
Modeling Semantic Web Services with OPM/S –
A Human and Machine-Interpretable Language

Dov Dori
Technion - Israel Institute of Technology

Haifa 32000, Israel
972-4-8294409

dori@ie.technion.ac.il

Eran Toch
Technion - Israel Institute of Technology

Haifa 32000, Israel
972-4-8292853

erant@tx.technion.ac.il

Iris Reinhartz-Berger
University of Haifa

Carmel Mt., Haifa 31905, Israel
972-4-8288502

iris@mis.hevra.haifa.ac.il

ABSTRACT
The World-Wide-Web is now a ubiquitous, global tool,
used for finding information, communicating ideas, carry-
ing out distributed computation, and conducting business,
learning and science. Web services and the Semantic Web
are emerging as a powerful infrastructure for distributed
computing. However, even though standard methods that
define semantics of Web services, such as OWL-S, may aid
in the development and deployment of these services, they
are hardly designed to be easily understandable and usable
by developers. Complexity and lack of accessibility of Web
services and the Semantic Web hinders their usage by the
information industry. OPM/S, which is based on Object-
Process Methodology (OPM), offers a bi-modal visual-
lingual representation that is both intuitive for humans and
formal for machines. Utilization of ontologies and interop-
erability are two issues addressed by the OPM/S modeling
environment. Ontologies are expressed as meta-libraries,
which are specified in OPM or OWL, and can be dynami-
cally linked to semantic Web services in a distributed envi-
ronment. Interoperability is achieved using a transparent
reuse method that enables dynamic development of Web
services and their integration into more complex Web ser-
vices. Using a running example, the paper presents OPM/S
and its mapping to OWL-S. The benefits and shortcomings
are discusses and compared with other OWL-S modeling
methods.

1. INTRODUCTION
The Web is highly dynamic in the quantity and nature
of the information that it encompasses, posing a host
of challenges in managing distributed information and
computation over the Web. Access to the Web may be
from a variety of devices and interfaces, by different
users at different locations, and at varying times.
Thus, there is a need for standard languages that cap-
ture information semantics and not just syntax. Web
services and the Semantic Web are powerful infra-
structures that enable easy integration, automatization,
and reuse of different information and process formats
in a distributed environment. Since Web services are

distributed, dynamic, and can be utilized as light-
weight components within a broader and loosely cou-
pled framework, common semantics is required so
differences in terminology and definitions can be
automatically resolved. While the World Wide Web
provides a repository for Web services, the Semantic
Web [2] is designed to be the foundation for semantic
markup of Web services. The OWL-S initiative [1]
(formally DAML-S) provides an ontology for Web
services that enables automatic discovery, invocation,
and interoperation of Web services.

As of today, the usage of OWL-S has not crossed the
boundary between academia and industry. Based on
their experience, Sabou et al. [21] reported that OWL-
S is difficult to learn, partly due to the lack of sup-
porting tools, and that it has an imprecise conceptual
model, which is composed of multiple ontologies
(models). To overcome these shortcomings, we pro-
pose to wrap OWL-S with a higher-level modeling
language, called OPM/S. Based on Object-Process
Methodology (OPM) [9], OPM/S integrates software
engineering and semantics engineering practices in
order to establish a single framework for modeling
Web services. OPM/S contains two main mechanisms
that enable modeling the dynamic interoperability
between Web services. The first mechanism handles
ontologies and descriptions of the concepts that are
shared among various semantic Web services. On-
tologies are captured as meta-libraries, which are
specified in OPM or OWL, and can be utilized in the
specification process of Web services. Meta-libraries
are developed and maintained separately from the
Web service models, and are dynamically linked to
the Web services. Alterations in a meta-library are
reflected in the particular Web service models that use
it.

The second OPM/S mechanism is transparent reuse
 � [20]. Usually, reuse of Web services does not in-

86

-2-

volve the installation of separate copies of the compo-
nents, but rather utilization of runtime calls to the ser-
vices. Therefore, modeling frameworks for Web ser-
vices should take into account scenarios in which ser-
vices may change after being reused. Transparent re-
use enables ongoing development of Web services
and their integration into more complex Web services.
The reused models can be referred to using either URI
or UDDI entries. A supervision mechanism warns the
designer if changes in a reused model affect the entire
model and automatically suggests possible solutions,
based on a shared semantics.

The rest of the article is structured as follows. Section
 � 2 reviews existing OWL-S engineering methods and
briefly presents OPM. Section 3 introduces the
OPM/S framework and explains how it supports the
different OWL-S ontologies. Finally, Section 4 dis-
cusses the benefits and shortcomings of OPM/S and
refers to future research plans.

2. BACKGROUND
2.1 Semantics of Web Services
Web services are automated resources accessed via
the Internet, using an XML interface. The exponential
growth of the Web and the progress of Internet-based
architectures have set the stage for the proliferation of
Web services and corresponding ontologies. How-
ever, despite the fact that these systems employ com-
mon XML or even RDF interfaces, semantic gaps
among these ontologies cause problems in various
scenarios. The problem of semantic reconciliation
arises, for example, when integrating two systems that
utilize different semantics to refer to entities that are
conceptually identical. Such semantic differences
must be resolved manually, a costly process that is
unavoidably error-prone.

Trying to solve these problems, the Semantic Web
provides an infrastructure for concepts to be specified
formally, so relations between different concepts can
be reasoned automatically, providing a basis for
automated semantic reconciliation processes. Several
standards have emerged to support the Semantic Web
vision, including Web Ontology Language (OWL) [8]
and DARPA Agent Markup Language (DAML+OIL)
 � [5]. These languages are designed to enable com-
puter applications to semantically process the infor-
mation that formerly could be interpreted only by
humans.

In order to search for Web services and use them, a
software agent needs a computer-interpretable de-

scription of the service and means to access it. OWL-
S [1], which is a framework for containing and shar-
ing these descriptions, provides the following three
essential types of knowledge about a service.

1. The Service Profile describes the properties of a
service, such as its functionality, which is neces-
sary for its automatic discovery, and its set of in-
puts, outputs, preconditions and effects (abbrevi-
ated IOPE).

2. The Process Model defines the control flow of
the service, using its IOPEs and a set of control
constructs and descriptions of each process that
takes part in the flow. OWL-S has three types of
processes: atomic processes, which are executed
by single communication protocol calls, simple
(undivided) processes, and composite processes,
which comprise other processes.

3. The Service Grounding ontology connects the
process model to communication-level protocols,
such as the message description of Web Services
Description Language (WSDL) [4].

Even though OWL-S had gained a considerable mo-
mentum in the Semantic Web community, several
shortcomings prevent OWL-S from being more
widely adopted by the software engineering industry.
The main problem is that OWL-S is relatively com-
plex and inaccessible for humans [21]. The separation
between the definition of the service and the semantic
meta-information requires users to master several lan-
guages and carry out translations among them. More-
over, the lack of suitable complexity management
mechanisms makes the readability of the domain
scripts difficult. Exacerbating this situation is the need
for different types of notation in disparate models that
must be used to define various aspects of a Web ser-
vice, requiring consistency and integrity checking that
is typical of systems that suffer from the model multi-
plicity problem [18].

2.2 OWL-S Modeling Methods
In an attempt to overcome the complexity of OWL-S,
two approaches to creating OWL-S scripts have been
developed: automatic generation and modeling. Auto-
matic generation relies on tools that create OWL-S
descriptions from existing concrete artifacts, such as
programming code or WSDL specifications [4]. Em-
ploying bottom-up development, this approach is im-
plemented, for example, in the WSDL2OWL-S tool
 � [16], which provides a partial translation from a
WSDL specification of a Web service to an OWL-S

87

-3-

script. The OWL-S modeling approach, in contrast,
supports top-down development using a formal mod-
eling language. Narayanan and McIlraith have used
Petri nets to compose Web services [14]. While Petri
nets are sufficient for modeling the dynamics and con-
trol flows of OWL-S modules, they are limited in de-
scribing static aspects of systems, like module alloca-
tions and their dependencies and structural relations
 � [22]. Furthermore, lacking a refinement mechanism
that is essential for describing large-scale systems,
Petri nets are not directly scalable and are hence not
widespread across the software engineering commu-
nity.

Several OWL-S modeling methods rely on Unified
Modeling Language (UML) [12], the standard object-
oriented modeling language. Bose et. al. [3] have
suggested using UML for modeling the OWL-S Ser-
vice Profile and Process Model ontologies. Class dia-
grams represent the structure of the top level OWL-S
specification, i.e., the entities of the Service Profile.
Since OWL-S specifications include also the Process
Model ontology, additional dynamic UML diagrams
are needed to specify these behavioral aspects. The
need to use several diagram types necessitates the
development of a consistency management and pro-
tection mechanism that must be employed while the
multiple-view UML model is mapped onto the single
formal OWL-S specification.

DUET [7] is a software tool that implements an
OWL-S modeling solution based on UML activity
diagrams. Each process is represented by an activity,
while composite processes contain descendant activi-
ties. Inputs and preconditions are modeled as entry
actions that occur when the activity is executed. Out-
puts and effects are modeled as exit actions that are
executed when the activity ends. This modeling
framework ignores several elements of the OWL-S
Process Model ontology, such as conditions and con-
ditional outputs. Another drawback of this solution is
that it is limited only to the Process Model ontology,
neglecting the OWL-S Service Profile and Service
Grounding ontologies.

2.3 Object-Process Methodology (OPM)
Object-Process Methodology (OPM) [9] is a holistic,
integrated approach to the study and development of
systems in general and information systems in par-
ticular. The basic premise of the OPM paradigm is
that objects and processes are two types of equally
important classes of things. Objects are (physical or
informatical) things that exist, while processes are

things that transform objects. In most interesting and
challenging systems structure and behavior are highly
intertwined and hard to separate. Meeting this model-
ing challenge, stateful objects and processes that
transform them describe the function, structure and
behavior aspects of the modeled system within a sin-
gle framework in a domain-independent manner with-
out highlighting one aspect at the expense of sup-
pressing another.

Contrary to the object-oriented approach, processes in
OPM can stand alone, allowing intuitive modeling of
the system's behavior that involves several object
classes, possibly cutting across the system's structure.
Processes are connected to the involved objects
through procedural links, which are classified into
enabling links, transformation links, condition links,
and event links. The same and only diagram type pro-
vides also for modeling the system's structure, includ-
ing the fundamental aggregation, generalization, ex-
hibition, and classification relations alongside any
other user-defined structural relation.

Two semantically equivalent modalities, one graphic
and the other textual, jointly express the same OPM
model. A set of inter-related Object-Process Diagrams
(OPDs) constitute the graphical, visual OPM formal-
ism. Each OPM element is denoted in an OPD by a
graphic symbol, and the OPD syntax specifies correct
and consistent ways by which entities can be linked.
Table 1 lists the fundamental OPM elements along
with their symbols and semantics. The Object-Process
Language (OPL) is the textual counterpart modality of
the graphical OPD set. As a dual-purpose language,
OPL is oriented towards humans as well as machines.
Catering to human needs, OPL is designed as a con-
strained subset of English, which serves domain ex-
perts engaged in analyzing and designing a system (or
a Web service). Every OPD construct is expressed by
a semantically equivalent OPL sentence or phrase.
Designed also for machine interpretation, OPL pro-
vides a solid basis for automatically generating the
designed application. This dual representation of
OPM increases the processing capability of humans
according to Mayer's theory [13].

88

-4-

Table 1: Main OPM elements, their symbols and
semantics

Element Name Symbol Semantics
Object A thing that has the potential of

unconditional existence

Process A pattern of transformation that
objects undergo

Environmental
thing

An environmental (external) thing
(object or process) which communi-
cates with the system

Characterization A relation representing that a thing
(object or process) exhibits another
thing

Generalization

A relation denoting the fact that a
thing generalizes a set of specialized
things

Aggregation A relation which denotes that a thing
consists of other things

General structural
relationship

 A general association between things

Instrument link A link indicating that a process
requires an (input) object for its
execution

Effect link A link indicating that a process
changes an object

Result/ Consump-
tion link

 A link indicating that a process
creates/consumes an object

Invocation link A link indicating that a process
activates (invokes) another process

Condition link A link representing a condition
required for a process execution.
While an enabling link has a
"wait until" meaning, a condition
link has an "if" meaning

Agent link A link indicating that an external
agent is required for the process
execution

OPM also exhibits three complexity management
mechanisms which enable refinement/abstraction of
OPM models: (1) unfolding/folding is used for refin-
ing/abstracting the structural hierarchy of a thing; (2)
in-zooming/out-zooming exposes/hides the inner de-
tails of a thing within its frame; and (3) state express-
ing/suppressing exposes/hides the states of an object.
Using flexible combinations of these mechanisms,
OPM enables specifying a system to any desired level
of detail without losing legibility and comprehension
of the resulting specification.

OPM is supported by the OPCAT [11] (Object-
Process CAse Tool) modeling environment1. It has
also been applied and tested in various domains, in-
cluding Web applications [19] and Semantic Web
Information [10]. In this paper, we further extend
OPM to support the modeling of semantic Web ser-
vices. For future reference, this extension is called
OPM/S.
1 OPCAT can be downloaded from: http://www.objectprocess.org

3. The OPM/S Framework
The OPM/S modeling framework wraps OWL-S, re-
flecting the characteristics and features of semantic
Web services. Contrary to OWL-S, which requires
using three different types of ontologies with overlap-
ping concepts, OPM/S employs its single frame of
reference that can be presented at different abstraction
levels. The combination of the single OPM view with
its bimodal presentation increases the accessibility
and usability of the OPM/S modeling framework to
humans as well as machines (e.g., code generators and
automatic translators).

The OWL-S ontologies are mapped to OPM/S as fol-
lows. The Service Profile is represented in OPM/S as
the top level Object-Process Diagram (called the Sys-
tem Diagram, SD) along with its corresponding Ob-
ject-Process Language paragraph. The Process Model
is expressed by zooming into the top-level specifica-
tion to expose the process structure and flows. From
the top-level processes and downwards in the process
containment hierarchy of OWL-S, each composite
process is in-zoomed in OPM/S to reveal its sub-
processes and their IOPE sets. The Service Ground-
ing ontology is expressed by the interfaces of the
atomic processes, which are unfolded at the deepest
level of the process hierarchy. Table 2 summarizes the
mapping between each of the three OWL-S ontologies
and the corresponding OPM/S concepts.

Table 2: Mapping OWL-S ontologies to OPM/S

OWL-S
Ontology OPM/S Representation OPD or OPL

Script Level
Service
Profile

The highest level of the OPM/S
model

0 (SD level)

Process
Model

Each process is represented by
an OPD and an OPL paragraph,
which refine (zoom into) its sub-

processes

k ; 0 ≤ k ≤ N
where N is the deep-

est level of the
OPM/S model

Service
Grounding

Unfolding of the deepest atomic
process level N

Two mechanisms are employed in order to support the
dynamic and distributed nature of Web services:
meta-libraries and transparent reuse. The rest of this
section describes these mechanisms and explains their
application to modeling the Service Profile and the
Process Model in OPM/S. In order to demonstrate our
approach, we use a running example of a book-buying
service offered by the Web service provider Congo
Inc. [6]. The OPM/S representation of the Service
Grounding ontology is out of the scope of this paper.

c

89

-5-

3.1 The Service Profile Ontology
Figure 1 is an OPM/S model of the Service Profile
ontology of the Congo Book Buying service. The top-
level, main process in this model, Congo Book Buy-
ing Service, is surrounded by its inputs, outputs, pre-
conditions, and effects, which are all objects. These
objects are connected to the Congo Book Buying
Service via procedural links that denote the role of
each one of the objects in the top-level process.

Book Name is of type XS:string.
Congo Book Buying Service exhibits Service Name, Text De-
scription, Contact Information, and many Quality Ratings.

Contact Information consists of many Actors.
Congo Book Buying Service occurs if Account exists and Credit
exists.
Congo Book Buying Service requires Book Name, Account Info,
Sign In Info, Credit Card Info, and Delivery Details.
Congo Book Buying Service affects Buy Effect.
Congo Book Buying Service yields Receipt, Shipping Order,
and Account Output.
Figure 1: An OPM/S model of the Service Profile

of the Congo Book Buying Service

As the condition links from the objects Credit and
Account to the Congo Book Buying Service proc-
ess denote, the existence of these two objects is a pre-
condition for the execution of the Congo Book Buy-
ing Service. The corresponding OPL sentence, which
is "Congo Book Buying Service occurs if Account
exists and Credit exists”, reinforces this condition
semantics. Similarly, the objects Book Name, Ac-
count Info, Sign In Info, Credit Card Info, and De-
livery Details are the process inputs, as the instrument
links from each one of them to the Congo Book Buy-
ing Service process denote. The equivalent OPL sen-
tence is "Congo Book Buying Service requires
Book Name, Account Info, Sign In Info, Credit
Card Info, and Delivery Details." The process out-
puts are Receipt, Shipping Order, and Account

Output. This is expressed by the result links in the
OPD and by the corresponding result sentence in the
OPL paragraph. The effect link between Buy Effect
and the Congo Book Buying Service specifies that
the process changes the object during its execution.

The service itself exhibits the attributes Service
Name, Text Description, Contact Information, and
several Quality Ratings. The Contact Information
section can contain many points of contact, each rep-
resented by an Actor. The Quality Ratings are matri-
ces that express various quality measurement of the
service. Multiple matrices can characterize the same
service. The thick contours of Quality Rating and
Actor indicate that further refinement of the objects
exists, i.e., in our case they are unfolded in separate
diagrams (not shown here due to space limitations) of
their internal structure.

3.2 The Process Model Ontology
The Congo Book Buying Service is refined through
zooming into two sub-processes, Full Congo Buy and
Express Congo Buy, each describing different type
of the Congo Book Buying Service. Express
Congo Buy, which is an atomic process (not shown
here), is a "one shot" service for buying a book with
Congo, Inc. Figure 3 refines the composite process
Full Congo Buy as a two-step buying procedure, in
which the book is first located (Locate Book) and
then bought (Buy Book).

For comparison purposes, the OWL-S specification of
the Full Congo Buy process is listed in Figure 3. The
XML statements contain the process type and its con-
trol flows. As noted, an OWL-S process can be of
type composite, simple, or atomic. OPM/S, in con-
trast, defines a single concept—a process class, the
complexity of which is determined by its position in
the process hierarchy of the OPM model. OPM/S
processes that are refined into subprocesses are
mapped to OWL-S composite processes. A refined
OPM/S process, such as Buy Book, is denoted by the
fact that the contour of its ellipse, which is originally
thin, becomes thick. Processes that are not in-zoomed
(and hence remain with thin contours) are mapped to
either atomic or simple OWL-S processes. Atomic
processes differ from simple ones in that the former
contain folded binding information (expressed in the
service grounding ontology), while the latter do not.

Another difference between OPM/S and OWL-S is
the way they treat control flows. OWL-S enables ex-
plicit selection of a control flow construct for defining

90

-6-

an ordering or conditional execution of sub-processes.
Examples of these constructs include Sequence, Split,
Split+Join, Choice, Unordered, Condition, If-Then-
Else, Iterate, Repeat-While, and Repeat-Until.
OPM/S, on the other hand, utilizes the limited set of
basic elements supplied by OPM, namely procedural
links, to specify control flows. Process sequences are
denoted by the relative vertical position of the sub-
processes, taking into account that the time line flows
from the top of the diagram downwards. In Figure 3,
for example, the process Buy Book is executed after
Locate Book. Two processes with the same vertical
position are executed in parallel or as alternatives. An
invocation link, which specializes a procedural link,
can override this convention [17].

Book Name is of type XS:string.
Full Congo Buy zooms into Locate Book and Buy Book, as well
as Book Not Found and Located Book.
Located Book plays the role of Product of e-commerce.
Located Book exhibits Book ISBN and Book Description

Book ISBN plays the role of Identifier of e-commerce.
Book Description plays the role of Description e-commerce.

Locate Book requires Book Name.
Locate Book yields either Located Book or Book Not Found.
Buy Book plays the role of E-Commerce Process of e-
commerce.
Buy Book occurs if Located Book exists.
Buy Book requires Book ISBN, Credit Card Info, Sign
In Info, Account Info, and Delivery Details.
Buy Book yields Receipt, Shipping Order, and Account Output.
Receipt plays the role of Confirmation of e-commerce.

Figure 2: An OPM/S Process Model of the Full
Congo Buy Service

<owl:Class rdf:ID="FullCongoBuy">
 <rdf:subClassOf

rdf:resource="http://www.daml.org/services/owl-
s/0.9/Process.owl#CompositeProcess" />

 <rdf:subClassOf>
 <owl:Restriction>
 <owl:onProperty

rdf:resource="http://www.daml.org/services/owl-
s/0.9/Process.owl#composedOf" />

 <owl:allValuesFrom>
 <owl:Class>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class

rdf:about="http://www.daml.org/services/owl-
s/0.9/Process.owl#Sequence" />

 <owl:Restriction>
 <owl:onProperty

rdf:resource="http://www.daml.org/services/owl-
s/0.9/Process.owl#components" />

 <owl:allValuesFrom>
 <owl:Class>
 <process:listOfInstancesOf
rdf:parseType="Collection">
 <owl:Class rdf:about="#LocateBook" />

 <owl:Class rdf:about="#CongoBuyBook" />
 </process:listOfInstancesOf>
</owl:Class>

 </owl:allValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
 </owl:Class>

Figure 3: OWL-S specification of the Full Congo
Buy service

Conditional flow constructs, such as if-then-else or
case statements, are specified in OPM/S by setting a
decision object (which is Boolean for binary deci-
sions). Each state of this object is linked via a condi-
tion link to the process that needs to happen if the ob-
ject is at that state. In Figure 2, for example, Buy
Book is executed only if Located Book exists, i.e.,
only if the book was found. OPM/S also supports
modeling of iterative control flows (such as loops) by
combining condition links to express the halting con-
ditions and an invocation link to enable the iterations.
Adding an invocation link in Figure 2 from Buy Book
to the complete Full Congo Buy specifies that this
process is executed until the requested book is not
found.

3.3 Consistency Maintenance of OPM/S Models
OPM/S models are not only readable and comprehen-
sible; they are also consistent across the various ab-
straction levels of the same Web service. The OPM
consistency rules [9] require that the IOPE set of a
process is either identical at any two consecutive re-
finement levels of the process or is refined in the
deeper level. For example, Delivery Details, which is
connected in Figure 1 to the Congo Book Buying
Service via an instrument (input) link, remains con-

91

-7-

nected through an instrument link to Buy Book of
Full Congo Buy, a sub-process of Congo Book Buy-
ing Service, in Figure 2. These rules are enforced by
OPCAT. Such consistency checks are difficult to en-
force in OWL-S, especially since they require verifi-
cation that involves two different ontologies: the Ser-
vice Profile and the Process Model.

The consistency of an OPM/S specification is con-
served also within the same Process Model displayed
at various refinement levels. For example, in Figure 4,
the Buy Book composite process is zoomed into, ex-
posing its Buy Sequence, Specify Delivery Details,
and Finalize Buy sub-processes. Buy Sequence, in
turn, is also a composite process, responsible for han-
dling shopping carts, customers, and accounts. Spec-
ify Delivery Details and Finalize Buy, on the other
hand, are atomic processes. The single instrument link
from Delivery Details to Buy Book in Figure 2 is
refined in Figure 4 into three instrument links from
Delivery Address, Packaging Type, and Delivery
Type (which are attributes of Delivery Details), to
Specify Delivery Details. Changing one of these
links to an effect link will automatically change the
link between Delivery Details and Buy Book in the
higher-level specification (shown in Figure 2) to an
effect link, denoting that Buy Book somehow
changes Delivery Details.

3.4 OPM/S Typing Methods
There are three kinds of OPM/S typing methods: basic
types, roles, and enumerations. These are demon-
strated in Figure 4. Basic types includes all the primi-
tive types, such as xs:int and xs:string, and user-defined
types. The type of Credit Card Number and Delivery
Address in Figure 4, for example, is XS:string.

Roles denote the ontological context, according to a
given meta-library. Credit Card Expiration, for exam-
ple, is declared as an Instant from the Time ontology,
which is represented by an OWL meta-library. Role
names are recorded in the upper-left corner of an ob-
ject box or a process ellipse.

Enumerations are specified in OPM/S by states. States
define the set of possible situations an object can be at
or legal values an object can assume. At any point in
time an object is in exactly one of its states or in tran-
sition between states. States can change only through
the occurrence of a process. In the graphical OPD no-
tation, states are denoted as rounded-corner rectangles
inside an object. Packaging Type in Figure 4, for ex-
ample, can be gift-wrap or ordinary.

Buy Book plays the role of E-Commerce Process of e-
commerce.
Credit Card Info exhibits Credit Card Number and Credit Card
Expiration.
 Credit Card Number is of type XS:string.
 Credit Card Expiration plays the role of Instant of time.
Delivery Details exhibits Delivery Address, Packaging Type, and
Delivery Type.
 Delivery Address is of type XS:string.
 Packaging Type can be gift wrap or ordinary.
 Delivery Type can be fedex one day, fedex 2-3 days,
 ups, or ordinary mail.
Book ISBN plays the role of Identifier of e-commerce.
Located Book plays the role of Product of e-commerce.
Located Book exhibits Book ISBN.
Buy Book requires Located Book.
Buy Book zooms into Buy Sequence, Specify Delivery Details,
and Finalize Buy.
 Buy Sequence requires Sign In Info, Credit Card Info,
 Account Info, and Book ISBN.

Buy Sequence yields Account Output.
 Specify Delivery Details requires Delivery Type,
 Delivery Address, and Packaging Type.
 Specify Delivery Details yields Shipping Order.

Finalize Buy yields Receipt.
Receipt plays the role of Confirmation of e-commerce.

Figure 4: An OPM/S model of the Process Model
of Buy Book

3.5 Meta-Libraries
Meta-libraries are used to specify and utilize ontolo-
gies and domain knowledge in a dynamic and distrib-
uted environment. A meta-library captures domain
knowledge as an OPM model or as an OWL specifica-
tion. For instance, a meta-library concerning e-
commerce will contain concepts such as product, cus-
tomer, order, invoice, and so fourth. It will also con-
tain static and dynamic constraints among these con-
cepts, such as how many products can be ordered in a
single order, should the paying certification precede
the supplying process, etc.

92

-8-

Product exhibits Identifier and Description.
 Description is of type Xs:string.
E-Commerce Process requires many Products.
E-Commerce Process yields an optional Confirmation.

Figure 5: An E-Commerce meta-library

Figure 5 is an OPM model of a simple e-commerce
meta-library. According to this e-commerce ontology,
Product exhibits two attributes, Identifier and De-
scription. This e-commerce meta-library also intro-
duces dynamic constraints on the E-Commerce
Process: the process requires one or more Products
and yields an optional Confirmation.

When defining a Web service, one or more meta-
libraries are imported by selecting a local file or a
URI, or by searching through UDDI registries. After
the meta-library is imported, the Web service model
dynamically references it. The references are re-
freshed each time a design session is initiated, ensur-
ing that every change in the meta-library would be
reflected to all the Web service models that import it.

Each element in a Web service model can be assigned
to one or more roles each of which corresponds to an
element of the meta-library. Buy Book in Figure 2,
for example, plays the role of an E-Commerce Proc-
ess. Hence, it requires Products, Located Books in
this case, and yields a Receipt, which plays the role
of a Certification. Buy Book also requires additional
information (Credit Card Info, Sign In Info, Account
Info, and Delivery Details) and yields Shipping Or-
der and Account Output. Furthermore, the Located
Book (input) object fulfills the structural constraints
of a Product, enforces by the e-commerce meta-
library: it exhibits Book ISBN (the product identifier)
and Book Description (the product description). A
special algorithm (not described in this paper) vali-
dates that the Web service model fulfills the meta-
library (static and dynamic) constraints.

3.6 Transparent Reuse
The interoperability of semantic Web services is sup-
ported by applying OPM's transparent reuse method
 � [20]. Transparent reuse enables dynamic bindings of
system models. Each model is saved separately and
can be modified throughout the entire development
lifecycle, enabling the percolation of its most updated
version to all the models that reuse it. This way,
transparent reuse supports development of a Web ser-
vice from external services that can be further en-
hanced and developed after they were integrated.

When applying OPM's transparent reuse method,
elements from the reused service, which are symbol-
ized as environmental elements (“stubs”), are bound
to concrete (systemic) elements in the target Web ser-
vice, using generalization relations. The environ-
mental elements of the reused Web service cannot be
edited in the target model, and are loaded from their
sources (local files or Internet addresses) each time a
design session is initiated. This way, any alteration in
the reused Web service model will be reflected in all
the target Web services that reuse it.

As an example to the transparent reuse method, con-
sider a case in which Finalize Buy from Figure 4 is
not specified in the Congo Book Buying Service. In
this case, Finalize Buy would be marked as an envi-
ronmental and, correspondingly, Receipt would be
marked as an environmental object (in all levels of the
OPM model), enabling the reuse of external services
for finalizing a buy. An example of such a service can
be the FedEx Service, whose interface includes de-
livery details (as an input) and a receipt (as an output)
in special formats. When binding the FedEx Service
to the Congo Book Buying Service (as a Finalize
Buy process), the integrated Web service uses FedEx
in order to deliver books from the Congo provider.

A supervision mechanism is employed in order to de-
tect changes in Web services that might affect other
Web services. The designer receives a list of warnings
regarding broken bindings between Web services, as
well as suggestions to alternative substitutions for the
broken bindings.

4. CONCLUSIONS
The dynamic nature of the Web and its heterogeneous
information formats require addressing semantic is-
sues when searching and developing Web-based sys-
tems, such as Web services. Using OWL-S for speci-
fying semantic Web service holds great opportunities
for automating Web service discovery, invocation,

93

-9-

composition, interoperation, and execution monitor-
ing. However, current OWL-S modeling and engi-
neering methods need to be improved in order to
make them accessible and useful for humans as well.
This work has proposed OPM, which is a general sys-
tem engineering method, as a convenient, intuitive,
yet formal language for wrapping and expressing
OWL-S specifications. A small set of about a dozen
OPD symbols, along with a semi natural language,
Object-Process Language (OPL), simplify the defini-
tion of Web services for humans. Ontologies and do-
main knowledge are handled in the OPM/S modeling
framework using meta-libraries which are dynami-
cally imported and shared by multiple Web services.
In order to support interoperability between Web ser-
vices, OPM's transparent reuse method is adopted as a
way to integrate Web services. Transparent reuse en-
ables ongoing changes in the integrated models, while
alerting the designer about influences of the changes
on other Web services.

The usage of objects and processes in OPM along
with its three built-in complexity mechanisms enable
modeling the Service Profile, Process Model, and
Service Grounding ontologies of a Web Service in a
single framework, using a single (bimodal) modeling
language. The complexity management mechanisms
also ensure that a Web service model is internally
consistent.

OPM/S expressiveness should be further improved to
support all types of OWL-S logical expressions, such
as complex branches. The research plans also include
implementing an OWL-S translator, which will enable
bi-directional conversion of OPM/S models to OWL-
S specifications and vice versa. In addition, develop-
ment guidelines will be defined for specifying seman-
tic Web services in OPM/S and OWL-S.

REFERENCES

[1] Ankolenkar, M. Burstein, T. C. Son, J. Hobbs, O.
Lassila, D. Martin, D. McDermott, S. McIlraith, S.
Narayanan, M. Paolucci, T. Payne, K. Sycara, and
H. Zeng., OWL-S: Semantic Markup for Web Ser-
vices, www.daml.org/services/, June 2002.

[2] Berners-Lee, T., Hendler, J., Lassila, O., The Se-
mantic Web, Scientific American, 284(5), 2001,
pp. 34-43.

[3] Bose, P., Kogut, P., Leung, Y.H., Woodward,
H.M., Applying UML to Model Web Service On-
tologies for the Semantic Web, OMG Web Ser-
vices Workshop, 3 July 02.

[4] Christensen, E., Curbera, F., Meredith, G., Weer-
awarana, S., Web Services Description Language
(WSDL) 1.1, 15 March 2001,
http://www.w3.org/TR/2001/NOTE-wsdl-
20010315.

[5] Connolly, D., Harmelen, F., Horrocks, I.,
McGuinness, D. L., Stein, L. A., DAML+OIL
Reference Description. W3C Note, 18 December
2001.

[6] DAML.org, Congo Buy Specification,
http://www.daml.org/services/owl-
s/0.9/CongoService.owl

[7] DARPA, CODIP Project, DUET: DAML UML
Enhanced Tool,
http://grcinet.grci.com/maria/www/CodipSite.

[8] Dean, M., Connolly, D., Harmelen, F., Hendler, J.,
Horrocks, I., McGuinness, D. L., Patel-Schneider,
P. F., Stein, L. A., OWL Web Ontology Language
1.0 Reference, July 2002.

[9] Dori, D., Object-Process Methodology - A Holis-
tic Systems Paradigm, Springer Verlag, 2002.

[10] Dori, D., Object-Process Methodology as a basis
for the Visual Semantic Web. Proc. 14th Interna-
tional Conference on Database and Expert Sys-
tems Applications (DEXA 2003), IEEE Computer
Society Press, IEEE International Workshop on
Web Semantics (WebS 2003), September 2003.

[11] Dori, D. Reinhartz-Berger, I. and Sturm A.
OPCAT – A Bimodal Case Tool for Object-
Process Based System Development. 5th Interna-
tional Conference on Enterprise Information Sys-
tems (ICEIS 2003), pp. 286-291, 2003.

[12] OMG, Unified Modeling Language 1.5 Specifica-
tion. OMG Document formal/03-03-01, March
2003.

[13] Mayer, R.E. Multimedia Learning. Cambridge
University Press, 2001.

[14] Narayanan, S. McIlraith, S., Analysis and simula-
tion of Web services, Computer Networks, In
Press, Uncorrected Proof, Available online 10
April 2003.

[15] Noy, N. F., Sintek, M., Decker, S., Crubezy, M.,
Fergerson, R. W., Musen, M. A., Creating Seman-
tic Web Contents with Protege-2000. IEEE Intel-
ligent Systems 16(2), 2001, pp. 60-71,
http://protege.stanford.edu.

[16] Paolucci, M., Srinivasan, N., Sycara, K., Nishi-
mura, T., Towards a Semantic Choreography of
Web Services: from WSDL to DAML-S, Proceed-

94

-10-

ings of the The First International Conference on
Web Services (ICWS'03), June 2003.

[17] Peleg, M, and Dori, D. Representing Control Flow
Constructs in Object-Process Diagrams. Journal of
Object-Oriented Programming, 11, 3, pp. 58-71,
1998.

[18] Peleg, M, and Dori, D., The Model Multi-plicity
Problem: Experimenting with Real-Time Specifi-
cation Methods. IEEE Transac-tion on Software
Engineering, 26, 8, pp. 742-759, 2000.

[19] Reinhartz-Berger, I., Dori, D., Katz, S.,
OPM/Web – Object-Process Methodology for
Developing Web Applications. Annals of Soft-
ware Engineering. 13, pp. 141–161, 2002.

[20] Reinhartz-Berger, I., Dori, D., Katz, S., Open Re-
use of Component Designs in OPM/Web, 26th
annual international Computer Software and Ap-
plications Conference (COMPSAC'02), pp. 19-26,
2002.

[21] Sabou M., Richards D., Splunter S. van, An ex-
perience report on using DAML-S, Workshop on
E-Services and the Semantic Web (ESSW '03),
The Twelfth International World Wide Web Con-
ference. Budapest, Hungary, May 20, 2003.

[22] Wirtz, G., Application of Petri Nets in Modelling
Distributed Software Systems, MOCA01, Den-
mark, Aug. 2001

95

