
Automatic source code reduction⋆

Jǐŕı Divǐs and Ondřej Bojar

Charles University, Faculty of Mathematics and Physics
Malostranské nám. 25, Praha 1, CZ-118 00, Czech Republic

jiridivis@gmail.com, bojar@ufal.mff.cuni.cz

Abstract. The aim of this paper is to introduce Reductor,
a program that automatically removes unused parts of the
source code of valid programs written in the Mercury lan-
guage. Reductor implements two main kinds of reductions:
statical reduction and dynamical reduction. In the statical
reduction, Reductor exploits semantic analysis of the Mel-
bourne Mercury Compiler to find routines which can be re-
moved from the program. Dynamical reduction of routines
additionally uses Mercury Deep Profiler and some sam-
ple input data for the program to remove unused contents
of the program routines. Reductor modifies the sources of
the program in a way, which keeps the formatting of the
original program source so that the reduced code is further
editable.

1 Introduction

Mercury [1] is a fast logic and functional programming
language with advanced error detection features, de-
veloped for writing large real-world programs. Its syn-
tax builds upon Prolog syntax (Prolog predicate clau-
ses), adding some new declarations. These declarations
are used for error checking and to speed-up the exe-
cution of a compiled program. Another great feature
of Mercury is that it can compile to C or Java and
thus it easily interfaces with foreign code. Motivations
behind the design of Mercury are very well summed
up in [2].

Reductor [3] is mainly intended for programmers
who wish to understand and/or reuse code of a big
program or start an independent project based on just
a few features of an existing one. This is why Reductor
modifies the sources of the program in a way, which
preserves the original formatting, so that the reduced
code is further editable. But there are also other uses,
like reduction of the size of executables, decreasing
the compilation time of reduced programs or releasing
only a subsection of a huge project.

We suggest the reader gets acquainted with basics
of Mercury language by reading one of the following
summaries: Ralph Becket’s tutorial [4] and Seriál Mer-
cury on ROOT.CZ [5] (in Czech).

⋆ This work has been supported by the grants Euro-
MatrixPlus (FP7-ICT-2007-3-231720 of the EU and
7E09003 of the Czech Republic) and MSM 0021620838.

1.1 Features of Reductor

Reductor implements two different kinds of reductions
— statical reduction and dynamical reduction. The
user chooses between the statical and dynamical re-
duction, not both at the same time. There is also
a trivial module reduction, which is done implicitly.

The module reduction takes all modules from
the current directory that are (transitively) imported
by the main module of the program and copies them
without any change in their contents into specified des-
tination directory.

The statical reduction takes as an input a Mer-
cury program and removes some inaccessible routines
from the sources of the program. Inaccessible routines
are the routines that program would never call and
that can be deleted, because they do not appear in
any definition of any of the remaining routines.

The dynamical reduction removes parts of rou-
tines that were never used on several inputs to the pro-
gram. The reduction is based on profiling data from
the runs of the program on some specified input. The
deep profile is generated by Mercury Deep Profiler.

The dynamically reduced program can be compiled
but Reductor guarantees that the reduced program
will generate the same output only for inputs the deep
profile was obtained on.1 On different inputs, the re-
duced program may terminate with an exception.

Reductor tries to preserve the original formatting
of the original program to as much as possible. Code
segments corresponding to goals or routines of the pro-
gram to be removed are commented out using /*red:

... :red*/, any comments of the kind /* ... */ in
such a segment are transformed into /nested:* ...

*: nested/. If Reductor needs to add some code, then
it is done by delimiting the inserted term by two new-
lines and a comment indicating that the term was in-
serted by Reductor.

2 Overview of Reductor

Reductor consists of the following parts.

1 We assume that the output of the original program is
determined solely by its input data.



10 Jǐŕı Divǐs, Ondřej Bojar

1. Intermodule Representation of the Program (IMR).
This structure represents the entire Mercury pro-
gram on various levels of representation (see Sec-
tion 2.1). It is used by all three remaining parts of
Reductor and it is based on the results of the se-
mantic analysis of Melbourne Mercury Compiler
(MMC) which we reuse and modify to suit our
needs.

2. I/O Interface. (Section 3) This part handles the
representation of the changes in the program on
the term level (see below) and offers an interface
for making the changes proposed by the statical
and dynamical reduction modules. It also outputs
the reduced sources.

This representation is designed for storing the
source changes while preserving the original source
and its formatting as much as possible.

3. Dynamical Reduction. (Section 4) Using the data
from IMR, this module dynamically reduces the
program and submits the changes to the I/O in-
terface. This module also extracts the data from
the deep profile.

4. Statical Reduction. (Section 5) Using the data from
IMR, this module statically reduces the program
and submits the changes to the I/O interface.

2.1 Levels of representation of a module

Reductor utilizes the results of the semantic analysis
of Melbourne Mercury Compiler (MMC) [1]. We thus
extracted the part of MMC code responsible for the
compilation up to the end of semantic analysis and we
based the Reductor on the extracted code.

The mentioned part of the compilation of
a module consists of the following four main stages.
At these stages, the program is represented in certain
data structures. We call these data structures the level
of representation of the program.

Mercury program is composed of declarations and
clauses, we will use the term item for either those.
The first stage is lexical analysis, after which a mod-
ule is represented as a list of lists of tokens. Each such
list of tokens corresponds to an item. We call this rep-
resentation Token-Level Representation (ToLR).

Each item in a program corresponds to what can be
considered the standard ISO Prolog term for the pur-
poses of this paper. The second stage consists of pars-
ing of the tokens into terms. After this stage a mod-
ule is represented as a list of terms. We will refer to
this as the Term-Level Representation (TeLR).
The parts of a term that are themselves terms may
be called subterms and the term that corresponds to
an item may be sometimes called base term to avoid
confusion.

After the third stage, each term is converted into
a syntax tree of the item.2 We will call this the Item-
Level Representation (ILR) of a program. After
this stage, each item is categorized based on the in-
formation extracted solely from its corresponding
term(s), not from other terms of the module. The parse
tree still contains most of the syntactic details of the
item in the program.

Finally, after the fourth stage, the data structure
called by the designers of MMC the High Level Data
Structure (HLDS) is constructed and filled with the
results of the semantic analysis of a module. This in-
cludes the following: Declarations from imported mod-
ules are added, predicates and their goals and subgoals
are annotated with inferred determinisms and modes,
variables in scopes of each subgoal of each predicate
are annotated with their modes and types, goals are
reduced to a certain equivalent subset of the original
goals from the code and thus lot of syntactic detail ir-
relevant to the semantic analysis of the module source
is lost.

After this stage, still most of the items from the
source have their corresponding structures in HLDS,
but not vice-versa—e.g. there are structures for pred-
icates that were automatically generated. We call the
described state of HLDS the High-level Represen-
tation (HLR).

As a part of the fourth stage, based on the mode
analysis of the program, a procedure is constructed
for each mode of the predicate/function because clau-
ses have to be reordered for each mode independently.

Also, in HLR, all clauses of a single procedure are
combined into one goal. Similarly as for term, we de-
fine the subgoal and the top-level goal (base goal).

From now on, we will usually ignore the difference
between functions and predicates calling them simply
predicates.

Finally, we define the call site as a goal which can
call a procedure (this includes goals that call lambda
expressions).

2.2 Inter-module representation

Considering the program representation, there is a big
difference between the needs of Reductor and the
needs of Compiler in the way modules are handled.
Compiler compiles each module of the program inde-
pendently but Reductor’s statical reduction needs to
gather semantic analysis for all modules at once and
store it for later uses. This fact has also some implica-
tion on memory requirements of Reductor.

Our approach to combining MMC’s data struc-
tures of each module into IMR is quite simple. We use

2 Some terms may be combined to form as single item.



Source code reduction 11

map data types to map fully qualified module names
to these structures. There are also a few structures
which are combined in a more sophisticated way to
improve efficiency, but these details are unnecessary
for the purposes of this paper.

From the beginning, it was clear that we will have
to reuse some of the MMC source. The question was
whether to use only ILR or use also HLR of the pro-
gram. We decided to use MMC’s semantic analysis
in order to achieve powerful enough reductions, es-
pecially in the case of dynamical reduction. On the
other hand, the use of HLR makes Reductor more de-
pendent on MMC and makes it harder to understand,
which is among other things caused by the fact that
MMC is designed for other purposes than simplicity
and reusability of the semantic analysis alone.

As a part of IMR, there is also a structure that
stores information about the module dependencies
(imports) and the source files that they came from.
This structure is extracted from the make-like part of
MMC that directs compilation.

3 I/O interface

The I/O interface allows both the statical and dynam-
ical reductions to specify changes on the term level by
adding, deleting or changing a particular term that
corresponds to an item of a module. Each change is
specified in a data type called term change, see be-
low.

The I/O interface performs the following steps:

1. For each module in a program, the TeLR and a cor-
responding modified ToLR (MToLR) is con-
structed. MToLR extends ToLR by storing the
exact position of the first character of the token in
the corresponding source file.

2. A blank structure to hold term changes is set up
for each module.

3. At this point, changes are submitted by the reduc-
tions. The I/O interface provides the association
of items in TeLR with items in ILR, but the term
change itself has to by provided by the reduction.

4. From the collected changes, we construct
a change list for each module of the program,
which represents the changes to be made in the
sources in terms of list of string insertions and
deletions. The algorithm for this is explained in
Section 3.2.
Each element of the change list represents either
the range of positions in the sources which is to
be removed or a string and the position where to
insert it.

5. We copy the original sources and apply the
changes specified by change lists.

3.1 Specifying the changes in a term

The changes in a term are represented by a term
change. This structure mirrors the original term struc-
ture and stores, for each subterm of the term, how the
subterm is changed. The change can be (1) replacing
the term with the string, (2) enclosing the subterm by
two strings or (3) replacing the term with one of its
subterms.

Formally, the term change can have one of the fol-
lowing values:

no change: The corresponding term and all of its
subterms are not modified.

no lvl change(list(term change)): The term is
not modified at the level of its functor, the
term change list stores information about the sub-
terms.

subst ins(string, list(term change), string): The
term is to be preceded by the string given as the
first parameter and followed by the string in the
third parameter. The second argument represents
the changes made on the term’s arguments.

replace(string): The corresponding term is to be re-
placed by the given string.

subst del(list(term change)): The substructures
of this term change, i.e. the lit of term changes
have restricted set of allowed constructors here.
There can be only no change constructors, except
that one orig constructor has to be present. The
substructures of the orig constructor have no re-
strictions.
The term that corresponds to this term change is
substituted by the term that corresponds to the
term change with the orig constructor (which may
be changed further).

orig(list(term change)): This is applicable only if
contained in substructure with subst del con-
structor as described.

3.2 Construction of change lists

For each source file we need to construct a change list
which specifies what will be modified in the file. This
is done by constructing the change list for each term
in the same order as they appear in the module, and
concatenating the change lists. We briefly describe our
approach to the problem of constructing the change
list for a term.

We observed that each subterm consists of contigu-
ous block of tokens in the MToLR. The block of tokens
is not affected by any subterms other than its own.

Our algorithm is based on a synchronous traversal
of a base term and its term change and identifying
the lists of consecutive tokens that correspond to the
subterms. This gives us for each term its beginning



12 Jǐŕı Divǐs, Ondřej Bojar

and end positions in the list of tokens. From this we
compute the subterm’s beginning and end positions in
the source file.

We determine the list of tokens that correspond to
each subterm by finding how a given base term can
be written using tokens, while matching it against the
actual list of tokens in the MToLR. This gives us the
beginning and ending token of each subterm.

While we traverse the subterm and the correspond-
ing term change in the mentioned way, we additionally
mark (according to the term change) which segments
of token lists are to be removed and at which posi-
tions to insert the strings given in the term change.
The change list of the term is then constructed from
the position information associated with the tokens.

4 Dynamical reduction

The idea of the dynamical reduction is to take the
data collected by Mercury Deep Profiler (MDP) [1]
on multiple runs of the program with various input
data (we will call them test data in the following)
and based on the profile, remove most of unused code.
This is achieved by cleverly substituting goals of un-
used branches of code with calls to the throw predicate
(which throws an exception) so that we preserve the
syntactic correctness of the program.

We will illustrate the basic idea on a simplified
model. Imagine a simplified version of the execution
model, which executes goals in top-down, left-to-right
order. In this model we collect the information from
the profile, which indicates for each atomic goal
whether it was called during the execution of the runs
on the test data. We then reduce each procedure by
substituting topmost subgoals that do not contain any
called subgoals with a call to the throw predicate. The
resulting program will have same outputs for the runs
of input data used to construct the profiling data. On
different data the program may exit with an exception.

The problem with this description is that MMC
does not create programs that execute goals in this
simple top-down, left-to-right sequence. For example,
MMC reorders conjuncts to satisfy mode declarations
of the calls in the conjunction. However these issues do
not prohibit a similar approach to the one described.

4.1 Overview of dynamical reduction

We present the main steps Reductor goes through to
dynamically reduce a program. These steps and addi-
tional details are then discussed further in the sections
below:

1. Load the profile created on the test data: We inte-
grated MDP into the Reductor and we use it to
collect and read the profiling data.

2. Determine which goals were called in HLR: (Sec-
tion 4.4) We collect the data from MDP for some
of the call sites in the program. The data we col-
lect tells us which ports of the standard box model
were used on those call sites. We then use the infor-
mation from MMC semantic analysis to improve
this information, as the data transfer from MDP
to HLR is inaccurate.

3. Determine which predicates will be reduced: (Sec-
tions 4.2 and 4.3) Any procedures may be excluded
from the reduction, if necessary, because our dy-
namical reduction has a local character—the re-
ductions made in a predicate do not depend on re-
ductions made on any other predicates. Currently,
predicates that have multiple modes and typeclass
methods are unsupported and thus we do not at-
tempt to reduce them. As it will be seen later,
the reduction of multi-moded predicates can be
achieved by trivially combining the data of their
individual procedures in HLR.

4. Transfer the data about called atomic goals into
the corresponding clauses in ILR.

5. Reduce the goals of an item: Identifying the sub-
goals of the processed item clause that are to be
substituted with an exception.

6. Transfer the changes from ILR to TLR: (Sec-
tion 4.5) Construct the term change for the term
that corresponds to the item being processed and
submit the information to the I/O interface de-
scribed in Section 3.

4.2 Finding goals substitutable with
exceptions

This algorithm for computing removable goals is based
on the observation that in Mercury, the programmer
can substitute any goal with a call to throw predicate
without compromising the syntactic correctness of the
program, i.e. the resulting program compiles, but it
may give lot of warnings (e.g. about the presence of
singleton variables, various determinism warnings).

The algorithm processes goals of clauses in the ILR
to identify removable goals in program clauses. By re-
movable goals, we mean some subset of goals that
can, but does not have to, be substituted with an ex-
ception, while preserving the program semantics on
the test data. By non-removable goals, we mean the
complement of the subset. We describe the algorithm
here and we discuss its correctness in Section 4.3.

As an input to this algorithm, we assume that we
are given the information about which atomic goals
were called on the test data. More precisely, we assume
that we get a superset of the called atomic goals. We
define atomic goals as the goals that do not have any
subgoals, i.e. calls and unifications.



Source code reduction 13

If we consider the ordering of goals that is given by
traversing the goal tree in top-down, left-to-right or-
der, we mark all goals that are preceded by any called
atomic goal (called goals included) as non-removable.

This means that some goals might not contain any
called goals and still be non-removable. The reason for
this is the fact that if we substituted those goals with
a call to throw, we would change the way the goal is re-
ordered and this could cause premature termination of
the reduced program by an exception. Code reordering
was the major challenge in the design of the dynamical
reduction and we discuss it in Section 4.3.

The algorithm traverses the goal in the opposite
order to the one described earlier. Each goal gets an-
notated with information saying if it is non-removable.
We call this information removal status:

All goals that contain a single subgoal: The re-
moval status is the same as the removal status of
its subgoal.

‘and’, ‘implication’, ‘equivalence’: If the second-
argument goal is non-removable, then the first-
argument goal and all its subgoals are considered
non-removable.

‘or’: Removable if both of its subgoals are removable,
otherwise non-removable.

‘if then else’: The ‘if then else’ goal inherits removal
status from its ‘if’ subgoal.

Atomic goals: They are non-removable if they are
called, otherwise they are removable. This can be
overridden with in ‘and’, ‘implication’, ‘equivalen-
ce’, ‘or’.

4.3 Issues with code reordering

In this section, we discuss the problems associated
with the fact that MMC may reorder goals. We dis-
cuss our assumptions about the compilation model of
MMC and conditions that need to be satisfied for the
algorithm for computing removable goals, introduced
in Section 4.2, to be correct.

We note that by default, MMC reorders conjunc-
tions to satisfy mode declarations of the calls in the
conjunctions. Additionally, MMC may reorder dis-
junctions and optimize away some calls and do other
optimizations as discussed in [6].

In a nutshell, in order for algorithm from Sec-
tion 4.2 to work correctly, we need to assure that in
both the original program, compiled to produce deep
profile, and the reduced program, the executed goals
are identical in both programs and that they are exe-
cuted in the same order (all with respect to particular
input data).

Strict sequential operational semantics. For the
dynamical reduction we need the following three as-
sumptions. We believe that using strict sequential op-
erational semantics in MMC (explained in [6]) ensures
them.

1. No calls are optimized away. Our implementation
of dynamical reduction assumes that the data from
the deep profile are accurate in the “semantic”
sense. If some calls were optimized away, the col-
lected profile would indicate that the goal was not
called, which then might cause the goal to be con-
sidered removable, and as such it could be poten-
tially substituted with an exception. This could
then make the reduced program to incorrectly
throw an exception on the test data.

2. Conjunctions are reordered minimally, every time
the ordering of conjuncts is the same. This restric-
tion will be clarified later in this section, for now
we just note that the if we created two profiles
on the same test data with different conjunction
orderings, we may get different information about
which atomic goals are called, which could again
potentially lead to different output of the algo-
rithm from Section 4.2, which can be problematic.

3. Disjunctions are not reordered. The reason is same
as in (2).

Correctness of dynamical reduction. It is guar-
anteed that a program dynamically reduced for a given
input will give the same results as the original one, if
both are compiled with strict sequential operational
semantics and the following conditions hold:

1. The conjuncts that were called in the original pro-
gram have the same ordering in the reduced pro-
gram with respect to each other as in the original
program and the call goals call the same modes of
the called predicates.

2. The originally uncalled conjuncts are not re-
ordered in front of any originally called conjuncts.

3. In the reduced program, only originally uncalled
conjuncts may be substituted with call to throw.

The first two conditions ensure that each proce-
dure is called with the same inputs as in the original
program. We did not determine, if the condition (1)
is necessary, but we suspect that if we would not re-
quire it, there might be problems with goals with the
determinism multi.

The failure to comply with the 2nd or 3rd condition
causes the reduced program to terminate by exception
on the test data.

We assume that these restrictions are satisfied by
the default mode reordering algorithm of MMC as



14 Jǐŕı Divǐs, Ondřej Bojar

reused in Reductor, if strict sequential operational se-
mantics are used. We also believe that the use of any
algorithm that performs minimal reordering as speci-
fied in Mercury Reference Manual [6] should also sat-
isfy our restrictions. If not, the use of other mode re-
ordering algorithms in MMC might cause problems.

4.4 Collecting data from the deep profiler

Data from the profiler. The MDP consists of two
parts: (1) the code inserted by MMC for collecting
profiling information into the Deep.data file, and (2)
a web interface that presents the collected informa-
tion to the user. We call the information stored in
Deep.data the deep profile and use it in Reductor.

The deep profile contains for each call site in each
procedure the list of ports of the standard box model
that were used by the procedures called from the call
site. More precisely in addition to the standard box
model (call, exit, fail, redo), Mercury has one addi-
tional port for the procedure throwing an exception.

Transferring data into the IMHLDS. We need to
transfer the information about the used ports from the
deep profile to the corresponding call sites in IMHLDS.

Unfortunately, the data about call sites from the
deep profile do not correspond 1:1 with the HLDS,
because the deep profiling code is generated after the
construction of HLR (i.e. the semantic analysis or the
4th stage of the compilation). Also the data do not gen-
erally contain enough information for an unambiguous
pairing of the two call-site structures. We thus had to
design a mechanism that accounts for this.

Improving the information on called goals. Be-
cause the information from the deep profile that we
collected into the HLR is not accurate and it does not
give us much information about unifications, we im-
prove our information about which atomic goals are
called using the information obtained from MMC se-
mantic analysis.

4.5 Changing the individual items of the
program

At this point it is decided which predicate goal will be
changed and everything from now on is done locally
on individual clauses of the program. We describe the
design of the process of transforming each clause of
a predicate by constructing term change for a term,
given the original term and item that correspond to
the clause and HLR with the information about call
status of atomic goals.

Transfer of the call status from atomic goals in
HLR to atomic goals in ILR. The algorithm for
identifying non-removable goals (Section 4.2) operates
on the ILR, but we have the information about called
goals in the HLR. Therefore, we need to transfer the
data to the item level representation.

Also, it should be noted that we reasoned about
correctness of the algorithm based on the ILR, but
the actual mode reordering algorithm of MMC oper-
ates on the HLR. Thus we should make sure that the
transition between ILR and HLR does not cause any
trouble. Unfortunately this is very technical and we
omit it for brevity.

One atomic goal in ILR can have multiple corre-
sponding atomic goals in HLR. We designed an algo-
rithm based on an approximate matching of the atomic
goals of the two representations, where the lost infor-
mation about call status is partially reconstructed. In
short, any ILR’s atomic goal is marked as called, if
there is a called goal in HLR which corresponds to the
ILR goal.

The matching of the atomic goals of the two repre-
sentations is based on the fact that throughout all four
stages of compilation we reuse, MMC associates with
each goal the information about what source file and
line number the goal is located on (for the purposes
of error messages). We use this as an (ambiguous) tag
of each goal. The matching of the atomic goals of the
two representations thus consists of the matching of
these tags3.

Constructing the term change for the clause.
As an input to this, for each subgoal of the clause goal
(in ILR), we know if the subgoal is removable.

The ILR of a clause corresponds reasonably well to
the TeLR of a clause. This fact allows us to construct
the term change by simultaneously recursively travers-
ing the clause goal in ILR and its corresponding term
while building the term change for the I/O interface.
If at any point we are not able to pair the ILR goal
with its corresponding term, we just drop the change
leaving the problematic term unreduced. This is based
on the observation, that changing the removal status
of a goal from removable to non-removable is never
harmful, we only reduce less.

4.6 Final remarks on dynamical reduction

There remains some unexploited potential for dynam-
ical reduction if we allowed code reordering: reorder
for mode constraints and maximum dynamical reduc-
tion. On the other hand, the implementation of this

3 Interestingly, the matching of items to terms in I/O in-
terface is based on a similar principle.



Source code reduction 15

extension would be rather difficult and we believe that
we would not gain much by this because (1) usually,
the programmers write predicates in the “correct” or-
der and (2) if we did major reordering, the reordering
might confuse the programmer.

Recently, we learned about the new Profiler Feed-
back Framework in MMC, which might perhaps have
saved us some work. The framework feeds back the
information from the deep profile into the MMC. Un-
fortunately this new and still hidden4 feature is not
available in the version of Mercury the Reductor is
based on.

5 Statical reduction

This section describes how Reductor identifies inac-
cessible procedures to decide which clauses and dec-
larations to remove. As indicated by the name, this
analysis is performed statically, without the need to
run the program in question.

First, we precisely define the notion of accessible
procedures. Procedure B is accessible from pro-
cedure A, if there is a call site that can call proce-
dure B in a goal of some procedure that is accessible
from A. We call accessible procedure any proce-
dure in a program that is accessible from the predicate
main. It is not generally possible to say what proce-
dures can be called from a call site. Reductor thus
determines only superset of accessible procedures (el-
ements of the superset may be further called accessible
procedures, for brevity).

There are four steps that are taken in the process
of statically reducing the procedures of a program:

1. Calculate the superset of accessible procedures of
the program. Consider the call graph, which we
define as an oriented graph, where the set of ver-
tices is the set of all procedures in a program
and set of oriented edges is defined by relation R.
(A,B) ∈ R if and only if B is called from a call
site of A.
We use a depth-first search on the call graph start-
ing from the predicate main. Each procedure that
is processed is added to the set of accessible pro-
cedures. Processing one node of the search graph
consists of finding its call sites (i.e. constructing
the edges for the depth-first search). This is done
by another depth first search on the goal tree of
the procedure, where subgoals are the vertices of
the tree and atomic goals (i.e. call goals and uni-
fications) are the leaves of the tree.
There are two types of call sites: static and dy-
namic. For static call sites, the procedure to be

4 For more details see deep profiler/feedback.m in
newer versions of MMC source package.

called is known (in HLR). For dynamic call sites,
the procedure is determined at runtime. They are
two kinds of a dynamic call site: (a) call sites for
lambda expressions, and (b) call sites for instances
of a class method.
Call sites (b) can be considered static, because the
class method called is known (the instance is not).
Procedures that can be called from (a) are deter-
mined by treating the unification that declares the
lambda expression as a call site of its lambda ex-
pression.

2. Identify further non-removable procedures. All ac-
cessible procedures are naturally non-removable.
Unfortunately, there are cases when even an inac-
cessible procedure cannot be removed. One exam-
ple are procedures whose removal would require
us to to remove additional declarations (beyond
the obvious pred, func and mode declarations and
procedure’s clauses). Another example are predi-
cates exported from Mercury to the C interface—
for these we cannot be sure if they are ever called
from some C code.

3. Recalculate the superset of accessible procedures.
Marking some procedures as non-removable may
require the non-removability for further proce-
dures. We use the same depth-first search as above,
except that we start in all non-removable proce-
dures instead of main.

4. Remove the items that correspond to the removable
procedures. The removal is done separately for each
module of the program through finding their cor-
responding items and submitting them for deletion
to the Reductor’s I/O interface.

6 Remarks on the interfacing
compilers

We think that in future, Reductor can be extended to
be able to remove more declarations and to lift most of
the limitations it places on the input program. There
are however several areas where we are bounded by the
current design of MMC. The most notable thing is that
it is very problematic to make changes in the contents
of clauses and declarations in the general case, unless
we give up the aim of preserving the original format-
ting of the code, i.e. the major goal of Reductor.

One possible solution would be to extend Reduc-
tor’s I/O interface so that the reductions could submit
changes directly to the HLR instead of just TeLR. Al-
though we did not design such an interface, we believe
that it would be reasonable to try to build it, if the
MMC had not such an unfavorable design with regard
to this proposal. Certainly in the presence of such an
interface, the reductions would be quite easy transfor-



16 Jǐŕı Divǐs, Ondřej Bojar

mations of HLR. This would, at the very minimum,
save us lot of work on dynamical reduction.

We also believe that this proposed enhanced I/O
interface could be easily reused for e.g. automatic code
restructuring or refactoring (see e.g. [7]) or intelligent
syntax highlighting. These two kinds of software can
make a meaningful use of semantic analysis provided
by the compiler. The need for such an interface can be
illustrated by the fact that the task as simple as func-
tion renaming requires type analysis (which is a part
of the semantic analysis) to distinguish data construc-
tors of discriminated unions from function calls of the
same name and arity.

7 Conclusion

We described two main automatic methods for source
code reduction of Mercury programs aimed at under-
standing and reusing parts of Mercury projects. The
statical reduction removes predicates that are never
called (based on the statical analysis of the source
code). The dynamical reduction removes parts of pred-
icates that were never used on some sample input data.
The formal correctness of the code is preserved by in-
serting exceptions at these places. The dynamically re-
duced code is guaranteed to return the same outputs
on the inputs it was reduced for. On different outputs,
the reduced program may exit with an exception.

The implemented tool called Reductor performs
both types of the reduction while preserving the orig-
inal formatting of the source code as much as possible
to enable further development. This is a unique fea-
ture that complicated the design of Reductor by far
the most.

Reductor has been tested on few medium-sized
programs and a large set of small programs (mostly
from the MMC test suite). The reductions are suffi-
ciently powerful. There are few imposed constraints
on the Mercury language for statical reductions which
concern rather rare features. Moreover, the presence of
such unsupported constructs usually does not prevent
Reductor from reducing the program. While in these
cases the reduced program may become uncompilable,
it is still useful for manual inspection. In the case
of dynamical reduction, the tests did not reveal any
substantial quantitative degradation in the amount
of code reduced by the implemented method as com-
pared to what can be potentially reduced by a similar
method without the mentioned approximations.

The utility of Reductor for large scale projects has
to be confirmed yet. We believe that use of dynamical
reduction5 on the well chosen subset of all possible

5 The dynamical reduction can also be viewed as coverage
testing tool that “visualizes” its results by commenting
out the unused parts of code.

input data sets, combined with statical reduction and
some subtle changes in the original code, can be useful
in understanding and/or reusing code of big programs.
This was the main motivation behind building this
tool.

We have also commented on some limitations of
the design of MMC, briefly explored the possibilities
for extending Reductor and gave some thoughts on
commonalities of Reductor code with some other de-
velopment tools like automatic code refactoring and
intelligent syntax highlighting.

References

1. Mercury project WWW page.
http://www.mercury.csse.unimelb.edu.au/

2. Z. Somogyi, F. Henderson and T. Conway: Mercury: an
efficient purely declarative logic programming language.
ASCS’95, Glenelg, Australia, 1995, 499–512.

3. J. Divǐs: Automatické odstraněńı nadbytečných část́ı
programu6. Bachelor thesis at Charles University in
Prague, Faculty of Mathematics and Physics, 2009.

4. Ralph Becket’s Mercury tutorial.
http://www.mercury.csse.unimelb.edu.au/

tutorial/book/book.pdf

5. Seriál Mercury on ROOT.CZ.
http://www.root.cz/serialy/mercury/

6. Mercury Reference Manual, version 0.13.1.
http://www.mercury.csse.unimelb.edu.au/

information/doc-release/mercury ref/

7. T. Mens and T. Tourwé: A Survey of Software Refac-
toring, IEEE Transactions on Software Engineering, 30
(2), February 2004.

6 This is the formal title. The contents are written in En-
glish.


