. Deshpande and G. Karypis. Item-based top-n
recommendation algorithms. ACM Trans. Inf. Syst.,
22(1):143–177, 2004.

[8] J. L. Herlocker, J. A. Konstan, A. Borchers, and
J. Riedl. An algorithmic framework for performing
collaborative filtering. In SIGIR ’99: Proceedings of
the 22nd annual international ACM SIGIR conference
on Research and development in information retrieval,
pages 230–237, New York, NY, USA, 1999. ACM.

[9] Y. Hu, Y. Koren, and C. Volinsky. Collaborative
filtering for implicit feedback datasets. In ICDM ’08:
Proceedings of the 2008 Eighth IEEE International
Conference on Data Mining, pages 263–272,
Washington, DC, USA, 2008. IEEE Computer Society.

[10] S. G. Kaushal, S. Gutta, K. Kurapati, K. Lee,
J. Martino, J. Milanski, J. D. Schaffer, and
J. Zimmerman. Tv content recommender system. In
In Proceedings of the 17th National Conference on
Artificial Intelligence, pages 1121–1122. AAAI Press /
The MIT Press, 2000.

[11] B. Markines, C. Cattuto, F. Menczer, D. Benz,
A. Hotho, and G. Stumme. Evaluating similarity
measures for emergent semantics of social tagging. In
WWW ’09: Proceedings of the 18th international
conference on World wide web, pages 641–650, New
York, NY, USA, 2009. ACM.

[12] M. Rovira, J. Gonzàlez, A. López, J. Mas, A. Puig,
J. Fabregat, and G. Fernandez. Indextv: a mpeg-7
based personalized recommendation system for digital
tv. In ICME, pages 823–826. IEEE, 2004.

[13] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T.
Riedl. Application of dimensionality reduction in
recommender system - a case study. In In ACM
WebKDD Workshop, 2000.

[14] B. M. Sarwar, G. Karypis, J. A. Konstan, and J. T.
Riedl. Item-based collaborative filtering
recommendation algorithms. In WWW ’01:
Proceedings of the 10th international conference on
World Wide Web, pages 285–295, New York, NY,
USA, 2001. ACM.

[15] K. K. Srinivas, S. Gutta, D. Schaffer, J. Martino, and
J. Zimmerman. A multi-agent tv recommender. In In
Proceedings of the UM 2001 workshop
”Personalization in Future TV”, 2001.


