
Shaken not Stirred: Mixing Semantics into XPDL
Philip Webster & Victoria Uren

University of Sheffield
Department of Computer Science

Regent court
211 Portobello

Sheffield S1 4DP

{P.Webster,V.Uren}@dcs.shef.ac.uk

Marcus Ständer
Technische Universität Darmstadt

Fachgebiet Telekooperation
Hochschulstr. 10

64289 Darmstadt, Germany

staender@tk.informatik.tu-darmstadt.de

ABSTRACT
Ubiquitous computing requires lightweight approaches to
coordinating tasks distributed across smart devices. We are
currently developing a semantic workflow modelling approach
that blends the proven robustness of XPDL with semantics to
support proactive behaviour. We illustrate the potential of the
model through an example based on mixing a dry martini.

Categories and Subject Descriptors
D.3.3 [Programming Languages]: Language Constructs and
Features – datatypes and structures, I.0 [Computing
Methodologies]: General, J.7 [Computers in Other Systems]:
Consumer Products,

General Terms
Languages

Keywords
XPDL, Ubiquitous computing, Semantic workflows.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SBPM2010, May 30–31, 2010, Heraklion, Crete, Greece.

1. INTRODUCTION
Imagine a stylish apartment in the not so distant future. Bob, a
young IT consultant, has invited his boss to dinner. To impress
her, he plans to serve dry martinis: four parts gin, one part dry
vermouth and a green olive, chilled to the dew point and shaken
or stirred according to her preference. Luckily for Bob’s career
prospects he has invested in several “smart” consumer products
that will assist him in creating the perfect cocktail, rather than a
shot of lukewarm gin with a medicinal aftertaste.
The SmartProducts project is investigating the technologies
required to make scenarios such as this one a reality. The project
envisages systems in which some smart products would
incorporate sensors that can gather environmental data; in this
paper, a cocktail shaker incorporating a temperature sensor is
taken as an example. Some smart products would also have
enough capacity to reason over ontologies or execute workflows;
in this paper, this kind of product is illustrated by a device called
the Cocktail Guide. Wireless communication would be used to
exchange information between different products in ad hoc
ubiquitous environments. Workflows would provide a means to
model tasks that involve a sequence of activities, and to
coordinate activities being carried out by several products in
cooperation with human users.

It has been said that modelling behaviour as workflows causes
“users to lose control over their work and work to lose the benefit
of the insights which users bring” [Dourish 1996]. This is a risk
for commercialisation of smart products because, unlike a
business environment where employees can be compelled to
comply with workflow related practises, whether they like them or
not, buying a smart cocktail shaker is a voluntary act. Therefore,
to enhance the experience of using these products, we propose to
add semantic descriptions to workflows to allow ubiquitous
systems to copy the users’ capability of creating links to objects,
combining and reasoning. Ultimately the aim would be to deliver
proactive behaviour based on context information from the
environment, for example, recommending workflows to the user,
or identifying smart products in the vicinity, which could carry
out a given workflow activity.

Annotated workflows have already been investigated in the fields
of business process management, semantic web services and
grids; a review is provided by [Lautenbacher 2007]. All these
fields are characterised by something that the ubiquitous

29

computing environment we have described notably lacks, which is
access to industrial strength computer processing power. By
contrast SmartProducts’ technology needs to be deployed on
consumer products. This means that cost is a major factor in the
selection of electronic. Even a component costing one euro would
significantly increase the final cost of some smaller smart
products. These commercial considerations mean that, for the
purposes of current research, we are aiming at working with
gumstix (http://www.gumstix.com). Gumstix is an open source
specification for a computer on a circuit board about the size of a
stick of chewing gum. The targeted gumstix have a 600 MHz
processor and 256 MB of SDRAM [SmartProducts D6.2.1],
Although the actual electronics used when products go into
production would most probably not be gumstix, they provide a
readily available research platform of about the right size and
complexity.

Running a workflow execution engine on a gumstix platform is a
big leap from current standards, and in this example we assume
that the workflow execution will be controlled by the PDA device
which hosts the Cocktail Guide. Our first step towards achieving
semantic workflows executing on small devices has been to
develop a lighter weight modelling approach than those that
currently exist. This paper presents the work we have done so far.

Section 2 discusses related work, especially work on semantic
annotation of workflows. Section 3 presents the details of our
proposed approach, with discussion of some of the design choices
that were made. Section 4 illustrates functionality the annotated
workflows should support using the running example. In Section 5
we present conclusions.

2. Related Work
Modeling task related behavior has been studied extensively
because of its obvious commercial importance. Methods that have
been considered include task models such as GOMS [Card 1983]
and CTT [Paterno 1997], graph models including Petri Nets
[Salimifard 2001], and process definition languages like BPEL
[IBM 2007] and XPDL [WfMC 2008]. Since especially the latter
ones have been standards for some time now, they are often used
as bases for manual, semi-automated or fully automated systems.
In the literature there are basically two different concepts for such
process models: business processes and workflows. The term
“business process” thereby describes processes that are focused on
high level descriptions, where objectives play an important role,
while the term “workflow” slides more into the direction of grid
computing, which is much more close to technical details of the
environment. Due to the kind of processes in smart environments,
we stick to the term workflow.

There are many related projects, which are using workflow
technology combined with semantic information. DEMAC
[Kunze 2006] for example uses DPDL, an extension of XPDL.
DPDL allows annotations about required devices to be attached to
the different participants of a workflow and thus allows the
system to choose appropriate devices during runtime. A possible
problem with such an approach can appear if something changes,
e.g. a new device with previously unknown capabilities is
deployed in the environment. Suddenly the annotation could be
unsuitable, since it no longer describes the best suitable product.

The SmartProducts approach is similar in some respects to the
approach taken by Kunze, Zaplata and Lamersdorf [Kunze 2006]
in that cooperation between devices is emphasised over

orchestration of participants or services. It is expected that control
of process execution will be transferred between the participating
devices, rather than being managed by a centralised workflow
execution engine. The SmartProducts consortium agreed with the
statement by [Kunze 2006] that a centralised engine may become
a "single point of failure" and potentially become a "bottleneck
during execution time". All Smart Products developed for the
project communicate over local wireless networks, and may have
low communications bandwidth. SmartProducts differs from
DEMAC in that the process definitions are not transferred from
device to device as execution progresses. Consequently, the
transactional and error handling additions made to XPDL in
DEMAC are not required in our case.

SUPER (http://www.ip.super.org) is an integrated project
providing tools to support the creation and execution of
semantically-enhanced workflows. The SUPER project also uses
annotations to provide additional information in workflows. They
use links to ontologies, goals, web services and more [SUPER
2009] to allow semantic workflow composition, relate
input/output to their ontology and allow inclusion of web services.

The project provides an Eclipse-derived editor based on the
WSMO Studio editor (http://www.wsmostudio.org/) called
BPMO Editor [Dimitrov 2007] which allows a user to create
workflow process definitions using BPMN (Business Process
Modelling Notation) or EPC (Event-driven process chain) or to
load existing process definitions in these formats and to then add
semantic annotation to components of the model, based on
individuals from an OWL (Web Ontology Language) ontology
definition. Process definitions created using the BPMO editor are
then converted to BPEL by a plugin for execution on a workflow
execution engine. However, this approach is closely connected to
the software composition of different services and not to the
distribution of workflows on different products, having limited
resources, e.g. being able to execute one workflow at a time only.

The approach to process definition, annotation and execution in
SmartProducts differs from the work presented for SUPER in a
number of areas. The foremost difference is the human-centric
approach that is central to the SmartProducts platform - products
are intended to assist a human user to complete a task rather than
being a set of services to be orchestrated. BPEL has weaker
support for human participants - this was added initially as a
vendor extension (BPEL4People), whereas BPMN and the XPDL
serialisation format have human participant capabilities included
as standard. This difference in scope between BPEL and BPMN
affected the choice of execution engine, and had knock-on effects
on the choice of process definition languages and tools that could
be used without incurring complexity and performance issues.

Beyond the human participant emphasis, technical reasons also
influenced the selection of a non-BPEL engine. SmartProducts
uses a workflow execution engine that can execute BPMN
(serialised as XPDL) directly, thus eliminating the need for a
BPMN-to-BPEL translation layer. Much research into BPMN to
BPEL translation has been done, with emphasis on various
techniques for preserving the characteristics of a BPMN process
diagram when converted to a BPEL executable model. Depending
on the modeling style used when creating a BPMN diagram, the
resulting BPEL produced by a conversion algorithm may have
increased complexity (Recker, J. C. M., 2006) and associated loss
of human comprehensibility, due to the conceptual mismatch
between the two languages. The solution preferred by

30

SmartProducts was to use XPDL as the serialisation format for
BPMN process diagrams, and also as the execution format
processed by the workflow engine. This eliminated the
complexity issues that would be faced if a conversion were
required between the definition and execution phases.

In addition, the BPEL approach places heavy emphasis on
the use of Web Services to perform execution of the individual
blocks of activity in a diagram, and relies on XML-based formats
for service invocation and data transfer. By comparison, the
BPMN/XPDL approach allows code to be associated directly with
the activities represented in a process definition. In the XPDL
model, implementation of remote calls is left to the developers.
This was an advantage for SmartProducts, as the platform is
intended to run on a distributed set of resource contrsained
devices, with no central 'master' process co-ordinator. Typical
SmartProducts devices may be smart kettles or smart ovens, and
as such will have relatively slow CPUs and small amounts of
memory, making efficient methods for data transfer and
processing very important. Use of a full Web Services framework
would massively restrict the functionality of the SmartProducts
devices, as the WSDL and SOAP processing overhead would be
much greater than the overhead imposed by the alternative
lightweight embedded middleware used in SmartProducts. Each
device can execute relevant portions of a process directly in a
small and functional embedded workflow execution engine, with
inter-participant communication achieved via the use of a
communication middleware layer (MundoCore) which is also
embedded on the devices.

Thus, while the SUPER project's implementation was guided by
the requirements imposed by the aim to satisfy the needs of large
enterprises seeking to control and monitor commercial business
processes on centralised workflow execution servers, the
SmartProducts implementation is aimed at a radically different
environment: clusters of small devices working together with a
human user to achieve goals specific to the human user
participating in the process - with the added flexibility that the
human can influence the execution path and non-human
participant binding dynamically during process execution, rather
than at process definition time.
Further approaches like NEXUS (http://www.nexus.uni-
stuttgart.de) or ASTRO (http://astroproject.org) also provide the
ability to use semantic information. Unfortunately central
workflow management or missing possibilities to describe the
elements of a workflow flexibly enough make them not
completely suitable for our SmartProducts setting.

3. SEMANTIC WORKFLOW MODEL
In this section we detail the semantic workflow model and discuss
our design decisions.

3.1 The Process Definition Language
One of the central issues in creating smart environments is the
modeling and handling of processes. These processes require a
semantically well defined language allowing developers to define
for example the organizational structures of the different steps, the
participants or how to use automation capabilities of some smart
product. Thus, process descriptions range from a very high level
view down to very system specific details. Regarding the
established standards for process modeling, like BPEL [SRC],
JPDL[SRC] or XPDL [WfMC 2008] it has shown that XPDL is a

suitable base for such descriptions [Kunze 2007]. The
development is eased since XPDL supports many workflow
patterns, which are often used while modeling, directly [van der
Aalst 2003]. Further, since XPDL is based on the business process
modeling notation BPMN [OMG 2009], the workflows can be
visualized using standardized human readable graph
visualizations. There are several open source editors available
(e.g. JaWE), which help developing the workflows. During
runtime, this visualization eases tracking of the current state of a
workflow. Using the XPDL standards also allows developers to
embed their own code into the workflows and thus automate
processes by directly steering certain hardware or call own
software from within the workflow. To further extend the power
of the language, the WfMC has designed XPDL to be extensible.
There are tags like the ExtendedAttributes, which can be used to
append data to different parts of the workflows.

Consequently, our proposed model is an extension of XPDL using
semantic annotation to link in the ontologies. This approach aims
to blend the power of semantics with the proven capabilities of
XPDL.

3.2 Role of Rules
In a first step, the workflows get annotated with information
concerning when to start that workflow. Usually there are two
possible ways to automatically start a workflow: (1) having a big
workflow that permanently runs and that covers every possible
situation and then starts sub workflows or (2) trigger workflows
from outside. Basically both opportunities are based on the
definition of a set of rules. In our approach we directly attach
these rules to the headers of the workflows. The purpose of
attaching annotations and trigger rules to the workflow itself is
data transfer. It packages the semantic, non-semantic and
workflow information together so that they can be conveniently
stored, e.g., on a new smart product when it is shipped or on a
website that provides new workflows to smart product owners.
The workflows can be treated as simple XPDL and, if more
powerful computing facilities are available, semantic annotations
and rules can be transferred to them for reasoning.

At the time of writing, the rule language that will be used for the
SmartProducts infrastructure remains undecided: the web standard
SWRL (http://www.w3.org/Submission/SWRL/) and Jess
(http://www.jessrules.com/) are candidates. To minimize
computational requirements, it is likely that a forward chaining
rule engine will be used.

The format of rules will be determined by the reasoner selection
but we can assume for the purpose of discussion that they may
take a form such as:

IF (conditions) THEN (parameters)
Where the conditions are Boolean expressions containing context
values from the SmartProducts environment and the parameters
are optional context values that identify additional data that the
workflow may require during its execution.

Workflow identifiers are not explicitly included in the definition
of rules given above. This is deliberate – the SmartProducts
platform will be used in environments where devices from
multiple product vendors co-operate to complete a process. Each
vendor may choose to include a number of process definitions
with their product, and vendors may not conform to a restrictive
set of rules for defining workflow identifiers. For this reason, the

31

SmartProducts runtime will generate the identifiers used by the
process execution engine, eliminating the possibility of conflicts
by ensuring uniqueness. Vendors may still include their own
workflow identifiers, but these will not be the ones used during
execution.

All trigger rules will be removed from the process definitions and
stored elsewhere, in the trigger component, while the workflows
themselves will be located in a process repository. Workflow
identifiers will thus be made unique within a SmartProducts
environment without the need to impose restrictions on vendors.

For the initial design, we reuse the concept of formal parameters
used in the XPDL standard. When the workflow is started, so-
called actual parameters are mapped to the formal parameters,
allowing the execution engine to pass required information, like
the user that issued a workflow. Since these parameter signatures
form the “interfaces” of the workflows, they can later be
described by standards like the Web Service Description
Language (WSDL) to allow workflows to be used more
dynamically.
We have identified two situations in which rules are required. The
first is for recommending workflows. This will happen outside of
the workflow engine. Therefore rules of this type will be added to
workflows as annotations so that they can be extracted and
reasoned with to determine the proactive behaviour in the
ubiquitous environment. The second situation concerns rules that
are required in order to control the flow of an executing workflow.
XPDL already has facilities to add rules of this kind to transitions.
We propose to reuse this feature rather than add semantic rules to
transitions.

The workflow triggering rules should support the proactive
recommendation of workflows to the user. Default rules for the
triggering of workflows may be attached to workflows when they
are originally created and shipped to the user. A default rule for
the dry martini could be that it should not be recommended before
6pm or to anyone under the age of 18. Individual users may wish
to supplement these default rules with personal preferences, for
example permitting the suggestion of cocktails from midday
onwards at weekends and on holidays or, for users who abstain
from alcohol, rules that ensure they are only offered nonalcoholic
cocktails.

3.3 Annotation
Annotation provides the opportunity to add both semantic and
nonsemantic metadata. This could be of the following kinds:

• URIs (linking to instances of an ontology) (semantic)
• Locally defined tags, required because an ontology will

never be complete (could become semantic if fused with
the ontology)

• Snippets of text that could be presented to the end user
during workflow execution (not semantic)

• Links to other resources such as images (not semantic)
• Rules (semantic)

The annotation approach that we propose uses existing XPDL
conventions. In principle we make use of two different kinds of
information when processing a workflow. Informational metadata
such as required capabilities of a product, semantic information
about the activity, etc. and information that directly belongs to the
information flow of the workflow, like text, names, or links to

images. While the metadata is put into extended attributes,
internal data is stored in workflow variables.

Adding annotations

To allow such annotations, WfMC’s XPDL standard defines the
ExtendedAttribute element as follows:

“6.4.14.1. Extended Elements and Attributes
The primary method to support such extensions is by the use of
extended attributes. Extended attributes are those defined by the
user or vendor, where necessary, to express any additional entity
characteristics. XPDL schema supports namespace-qualified
extensions to all the XPDL elements. The XPDL elements can be
extended by adding new child elements, and new attributes.”
[WfMC 2008]

Other options within XPDL, such as ExternalReference, have too
restricted scopes of use. Extended attributes are a flexible
approach that we have used to add semantic annotations by
developing a "vocabulary" of different types of extended
attributes. They can be added to any kind of XPDL element.
Therefore annotations could be added in the workflow header if
they apply to the whole workflow or be attached to specific XPDL
elements such as activities, applications, participants, performers
or transitions if a more precisely scoped annotation is required.
However, so far, we are only annotating activities, applications
and participants. Performers and transitions should not have to be
modeled explicitly for reasons explained below.

The WfMC guidelines imply that it is also possible to define
ExtendedElements, for example an Application element could be
defined for smart product software. However in practice we
cannot find evidence of this being done. Therefore we propose to
define a vocabulary of extended attributes and guidelines for their
use specifying which kinds of elements they can be attached to.

In SmartProducts, lists are used in ExtendedAttributes. This
permits multiple values to be added to one workflow element with
a given semantic annotation. In practice, this can be used to
provide a list of expected tools or devices that could be used by a
participant to complete an activity, or it could refer to a list of
ingredients to be used for a given step in a recipe.
This approach realizes a SmartProducts metadata element set,
which is more controlled than totally free annotations in which
any extended attributes could be attached to any element. As a
starting point we propose three named extended attributes,
PRODUCT_CLASS, METADATA and ACTIVTY, which are
defined in table 1. The workflow elements these can be attached
to are outlined below.

Participant – participants that are smart products can be
annotated with:

• PRODUCT_CLASS
• METADATA

The Participant PRODUCT_CLASS annotation should not be
used to provide an exhaustive list of acceptable devices that may

32

be used to perform an activity – rather, it enumerates the preferred
devices as envisaged by the process designer. The flexibility of
the SmartProducts platform permits users to utilize alternative
devices not explicitly defined within the process definition. It may
also be possible for a user to use a non-smart device to perform an
activity, and if the workflow engine was designed to strictly reject
any non-specified devices, the process would be stalled
indefinitely in these cases.

Activity – activities that are performed by smart products can be
annotated with:

• PRODUCT_CLASS
• ACTIVITY
• METADATA

Application – applications describing smart products software
can be annotated with:

• PRODUCT_CLASS
• ACTIVITY
• METADATA

The XPDL Performer element is not annotated, as this serves only
as a link between a Participant and an Actvity (both of which are
already capable of accepting SmartProducts annotations). The
XPDL Transition element is also not annotated, as the aim of
SmartProducts is centred on the performance of activities rather
than the flow of the process. The use of expressions as conditions
in transitions is considered sufficiently flexible for the project.

It makes sense to have a place in a workflow where people can
store trigger rules that they write to define context conditions that
would trigger that flow. These could then be extracted from the
workflow and added to the Ubiquitous Data Store. We propose
the use of ExtendedAttribute to embed a trigger rule into the
workflow. In this case the format of the rule is irrelevant from the
viewpoint of the workflow and can be handled as a text string.

Table 1. Definitions of SmartProducts Extended Attributes

Annotation name Description

PRODUCT_CLASS

A product type or types as
defined in an ontology.
Based on the product
class it should be possible
to identify substitute
products with similar
functionality.

METADATA

An instance or instances
from a related domain
ontology, excluding
products and activities. It
supports domain specific
annotation.

ACTIVITY

A type of action that is
required to complete an
activity. This supports the
identification of products
based on their capabilities
rather than their type.

4. WORKED EXAMPLE
An example of a typical SmartProducts scenario is presented to
illustrate the use of the semantic annotations added to XPDL, and
how the SmartProducts platform makes use of this additional
information to allow new functionality to be implemented. These
examples refer to the workflow which is illustrated in figure 1.

Figure 1: A workflow for creating a Dry Martini

4.1 Selection of Workflow
Imagine Bob can remember that the very stylish cocktail favoured
by James Bond, includes gin, but he can’t remember what it is
called. He turns to his Cocktail Guide, a piece of software that is
installed on his PDA, and which can handle the execution of
cocktail-making workflows. A search for gin quickly pulls up a
list of cocktails, which include the ingredient gin. This is possible
because the XPDL Activity elements have been annotated with
METADATA ExtendedAttributes that draws on a domain
ontology that describes the typical ingredients of cocktails.

The following example shows the SmartProducts annotations
added to the ‘add gin to mixing glass’ step in the creation of a dry
Martini.

<Activity Id="add_gin" Name="Add gin to mixing glass">
<Performer>barman</Performer>
<ExtendedAttributes>
<ExtendedAttribute Name=" http://www.smartproducts-
project.eu/ontologies/cocktails.owl #METADATA"
Value="Gin"/>
<ExtendedAttribute Name=" http://www.smartproducts-
project.eu/ontologies/cocktails.owl #ACTIVITY"
Value="Pouring"/>
<ExtendedAttribute Name=" http://www.smartproducts-
project.eu/ontologies/cocktails.owl #PRODUCT_CLASS"
Value="MixingGlass"/>
</ExtendedAttributes>
</Activity>

4.2 Selection of Devices
The smart devices in Bob’s house are wireless enabled. Therefore
the Cocktail Guide can recognize which devices are available in
the apartment. Each device can broadcast a semantic description,
which specifies the kinds of action it can perform and the kinds of
contextual information it can provide. The workflows are
similarly annotated with semantic metadata which describe the
actions required to complete activities and context information
required to coordinate the process.

The constrained hardware of ubiquitous computing environments
will compel us to keep the reasoning we do lightweight and to
prove that “a little semantics goes a long way” [Hendler 2003].

33

The kinds of lightweight reasoning tasks that will be needed are
detailed below.

Semantic Querying: Semantic reasoning is required to match the
needs expressed in the workflow annotations against the
capabilities of the devices in the environment. In our running
example, Bob’s apartment contains two alternative devices for
mixing the cocktail: the SmartSpoon and the SmartShaker both of
which can perform mixing and detect temperature.

Mapping: Just as nobody can be compelled to buy a smart
cocktail shaker, nobody can be compelled to buy all their
appliances from the same manufacturer (see the discussion on
vendor specific rules in section 3.2). Consequently, different
appliances with similar capabilities will be described differently.
Taking a semantic approach therefore has clear advantages. Ad
hoc mapping techniques can be envisaged which could recognize
that “Blending” in one ontology is similar to “Mixing” in another.

The example below attaches a metadata URI to a Participant
element. The scope of this annotation is restricted to the
participant. This example comes from the header of a workflow
about making a dry Martini: the annotation identifies that a mixer
can be used and that there are two smart activities that may be
carried out by a compatible mixer. Here there is a choice between
a shaken or stirred Martini.

<xpdl:ExtendedAttributes>
<xpdl:ExtendedAttribute
Name="JaWE_GRAPH_PARTICIPANT_ID"
Value="Mixer"/>
<xpdl:ExtendedAttribute

Name="PRODUCT_CLASS"
Value="http://www.smartproducts-

project.eu/ontologies/cocktails.owl#Shaker,
http://www.smartproducts-
project.eu/ontologies/cocktails.owl#Stirrer"/>
<xpdl:ExtendedAttribute

Name="ACTIVITY"
Value="http://www.smartproducts-

project.eu/ontologies/cocktails.owl#Stirring,
http://www.smartproducts-
project.eu/ontologies/cocktails.owl
cocktails.owl#shaking"/>
</xpdl:ExtendedAttributes>

4.3 Guiding the user
Bob’s Cocktail Guide, can guide him through the dry martini
recipe step by step. This will be achieved by using sections of text
and images embedded in the workflow, which can be relayed to
Bob through his preferred communication screen; in this case the
T.V. set in his living room.

The workflow model requires a way in which to store sections of
the original text or diagrams. It is common practice in XPDL to
store such text in variables using the XPDL element DataFields.

This therefore is the element we propose to use. The example
below illustrates DataField syntax.

<xpdl:DataFields>
<xpdl:DataField Id="recipe_1" IsArray="FALSE"
Name="dry Martini recipe">
<xpdl:DataType>
<xpdl:BasicType Type="STRING"/>
</xpdl:DataType>
<xpdl:Description>Take four parts gin, one part dry
vermouth and place in a cocktail shaker with ice
</xpdl:Description>
</xpdl:DataField>
</xpdl:DataFields>

4.4 Incorporating Context
To be drinkable the dry martini must be sufficiently chilled. The
workflow is written in such a way that it will not proceed to the
serving step until it has confirmation that the drink has reached
the right temperature. Bob’s smart cocktail shaker contains a
temperature sensor, and the workflow execution engine can make
use of this information source.

In general, sensor information can be seen as part of the context
and designers of workflows should only need to specify when
they react on context changes. In the example above they should
only need to define that “the drink should have the right
temperature”. The detailed information regarding what the ‘right
temperature’ means and where this information can come from,
should be described in the ontology. The temperature could be
measured by different temperature sensors included in or attached
to a product, or the user could press a button that acknowledges
the action.

However, concerning sensor data there is still an open issue.
Thinking of pure OWL annotations it is not clear how best to
define ranges of sensor data. Describing that the temperature is
equal to 10° Celsius seems reasonable, since this is a single
semantic element. Defining variable ranges like 10-20° Celsius or
10-21° Celsius does not fit well into the current schema of
annotating with simple semantic elements. Thus, more complex
management information may need to be added in the future.

5. Conclusions
A review of the approaches to semantic annotation of process
definitions taken so far in existing research led us to conclude that
the SmartProducts platform would need to develop a new
approach. This approach makes use of the capabilities of a
standard process definition serialisation format (XPDL) that also
has good support as a language that can be executed by process
engines. Semantic annotation functionality was added to improve
retrieval of appropriate workflows and to support functionality
such as identifying products that can compete a given activity.

34

This paper presents the initial effort that has been made toward
this goal. A working version of the system, which includes a
newly-defined set of annotations that can be applied to XPDL has
been presented. In additional work not presented here, an editor
prototype that provides support linking of individuals from
ontologies to process definition components, and a workflow
engine that can execute semantically-enhanced process definitions
are being developed. Future work will enhance the expressiveness
and flexibility of the annotation system while also retaining the
ability to use the annotated workflows on lightweight devices co-
operating with a human user.

6. REFERENCES
[Bowman 1993] Bowman, M., Debray, S. K., and Peterson, L. L.
1993. Reasoning about naming systems. ACM Trans. Program.
Lang. Syst. 15, 5 (Nov. 1993), 795-825. DOI=
http://doi.acm.org/10.1145/161468.161471.

[Brown 2003] Brown, L. D., Hua, H., and Gao, C. 2003. A widget
framework for augmented interaction in SCAPE. In Proceedings
of the 16th Annual ACM Symposium on User interface Software
and Technology (Vancouver, Canada, November 02 - 05, 2003).
UIST '03. ACM Press, New York, NY, 1-10. DOI=
http://doi.acm.org/10.1145/964696.964697

[Card 1983] Card S, Moran T, Newell A, 1983. The psychology
of human-computer interaction. Lawrence Erlbaum Associates
Inc., 1983

[Dimitrov 2007] Dimitrov, M., Simov, A. Stein, S., Konstantinov,
M. 2007 A BPMO Based Semantic Business Process Modelling
Environment, Proceedings of the Workshop on Semantic Business
Process and Product Lifecycle Management (SBPM-2007), Vol-
251, CEUR-WS, June 2007, ISSN 1613-0073
[Ding 1997] Ding, W. and Marchionini, G. 1997 A Study on
Video Browsing Strategies. Technical Report. University of
Maryland at College Park.
[Dourish 1996] Dourish, P., Holmes, J., MacLean, A.,
Marqvardsen, P., & Zbyslaw, A. (1996). Freeflow: mediating
between representation and action in workflow systems. In
Proceedings of the 1996 ACM conference on Computer supported
cooperative work (p. 198). ACM. Retrieved from
http://portal.acm.org/citation.cfm?id=240252.

[Forman 2003] Forman, G. 2003. An extensive empirical study of
feature selection metrics for text classification. J. Mach. Learn.
Res. 3 (Mar. 2003), 1289-1305.

[Fröhlich 2000] Fröhlich, B. and Plate, J. 2000. The cubic mouse:
a new device for three-dimensional input. In Proceedings of the
SIGCHI Conference on Human Factors in Computing Systems
(The Hague, The Netherlands, April 01 - 06, 2000). CHI '00.
ACM Press, New York, NY, 526-531. DOI=
http://doi.acm.org/10.1145/332040.332491

[Hendler 2003] On Beyond Ontology, Keynote talk, International
Semantic Web Conference 2003.

[IBM 2007] IBM, B. Systems, Microsoft, SAP, and Siebel. Web
services business process execution language (WS-BPEL, BPEL),
version 2.0 specification, 2007

[Kunze 2007] Kunze, C., Zaplata, S., & Lamersdorf, W. (2007).
Mobile processes: Enhancing cooperation in distributed mobile
environments. Journal of Computers, 2(1), 1–11.

[Lautenbacher 2007] Florian Lautenbacher, Bernhard Bauer, A
Survey on Workflow Annotation & Composition Approaches,
Proceedings of the Workshop on Semantic Business Process and
Product Lifecycle Management (SemBPM) in the context of the
European Semantic Web Conference (ESWC), pp. 12-23, 7th
June 2007, Innsbruck, Austria
[Ouyang 2008] Ouyang C., Dumas M., van der Aalst W.M.P., et
al. (2008). Pattern-based translation of BPMN process models to
BPEL Web services. International Journal of Web Services
Research. 5 (1), 42-62.

[Paterno 1997] Paternò F, Mancini C, Meniconi S.
ConcurTaskTrees: A diagrammatic notation for specifying task
models. In: Proceedings of the IFIP TC13 International
Conference on Human-Computer Interaction table of contents, pp.
362 - 369 1997

[Recker 2006] Recker, J. C. M., Jan. (2006). On the Translation
between BPMN and BPEL: Conceptual Mismatch between
Process Modeling Languages.

[Salimfard 2001] Salimifard K, Wright M. Petri net-based
modelling of workflow systems: An overview. European journal
of operational research. 2001;134(3):664–676.

[Sannella 1994] Sannella, M. J. 1994 Constraint Satisfaction and
Debugging for Interactive User Interfaces. Doctoral Thesis. UMI
Order Number: UMI Order No. GAX95-09398., University of
Washington.

[SmartProducts D6.2.1] D6.2.1: Initial Architecture and
Specification of Platform Core Services, SmartProducts, 2010

[Spector 1989] Spector, A. Z. 1989. Achieving application
requirements. In Distributed Systems, S. Mullender, Ed. Acm
Press Frontier Series. ACM Press, New York, NY, 19-33. DOI=
http://doi.acm.org/10.1145/90417.90738

[Tavel 2007] Tavel, P. 2007 Modeling and Simulation Design.
AK Peters Ltd.

[WfMC 2008] The Workflow Management Coalition
Specification, Workflow Management Coalition, Workflow
Standard Process Definition Interface-- XML Process Definition
Language, Document Number WFMC-TC-1025, Document
Status – Final Approved, October 10, 2008, Version 2.1a
[Yu 1989] Y.T. Yu, M.F. Lau, "A comparison of MC/DC,
MUMCUT and several other coverage criteria for logical
decisions", Journal of Systems and Software, 2005, in press.

35

