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Abstract. Modern information systems may exploit numerous XML formats for
communication. Each message may have its own XML format for data represen-
tation which causes problems with integration and evolution of their schemas.
Manual integration and management of evolution of the XML formats may be
very hard. We tackled this problem in our previous work, however, for simplicity
reasons, we omitted the possibility of exploiting reusable schema parts. In this
paper, we complement our previous work with additional methods for schema
integration which exploit reusable schema parts that quite often appear in XML
schemas. This further helps a domain expert to get a precise mapping to a con-
ceptual diagram, which then integrates the XML formats and facilitates their evo-
lution - a change that is made once in the conceptual diagram is propagated to the
XML formats.
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1 Introduction

Today, XML is a standard for communication in various information systems like web
services, etc. A web service provides an interface composed of several operations. The
structure of incoming and outgoing messages is described in a form of XML schemas.
If the XML schemas of communicating web services differ, the problem of their inte-
gration comes to the scene. When the XML schemas are integrated, another problem
arises. Since the business evolves in time the XML schemas need to be adapted too.

We aim at the problem of integration of XML schemas by mapping them to a com-
mon conceptual schema. In our previous work [5, 10, 4], we have introduced a frame-
work for XML schema integration and evolution. It supposes a set of XML schemas
that are conceptually related to the same problem domain. As a problem domain, we
can consider, e.g., purchasing products. Sample XML schemas may be XML schemas
for purchase orders, product catalogue, customer detail, etc. The central part of the
framework is a conceptual schema of the problem domain. Each XML schema is then
mapped to the conceptual schema. In other words, the conceptual diagram integrates
the XML schemas. We then exploit the mappings to evolve the XML schemas when a
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change occurs. Simply speaking, the change is made only once at the conceptual level
and then propagated to the affected XML schemas. It is also possible to exploit the map-
pings to derive interfaces of semantic web services described in SAWSDL as we show
in [11, 8]. In [7, 4] we have introduced a method of XML schema integration, which
will be briefly introduced later.
Contributions In practice, a conceptual diagram and XML schemas exist separately,
i.e. there are no mappings between both levels. This disallows to exploit the integration
and evolution capabilities of our framework. In our work [9], we have introduced a
method for deriving required XML schemas from the conceptual diagram and in [7]
and [4] we have described a reversed method for mapping of an existing XML schema
to the conceptual diagram. In this paper, we extend this method by utilizing inheritance
constructs that often appear in XML schemas and that are supported by our conceptual
model to get even better results and more comfortable way of integrating them.

Our aim is not to develop new methods for measuring schema similarities. These
methods have been already intensively studied in the literature. Instead, we exploit the
existing ones and combine them together. For this, we provide an algorithm skeleton
that can be supplemented by various similarity methods. An important contribution of
the method, not considered by existing similarity methods, is an active participation of
a domain expert. This is necessary, since we need to achieve exact mapping.
Outline The rest of the paper is organized as follows. In Section 2, we present related
work. In Section 3, we briefly present a simplified version of our conceptual model for
XML. Section 4 briefly describes the algorithm from [7, 4] which assists a domain ex-
pert during mapping discovery and we enhance it with methods for dealing with inher-
itance. In Section 5, we evaluate the presented approach. Finally, Section 6 concludes.

2 Related work

Recent literature (surveyed in [6]) has been focused on a discovery of mappings of
XML formats to a common model. We can identify several motivations. XML schemas
are hardly readable and a friendly graphical notation is necessary. This motivation has
appeared in [2][3] or [15]. A survey of these approaches can be found in [17]. They
introduce an algorithm for automatic conversion of a given XML schema to a UML
class diagram. The result exactly corresponds to the given XML schema. However,
these approaches can not be applied in our case – we need to map an XML schema
to an existing conceptual diagram. There are also approaches aimed at an integration
of a set of XML format into a common XML format. These works include, e.g. the
DIXSE framework [13] or Xyleme project [12]. Approaches that convert or map XML
formats to ontologies are DTD2OWL [14], which presents a simple method of auto-
matic translation of an XML format with an XML schema expressed in DTD into an
ontology. More advanced methods are presented in [1] and [16]. They both introduce an
algorithm that automatically maps an XML format to an ontology. This is close to our
approach since a conceptual diagram can be understood as an ontology. In both cases,
the domain expert can edit the discovered mappings but is not involved in the discovery
process directly. For a more detailed description of related work see [7].
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3 Our Conceptual Model

In this section, we will introduce our conceptual model for XML. We follow the Model-
Driven Architecture (MDA) principle which is based on modeling data at several levels
of abstraction. The most abstract level contains a conceptual schema of the problem
domain. The language applied to express the conceptual schema is called platform-
independent model (PIM). The level below is the platform-specific level which specifies
how the whole or a part of the PIM schema is represented in a particular platform. In
our case, the platform is XML.

3.1 Platform-Independent Model

A PIM schema is based on UML class diagrams and models real-world concepts and
relationships between them. It contains three types of components: classes, attributes
and associations.

Definition 1. Let L be a set of string labels and D be a set of datatypes. A schema in
the platform independent model (PIM schema) is a 9-tuple S = (Sc, Sa, Sr, Se, name ,
type, class , participant , card), where:

– Sc and Sa are sets of classes and attributes in S, respectively.
– Sr is a set of binary associations in S. Se is a set of association ends in S. A binary

association is a set R = {E1, E2}, where E1, E2 ∈ Se and E1 6= E2. For any two
associations R1, R2 ∈ Sr it must hold that R1 ∩ R2 6= ∅ ⇒ R1 = R2. In other
words, no two associations share the same end.

– name : Sc ∪ Sa → L resp. name : Sr → L ∪ {λ} assigns a name to each class,
attribute and association. name(R) = λ means that R ∈ Sr does not have a name.

– type : Sa → D assigns a data type to each attribute.
– class : Sa → Sc assigns a class to each attribute. For A ∈ Sa, we will say that A

is an attribute of class(A) or A belongs to class(A).
– participant : Se → Sc assigns a class to each association end. For R = {E1, E2}
∈ Sr, we will say that participant(E1) and participant(E2) are participants of R
or that they are connected by R.

– card : (Sa ∪ Se)→ C assigns a cardinality to each attribute and association end.

The members of Sc, Sa, and Sr are called components of S.

We display PIM schemas as UML class diagrams. A class is displayed as a box
with its name at the top and attributes at the bottom. An attribute is displayed as a
pair comprising the attribute name and cardinality. The data type is omitted to make
the diagram easy to read. An association is displayed as a line connecting participating
classes with the association name and cardinalities.

For a given association R = (E1, E2), we will often use notation (C1, C2) as an
equivalent of (participant(E1), participant(E2) if there are no more associations con-
necting C1 and C2. We will also need a construct called a PIM path.

Definition 2. A PIM path P is an ordered sequence 〈R1, . . . , Rn〉 of associations from
Sr, where (∀i ∈ {1, n})((Ri) = (Ci−1, Ci)). C0 and Cn are called start and end of P .
Functions start and end return for P the start and end of P , respectively.
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An example of a PIM path in our sample PIM depicted in Figure 1(a) is Path =
〈(Purchase, Item), (Item,Product), (Product ,Supply)〉. Purchase and Supply are
start and end of the PIM path, respectively.

3.2 Platform–Specific Model

The platform-specific model (PSM) enables to specify how a part of the reality is rep-
resented in a particular XML schema in a UML-style way. We introduce it formally
in Definition 3. We view a PSM schema in two perspectives. From the grammatical
perspective, it models XML elements and attributes. From the conceptual perspective,
it delimits the represented part of the reality. Its advantage is clear – the designer works
in a UML-style way which is more comfortable then editing the XML schema.

Definition 3. Let L be a set of string labels and D be a set of datatypes. A PSM
schema is a 16-tuple S ′ = (S ′c, S ′a, S ′r, S ′e, S ′m, C ′S′ , name

′, type′, class′, xform′,
participant′, card′, cmtype′, attributes′, content′, repr′), where

– S ′c, S ′a, and S ′m are sets of classes, attributes, and content models in S ′, respec-
tively.

– S ′r is a set of directed binary associations in S ′. S ′e is a set of association ends in
S ′. A directed binary association is a pair R′ = (E′1, E

′
2), where E′1, E′2 ∈ S ′e and

E′1 6= E′2. For any two associations R′1, R′2 ∈ S ′r it must hold that R′1 ∩R′2 6= ∅ ⇒
R′1 = R′2.

– C ′S′ ∈ S ′c is a class called schema class of S ′.
– name′ : S ′c ∪ S ′a → L resp. name′ : S ′r → L∪ {λ} assigns a name to each class,

attribute and association.
– type′ : S ′a → D assigns a data type to each attribute.
– class′ : S ′a → S ′c assigns a class to each attribute. For A′ ∈ S ′a, we will say that
A′ is an attribute of class′(A′) or A′ belongs to class′(A′).

– participant′ : S ′e → S ′c ∪ S ′m assigns a class or content model to each as-
sociation end. For R′ = (E′1, E

′
2), where X ′1 = participant′(E′1) and X ′2 =

participant′(E′2), we call X ′1 and X ′2 parent and child of R′, respectively. We
will also sometimes call both X ′1 and X ′2 participants of R′ and say that X ′1 is
the parent of X ′2 and X ′2 is a child of X ′1, denoted parent′(R′) and child′(R′),
respectively.

– xform′ : S ′a → {e,a} assigns an XML form to each attribute. It specifies the
XML representation of an attribute using an XML element declaration with a simple
content or an XML attribute declaration, respectively.

– card′ : S ′a ∪ S ′e → C assigns a cardinality to each attribute and association end.
– cmtype′ : S ′m → {sequence, choice, set} assigns a content model type to each

content model. We distinguish 3 types: sequence, choice and set, respectively.
– attributes′ : S ′c → 2(S′a) assigns an ordered sequence of distinct attributes to each

class C ′. It must hold that A′ ∈ attributes′(C ′)⇔ C ′ = class′(A′).
– content′ : S ′c ∪ S ′m → 2(S′r) assigns an ordered sequence of distinct associa-

tions to each class or content model X ′. It must hold that R′ ∈ content′(X ′) ⇔
X ′is the parent of R′.
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– repr′ : S ′c \ {C ′S′} → S ′c \ {C ′S′} assigns a class C ′ to another class C ′. C ′ is
called structural representative of C ′. It must hold that C ′ 6∈ repr′(C ′). Neither C ′,
nor C ′ can be the schema class.

The graph (S ′c ∪S ′m,S ′r) with classes and content models as nodes and associations as
directed edges must be a directed forest with one of its trees rooted in the schema class
C ′S′ . Members of S ′c, S ′a, S ′r, and S ′m are called components of S ′.

A sample PSM schema is depicted in Figure 1(b). As can be seen from the defini-
tion, PSM introduces similar constructs to PIM: classes, attributes and associations.

Purchase

 - code

 - date

 - status

Address

 - street

 - city

 - country

 - gps [0,1]

Customer

 - login

 - name

 - phone

 - email [1,*]

Item

 - amount

 - price

 - tester
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bill-to
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1..*

1..*

0..* 0..*1..*

1..*

(a) Sample PIM schema
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1..*
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(b) Sample PSM schema

Fig. 1. Sample PIM and PSM schemas

The PSM-specific constructs have precisely defined semantics. Briefly, a class mod-
els a complex content. The complex content is specified by the attributes of the class
and associations in its content (their ordering is given by functions attributes′ and
content′). An attribute models an XML element declaration with a simple content or
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XML attribute declaration depending on its XML form (function xform′). An asso-
ciation models an XML element declaration with a complex content if it has a name.
Otherwise, it models only that the complex content modeled by its child is nested in
the complex content modeled by its parent. If a class C ′ is a structural representative
of another class repr′(C ′), the complex content modeled by C ′ extends the complex
content modeled by repr′(C ′). This is exactly our definition of a reusable schema part
as multiple PSM classes can be structural representatives of another target PSM class,
meaning that all of them reuse the definition of the target PSM class.

The PSM schema represents a part of a PIM schema. A class, attribute or associa-
tion in the PSM schema may be mapped to a class, attribute or association in the PIM
schema. In other words, there is a mapping which specifies the semantics of classes,
attributes and associations of the PSM schema in terms of the PIM schema. The map-
ping must meet certain conditions to ensure consistency between PIM schemas and the
specified semantics of the PSM schema. This mapping is called interpretation of the
PSM schema against the PIM schema.

Definition 4. Let R = {E1, E2} ∈ Sr be an association. An ordered image of R is a
pair RE1 = (E1, E2) (or RE2 = (E1, E2)).

We will use
−→Sr to denote the set of all ordered images of associations of S ′, i.e.

−→Sr

=
⋃

R∈S′r{R
E1 , RE2}. We need these definitions to be able to distinguish direction of

PIM association, which is normally not needed in PIM.

Definition 5. An interpretation of a PSM schema S ′ against a PIM schema S is a par-
tial function I : (S ′c ∪ S ′a ∪ S ′r) → (Sc ∪ Sa ∪

−→Sr) which maps a class, attribute or
association from S ′ to a class, attribute or ordered image of an association from S,
respectively. For X ′ ∈ (S ′c ∪ S ′a ∪ S ′r), we call I(X ′) interpretation of X ′. I(X ′) = λ
denotes that I is not defined for X ′. In that case, we will also say that X ′ does not have
an interpretation.

Let a function context ′I : S ′c ∪ S ′a ∪ S ′r ∪ S ′m → S ′c return for a given component
X ′ of S ′ the closest ancestor class to X ′ on path′(X ′) so that I(context ′I(X

′)) 6= λ.
The following conditions must be satisfied:

I(C ′S′) = λ (1)
(∀C ′ ∈ S ′c s.t. repr ′(C ′) 6= λ)(I(C ′) = I(repr ′(C ′))) (2)
(∀A′ ∈ S ′a s.t. I(A′) 6= λ)(class(I(A′)) = I(context ′I(A

′))) (3)
(∀R′ ∈ S ′r s.t. I(child ′(R′)) = λ)(I(R′) = λ) (4)
(∀R′ ∈ S ′r s.t. I(child ′(R′)) 6= λ)(I(R′) = (I(context ′I(R

′)), I(child ′(R′))) (5)

Each PSM class, attribute or association can have an interpretation against a com-
ponent of the PIM schema. This mapping means that in the PSM schema the particular
PSM component models the concept represented by the target PIM component in the
PIM schema.

Note that in the context of mapping of a PSM schema to a PIM schema (interpre-
tation construction), the content models present in a PSM schema are irrelevant as they
do not influence the semantics of PSM classes, attributes nor associations.
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4 Algorithm

In this section we will enhance our interpretation reconstruction algorithm first intro-
duced in [7] and extended to a framework in [4] so that it takes into account for reusable
schema parts. These are represented in our conceptual model as structural represen-
tants. Because of lack of space in this paper, we will omit some details of the basic
algorithm, which can be found in [7, 4].

The algorithm builds an interpretation I of a PSM schema against a PIM schema. I
must be correct, it must fulfil Definition 5. Moreover, it must be correct in the conceptual
sense, i.e. a PSM component and its PIM interpretation must conceptually correspond
to the same real-world concept. We ensure the formal correctness. The conceptual cor-
rectness is ensured by a domain expert.

4.1 Overview

The basic algorithm works in three phases. Firstly, it measures initial similarities be-
tween PSM and PIM attributes and classes. Secondly, it creates an initial interpretation
of PSM classes, whose initial similarity to some PIM class is higher than a given thresh-
old. Becasue this is done automatically, there is a possibility that this initial interpreta-
tion is not correct. Therefore, it has to be verified by a domain expert. Nevertheless, the
initial interpretation usually helps to avoid confirming lots of obvious mapping matches
because the domain expert just needs to confirm a list of pre-mapped classes (or uncheck
the incorrect ones). The confirmed initial interpretation now becomes a final interpreta-
tion and the algorithm moves to its third phase. It builds interpretation of the unmapped
PSM classes with an assistance of a domain expert.

We will suppose a PSM schema S ′ and a PIM schema S on the input. The output
of the algorithm is an interpretation I of S ′ against S. We will enhance parts of the
algorithm where the knowledge of reusable schema parts (structural representants) can
help. But first, let us motivate a definiton. Let C ′ be a structural representant of C ′′.
Due to condition 2 of Definition 5, the following must hold: I(C ′) = I(C ′′). This
means that both C ′ and C ′′ need to have the same interpretation in the PIM schema
(or both must remain uninterpreted). This also means (from condition 3 of Definition 5
and from the definition of context ′(C ′)), that PSM attributes of C ′ and C ′′ can only
have attributes of the same PIM class as interpretation. Intuitively, C ′ and C ′′ represent
the same concept in the PSM schema and we can suppose that their names also refer
to the same concept. Note that the same goes for every PSM class C ′′′, that would be a
structural representant of C ′. This justifies the follwing definition.

Definition 6. Let a function ss ′ : S ′c → 2(S′c) return for each PSM class C ′ a set
of PSM classes, which are (transitively) related to C ′ by the structural representative
(repr ′) relation.

For example, let C ′1, C ′2, C ′3 and C ′4 be PSM classes. Let repr ′(C ′1) = λ, repr ′(C ′2) =
C ′1, repr ′(C ′3) = C ′1 and repr ′(C ′4) = λ. Then ss ′(C ′1) = ss ′(C ′2) = ss ′(C ′3) =
{C ′1, C ′2, C ′3} and ss ′(C ′4) = ∅.
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4.2 Measuring Initial Similarity

Attributes. Firstly, the algorithm measures a similarity for each pair of one PIM and
one PSM attribute. This is based on their names and datatypes. This phase is not affected
by the structural representants and we can skip the detailed description. Suffice to say
that results of initial attribute similarity are used in function Sinit−attrs(C ′, C) below,
which gives us similarity of a PSM class and a PIM class based on their attributes.
Classes. Let (C ′, C) ∈ C′ × C. The similarity between C ′ and C is customizable, in
this paper it is a weighted sum

Sinit−class(C′, C) = winit−class ∗ Sinit−attrs(C′, C)

+ (1− winit−class) ∗ max{Sstr (name ′(C′),name(C)), Sstr (xml ′(C′),name(C))}

where winit−class ∈ (0, 1) is a weighting factor and xml′(C ′) is a name of the parent
association of C ′ if any exists. Sinit−attrs(C ′, C) is defined as Sinit−attrs(C ′, C) =∑

A′∈attributes′(C′) maxA∈attributes(C) (Sinit−attr (A′, A)), i.e. it finds for each PSM
attribute A′ ∈ attributes ′(C ′) the most similar PIM attribute A of C and summarizes
these similarities.

This is the first place where we can exploit structural representants. For a PSM class
C ′, we can take attibutes of every C ′′ ∈ ss ′(C ′), because if those classes have an
interpretation, it is the same PIM class for all of them (and similarly for the attributes).
Therefore, we define function attrssr : S ′c → 2(S′a) = ∪C′i∈ss′(C′)attributes ′(C ′i) and
we can redefine:

Sinit−attrs(C ′, C) =
∑

A′∈attrssr (C ′) maxA∈attributes(C) (Sinit−attr (A′, A))

4.3 Initial interpretation

The initial class interpretations are set according to the initial class similarities pre-
computed in the previous step. It is a simple procedure that takes the most similar pairs
of PSM and PIM classes (with similarity greater than a given threshold) and sets these
pairs as initial interpretations. Here is another place were we exploit structural repre-
sentants. Because of the fact that all PSM classes of ss ′(C ′) need to have the same
interpretaion (or none at all), when we initially interpret one of them, we can as well
initially interpret all of them and the interpretation will be the same PIM class. And, of
course, due to the possibility that this interpretation is incorrect, we can provide the user
with the comfort of accepting/rejecting the whole group at once. If the domain expert
chose to consider structural representatives in both the attribute similarity and the name
similarity, this is an effect of the previous modification. The reason for this is that all
of the classes from the group will have the same initial similarities, because when we
computed the initial similarities for one class from the group, we included all the other
classes as well. If, however, the domain expert chose to ignore structural representants
at some stage, the similarities will be different and this adjustment may come in handy.

4.4 Final Interpretation

The third part of the algorithm iteratively traverses the PSM classes in S ′c in pre-order
and helps the domain expert to build the final interpretation. Individual steps are shown
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in Algorithm 1. For an actual PSM class C ′ ∈ S ′c, the algorithm firstly constructs
I(C ′) (lines 2 - 6) and also sets the interpretation for all the PSM classes of ss ′(C ′)
(lines 7 - 9). This is because all of them must have the same interpretation. Secondly,
the algorithm constructs I(A′) for each A′ ∈ attributes(C ′) (lines 10 - 22). Finally, it
constructs I(R′) for each R′ ∈ content(C ′) (lines 23 - 25). It can be shown that this
algorithm runs in O(N3) where N is the number of PSM classes and in O(n× log(n))
where n is the number of PIM classes.

Algorithm 1 Interpretation Construction Algorithm
1: for all C′ ∈ S ′c in post-order do
2: for all C ∈ Sc do
3: Sclass(C′, C)← wclass ∗ Sinit−class(C′, C) +

(1− wclass) ∗ 1
Sadj−class(C′,C)

4: end for
5: Offer the list of PIM classes sorted by Sclass to the domain expert.
6: I(C′)← C where C ∈ Sc is the PIM class selected by the domain expert.
7: for all C′′ ∈ ss ′(C′) do
8: I(C′′)← C {here we set the interpretation for the whole group of PSM classes}
9: end for

10: for all A′ ∈ attributes(C′) do
11: for all A ∈ Sa do
12: Sattr(A′, A)← wattr ∗ Sinit−attr(A′, A) +

(1− wattr) ∗ 1
µ(I(C′),class(A))+1

13: end for
14: Offer the list of PIM attributes sorted by Sattr to the domain expert.
15: I(A′)← A where A ∈ S ′a is the PIM attribute depicted by the domain expert.
16: if I(class′(A′)) 6= class(A) then
17: Create PSM class D′ ∈ S ′c; I(D′)← class(A)
18: Put A′ to attributes′(D′)
19: Create PSM association R′ = (C′, D′) ∈ S ′r
20: Put R′ at the beginning of content′(C′).
21: end if
22: end for
23: for all R′ ∈ content′(C′) do
24: I(R′) ← P where P is the PIM path connecting I(C′) and I(child ′(R′)) s.t.

µ(I(C′), I(child ′(R′))) is minimal.
25: end for
26: end for

Class Interpretation To construct I(C ′), the algorithm firstly computes Sclass(C ′, C)
for each C ∈ S ′c at line 3. It is a weighted sum of two similarities. The former is
the initial similarity Sinit−class(C ′, C). The other is a reversed class similarity adjust-
ment Sadj−class(C ′, C) which we discuss in a while. The algorithm then sorts the PIM
classes by their similarity with C ′ and offers the sorted list to the domain expert at
line 5. The expert selects a PIM class from the list and the algorithm sets I(C ′) to this
selected class at line 6.
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Class similarity adjustment Sadj−class(C ′, C) is computed on the base of the com-
pleted part of I , which includes confirmed initial interpretation. Sadj−class(C ′, C) is a
combination of distances between C and PIM classes Di which are interpretations of
the interpreted neighbors of C ′. µ(C,D) is the distance between PIM classes C and D.

Note that Algorithm 1 is a skeleton which needs to be supplemented with methods
for (1) measuring distances between PIM classes, (2) combining distances, and (3) se-
lecting candidates for C ′ structural similarity adjustment. In this paper, we use basic
methods to show that the general idea works. For measuring the distance between two
PIM classes C and D, we use the length of the shortest PIM path connecting C and D.
As the distance combination method, which results in the aimed Sadj−class(C ′, C), we
can also choose from various possibilities. In this paper, we use

Sadj−class(C ′, C) = (
n∑

i=1

µ(C, I(D′i))
n

) + 1

where D′1, . . ., D′n are the selected interpreted neighbors of C ′. Sadj−class(C ′, C) is
the average of the lengths of the shortest PIM paths between C and each I(D′i).

Finally, we need to decide which mapped neighbors of C ′ will be selected to com-
pute Sadj−class(C ′, C). We can choose among children of C ′ or previous siblings of
C ′, as these were already interpreted by the domain expert in this part of the algorithm.
Because we have some PSM classes interpreted via the initial interpretation, we can
use them as another candidates for structural similarity adjustment, if they are close
enough. Therefore, we can also select interpreted following siblings, interpreted parent
or interpreted ancestors as candidates for structural similarity adjustment. These options
are described and experimented with in [4].

Here is another moment where we can exploit reusable schema parts in a form of
structural representants. As we choose which interpreted neighbors of C ′ to use for the
structural similarity adjustment, we can also work with the same type of interpreted
neighbors of all classes of the group ss ′(C ′). The reasons are the same, because the
interpretation of all classes of the group must be the same PIM class.

The rest of the algorithm remains unaffected by the structural representatives, so
we describe it only briefly. For details, see [7, 4]. When all the PSM classes have been
interpreted or the domain expert decided they should remain uninterpreted, a similar
process is performed for PSM attributes of the classes. The possibilities of mapping a
PSM attribute in this situation are limited due to the rules that the interpretation must
adhere to (see Definition 5). Finally, PSM associations are interpreted with respect to
the same rules.

5 Evaluation

In this section, we briefly evaluate the effect of structural representants on building
interpretations of PSM classes. For more detailed experiments with the overall method
see [7, 4]. We have implemented the introduced method in our tool XCase1 which was
primarily intended for designing XML schemas from a created PIM schema.

1 http://xcase.codeplex.com
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Let us suppose an actual PSM class C ′. Let the domain expert set I(C ′) to a PIM
class C either when asked or when confirming the initial interpretation. We measure
the precision of the algorithm from two points of view. Firstly, we measure the position
of C in the list of PIM classes offered to the expert sorted by their Sclass . We call this
precision a global precision PG:

PG = ((
∑

C′∈S′c

1− order(C)− 1
n

)/n′) ∗ 100

where n denotes the size of Sc, n′ denotes the size of S ′c, and order(C) denotes the
order of C in the list. If there are more PIM classes with the same similarity to C ′,
order(C) is the order of the last one. PG = 0 (resp. 1) if for each PSM class C ′, the
selected PIM class was the last (resp. first).

The global precision is not sufficient. When C is the first class, there can be other
PIM classes before C which have their similarity to C ′ close to Sclass(C ′, C) and make
it harder to distinguish whetherC is or is not a good match forC ′. We therefore propose
another metric called local precision which measures the amount of PIM classes with
their similarity to C ′ close to Sclass(C ′, I(C ′)). It is defined as

PL = ((
∑

C′∈S′c

1− close(C)− 1
n

)/n′) ∗ 100

where close(C) denotes the number of PIM classes with their similarity to C ′ close to
Sclass(C ′, C). The term close similarity can be defined in various ways. In this paper,
we say that y is close to x if y ∈ (x− 0.1, x+ 0.1).

Intuitively, the effect of using structural representants is a reduction of the number
of mapping offers the domain expert needs to go through. This is because when an
interpretation of a PSM class C ′ is constructed, it is automatically constructed for all
PSM classes ss ′(C ′) and the domain expert no longer needs to create the interpretation
for each one of them.

Additionally, the use of structural representants for class similarity computations
may help with global and local precisions. This is, however, dependent on the texts
present in the source PSM schema, its structure and selected methods of similarity
measurements, which so far can not be determined automatically. Therefore, the exper-
imental results are very complex and their description would not fit into this article.

6 Conclusion

In this paper, we studied the effect of exploiting reusable schema parts on techniques
used for mapping of XML formats to a conceptual diagram. We briefly described our
basic algorithm from [7, 4] which allows to exploit various similarity measurement
methods. Then we introduced our enhancements that allow us to take advantage of the
reusable schema parts, which are expressed as structural representants in our conceptual
model. Finally, we have provided a biref evaluation of the proposed method.
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