Transformation of Binary Relationships with
Particular Multiplicity™

Zdenék Rybola! and Karel Richta?

!Department of Software Engineering, Faculty of Information Technology, Czech
Technical University in Prague
2Department of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University in Prague
2Department of Software Engineering, Faculty of Mathematics and Physics, Charles
University in Prague
richta@ksi.mff.cuni.cz

Abstract. The paper deals with one small step in the process of model
driven development (MDD) or model driven architecture (MDA) — widely
used terms nowadays. MDD defines techniques to develop software sys-
tems using variety of models together with a set of transformations. MDD
specifies several levels of models depending on abstraction — ranging from
computation independent models (CIM) to platform independent models
(PIM) into platform specific models (PSM), and implementation specific
models (ISM). Many CASE tools provide automated support for generat-
ing more specific models from more abstract ones — e.g. PSM or ISM from
PIM. This task is referred to as forward engineering. Many tools also pro-
vide automated support for generating more abstract models from more
specific ones — e.g. PIM from PSM or ISM. This task is referred to as re-
verse engineering. Some tools also support round-trip engineering, which
involves both forward and reverse engineering steps such that software
artifacts (model and code) become synchronized. However, these tools
need exact transformation rules to be defined for such transformations.
This paper describes basic principles and restrictions for transformations
of binary relationships and transformations of binary relationships with
the particular multiplicity from PIM level into PSM level. The idea is
illustrated on examples.

1 Introduction

Model driven development is the dream of OMG (Object Management Group),
and the top desire is so called round-trip engineering. It is the combination of
a forward process (generating code from model) and a reverse process (generat-
ing model from code). The necessary equipment for such round-trip process are
transformations, which serve as the description of partial steps in this process.
OMG offers Unified Modeling Language (UML) for the description of models.

* This work has been partially supported by the grant project of the Czech Grant
Agency (GACR) No. GA201/09/0990 and by SGS grant.

V. Snésel, J. Pokorny, K. Richta (Eds.): Dateso 2011, pp. 25-38, ISBN 978-80-248-2391-1.

26 Zdenék Rybola, Karel Richta

The necessary part of such notation is a language for description of model con-
straints — in the case of UML it is Object Constraint Language (OCL) — one of
the basic parts of UML.

OMG defines MDA or MDD [6] as the set of modeling levels or views. These
models can be transformed — from the upper level to a lower one, or from the
lower level to an upper one, or between models on the same level of abstraction
—some sort of model refactoring. Transformations have to be described precisely
in some formal fashion.

OCL [3,10,7] is a specification language. As a part of UML standard [5,4], it is
used to define restrictions for the model in UML by constructs such as invariants,
pre- and post-conditions connected to model elements which give context for the
constraints.

This paper deals with the basic principles of transformations of binary rela-
tionships in PIM level into PSM level. To illustrate these principles we suppose
the relational database system as the platform, so the SQL serves as the platform
specific language. Where particular restrictions are required for transformation
of binary relationship to PSM, OCL constraints in PIM level are defined first, so
these can be used in transformations to other PSMs or by automated transforma-
tion tools such as [9,2,13]. These tools provide support to OCL syntax checking,
constraints evaluation for system snapshots and even generating of source code
for connected model and constraints.

The paper is structured as follows. Section 3 defines the binary relationship
and its multiplicities. Transformation techniques for relationships with common
multiplicity values is presented in section 4. Particular multiplicities and their
transformation is explained in section 5. Example of full PIM transformation
with relationships with particular multiplicity values is shown in section 6 and
final conclusions are given in section 7.

2 Existing tools for model and constraint transformation

There are several tools that provide support for model and OCL constraint
evaluation and transformation.

Enterprise Architect [12] is a CASE tools for creating and managing models.
It supports model transformation, source code generation and reverse engineer-
ing from source code to PSM models. For instance, it includes transformation
from platform independent class model to platform specific database model and
also generation of SQL source code from the database model. However, these
transformations does not consider the minimal multiplicities of a relationship
for the required constraints as described further in this paper.

Dresden OCL Toolkit [2,13] is a Eclipse plugin. The toolkit can load a UML
class model and OCL constraints. It can load a model instance and evaluate
the constraints for it. It can also generate SQL code for a database to create
and constraints to check in it or AspecJ source code for constraints checking in
Java. However, even this toolkit does not consider the minimal multiplicities of

Transformation of Binary Relationships with Particular Multiplicity 27

a relationship for the foreign key direction, nullability and uniqueness or specific
OCL constraints creation to ensure the multiplicity.

Therefore we want to define the multiplicity constraints in a formal way — in
OCL - so they can be adapted in such a tool.

3 Binary relationship and its multiplicities

The conceptual model uses entities or classes as the representation of the types
of objects, and associations between them representing relationships between
entities. Relationships can be unary (properties of objects), binary (an associa-
tion between two objects), or n-ary (an association between n objects). It can
be proved, that n-ary relationships can be substituted by (n-1) binary relation-
ships without loss of generality [11]. Therefore, we can elaborate only the binary
relationships.

Binary relationship is a connection between two entities. It means instances
of one entity has a relationship to an instance of the other one (however, it can
be the same entity as well).

class Multiplicity

ClassA ClassB

Fig. 1. Labeling of minimal and maximal multiplicities of a relationship in UML class
diagram

There are several types of relationship depending on multiplicities of the
relationship. The multiplicity defines the number of instances connected to each
other. Fig. 1 shows general form of modeling binary relationships using UML
class diagram notation [4,5,1]. Multiplicities of the relationship are labeled by
parameters k, I, m and n with the following meaning:

— k represents minimal number of instances of ClassA related to an instance
of ClassB

— [represents maximal number of instances of ClassA related to an instance
of ClassB

— m represents minimal number of instances of ClassB related to an instance

of ClassA

n represents maximal number of instances of ClassB related to an instance

of ClassA.

The minimal multiplicity of a relationship indicates the obligation of an instance
to be related to instance or instances of the other type. Minimal multiplicity

28 Zdenék Rybola, Karel Richta

equal to zero means that there is no obligation for the source instance to be
related to any instance of the target type. On the other hand, when the minimal
multiplicity is equal to one, it means that the source instance must be related
to at least one target instance. The former is actually no restriction at all. The
latter is a restriction and it can be expressed using OCL constraint as follows:

context a:ClassA inv minBdirect:
not a.b.asSet()->isEmpty()

Because the relationship can be unidirectional — and it usually is, for instance
in PSM for relational database using foreign keys — it is useful in such case to
define the constraint in reverse direction like the following:

context a:ClassA inv minBreverse:
ClassB.allInstances()->exists(b | b.a = a).

The maximal multiplicity of relationship indicates if the instance can be
related just to a single target instance or to a set of target instances. The maximal
multiplicity of one stands for an instance of source type being related to a single
instance of target type, while asterisk (*) stands for a set of instances of target
type related to a single instance of the source type. The latter one is actually no
restriction while the former is a restriction and it can be expressed using OCL
constraint as follows:

context a:ClassA inv maxBdirect:
a.b.asSet()->size() <=1

or with perspective of unidirectional relationship as follows:

context a:ClassA inv maxBreverse:
ClassB.allInstances()->count(b|b.a=a) <= 1

However, minimal and maximal multiplicities can take other values. We call
such multiplicities particular ones and deal with them in section 5.

4 Transformation of binary relationships to PSM of
relational database

In relational databases entities are represented by tables of rows, while rows
represent instances of entities [11,8]. Each row can be identified by a mechanism
called primary key, which ensures that each record is identified by the nonempty
unique key. Relationships between instances of entities are represented by a
mechanism of foreign keys, which links a row in the table (representing source
entity) to a single row in a table representing target entity — using the target’s
primary key.

The mechanism of foreign and primary keys brings two main problems. Using
this mechanism, any single source row can refer just to a single target row, not a

Transformation of Binary Relationships with Particular Multiplicity 29

set of rows, and therefore it can only realize one-to-one or one-to-many relation-
ship. This is in contrast to conceptual modeling on PIM level where many-to-
many relationships are also possible (and very common). Second problem is that
the connection represented by foreign key is unidirectional in contrast to bidi-
rectional relationships used in PIMs. That means in PSM of relational database,
source entity has direct link to target entity while target entity does not have
direct link back.

class OneToOne Onesid.. /7 | [eclass OneToOne-Onesided P reverse /

Student AR B

- name: string
- username: string Student D

11 «column» +PH_Student +FK_Address_Student
name: VARCHAR2(50)
username: VARCHARZ{S0)

“PK studentlD: NUMBER(S) 1.1 «FK 0.1

2.1 «FHx

+ FK_Address_Student{NUMBER)

“FK studentiD: NUMBER(S)

(studentlD = studentlD}

«PKs

Address + PK_Student{NUMBER}

cuniques
+ UQ Address studentiD{NUMBER)
wPka

+ PK_Address{NUMBER)

- city: string
- steet shring

a) PIM b) PSM

Fig. 2. a) PIM and b) PSM of one-to-one relationship with one side required

However, according to Fig. 2 where the one-to-one relationship is realized
by foreign key referring from the table Address to the table Student, this mech-
anism automatically ensures that the maximal multiplicity of target entity in
relationship is always equal to one (I=1). Furthermore, we can determine the
minimal target multiplicity to zero (k=0) by making the foreign key nullable (i.e.
it can be null, referring no target table row) or to one (k=1) by making it not
nullable (i.e. must not be null, must refer some target table row). Because the
foreign key is unidirectional, there is no restriction to the maximal multiplicity
of the source entity in relationship and it is implicitly infinite. However, we can
restrict it to one (n=1) by making the foreign key unique.

There is no way to restrict the minimal multiplicity of the source entity
in the relationship (multiplicity m in Fig. 1) using just the foreign key. [11]
suggests using on delete restrict clause for the foreign key. However, this clause
ounly restricts deletion but not existence of related instance in general. Therefore
we suggest defining a special constraint to restrict it to one (m=1) if required.
This constraint is defined in sections 4.1 and 4.2. There are also some other
restrictions for the realization by the foreign key mechanism depending on the
multiplicity of relationship described in sections 4.1, 4.2 and 4.3.

4.1 Transformation of one-to-one relationship

In one-to-one relationship the direction of the foreign key differs depending on
the minimal multiplicities of the relationship.

30 Zdenék Rybola, Karel Richta

If both minimal multiplicities of the relationship are equal to zero, the direc-
tion of the foreign key does not matter in this case.

If the minimal multiplicity of one side of the relationship is equal to one,
the direction of the foreign key realization is given as follows: the foreign key
must be not nullable and must refer from the table representing the not required
entity referring to a primary key in the table representing the required entity as
shown in Fig. 2b.

If both minimal multiplicities of the relationship are equal to one, the rela-
tionship is required by both sides. In this situation there are two possible methods
to realize the required relationship in PSM for relational database: using single
foreign key; or using pair of reverse foreign keys.

class OneToOne-Bothsided PSM single key/

Student =]

<columns
name: VARC
usemame:

*PK studentiD: NUMBE +FK_Student_Address +Pi_Address | *columna

“FK sddressiD: NUMBER(E) {addressiD = addressiD) ity: VA

Address B

a) single foreign key

1.1 «FHx 1.1

zunigues
+ UQ_Student_addressID{NUMBER)
=Pk

+ PK_StudentiNUMBER)

=FHa

+ FK_Student_AddressNUMBER)

wPHa
+ PK_Address{NUMBER)

class OneToOne-Bothsided PSM double key /

Student B Address B

+FK_Student_Address +PK_Address | eolumns
{addressiD = addressiD) city: VARCHAR2(50)

«FKas street: VAR a)

“PK addressiD: NUN
“FK studentlD: NUMBERE)

«columns
name: VARG
username
*PK studentlD: NUMBE
“FK addressiD: NUMBER(S)

b) pair of foreign keys

cuniques #FHn

+ UQ_Student_sddressiDiNUMBER, | *FK-Student FFK_Address Student| oy s ddiress_Student/NUMBER)
{studentlD = stugentID) :

aPKx «unigues

+ PK_Student{NUMBER) «Fha + UQ_Address_studentiD{NUMBER)

<FKa «Fie

+ FK_Student_Address(NUMBER) + PK_Address|NUMBER)

Fig. 3. PSM of one-to-one both-side required relationship with a) single foreign key
and b) pair of foreign keys

Using single foreign key. In this case, the direction of the foreign key does
not matter again like in the situation where both minimal multiplicities are zero.
Let’s consider the realization shown in Fig. 3a. To ensure minimal multiplicity
k=1 while using only a single foreign key the realization of the reverse definition
of the constraint for minimal multiplicity defined in section 3 is necessary to
check for existence of the other related instance. The OCL constraint can be
realized in SQL as view selecting records violating the multiplicity restrictions.
The constraint view for the situation in Fig. 3 can be defined as follows:

Transformation of Binary Relationships with Particular Multiplicity 31

CREATE VIEW violating_address AS
SELECT a.addressID FROM Address a
WHERE NOT EXISTS (SELECT 1 FROM Student s WHERE s.addressID = a.addressID);

This constraint can be also used to realize one-to-one relationship with one
side required using the foreign key of reverse direction, i.e. the foreign key re-
ferring from the table of the required entity to a primary key in the table of
the not required entity. In this case this constraint must be defined to ensure
required minimal multiplicity in the opposite direction k=1 and the foreign key
is nullable to enable minimal multiplicity m=0.

Using pair of reverse foreign keys. Another possible solution to ensure both
minimal multiplicities k=1 and m=1 in one-to-one both-side required relation-
ship is using pair of reverse not null unique foreign keys as shown in Fig. 3b.
However, additional constraint must be defined to make sure both foreign keys
refer the same instances, i.e. there is no circle of relations between a set of in-
stances of both types like s1 -> al -> s2 -> a2 -> sl. The constraint can be
defined in PIM in OCL as follows:

context s:Student inv notCircular: s.add.std = s

In PSM for relational database the constraint can be realized as view selecting
records violating this constraint as follows:

CREATE VIEW violating_circular_students AS
SELECT s.studentID FROM Student s, Address a
WHERE s.addressID = a.addressID and a.studentID <> s.studentID;

Single table realization of one-to-one relationship. One-to-one relation-
ship in general can be also realized by a single table representing both related
entities. Such table contains all attributes of both entities and each row in such
table stands for the whole relationship of instances while in case of no instance
related the attributes of not participating instance stay null.

However, this realization violates third normal form [11] and the intention
of designer to represent the entities separately. If the designer intends to realize
the relationship in a single table then he can make this transformation in PIM
already.

We prefer the realization using two separate tables and relationship realized
by single foreign keys with additional constraints as described above.

4.2 Transformation of one-to-many relationship

One-to-many relationship is realized in PSM for relational database using for-
eign key like in the realization of one-to-one relationship. In this situation the
direction of the key is strictly defined by the maximal multiplicities — the foreign

32 Zdenék Rybola, Karel Richta

class CneToMany PIM / class OneToMany P5M /
Year Term D
- year int Year D awcolumne
ber: ¥ {1}
£column +PK_Year +FK_Term_Year = :E::I—;uxa r']ég:lrg'1_BEH'1'
year: NUMBER{4) [yearlD = yearl D) -)) .' o
+year 1.1 PiC yearlD: NUMBERIS) = FK yearlD: NUMBER(2}
¥ . / P «FKa 1.+
aPHx
Herms | 1. :PK’;K e + PK_Term{NUMBER)
ean{MUM)
e . &Fia

Term
+ FKE_Tem_Year{NUMBER)

- term_number: int

b) PSM

a) PIM

Fig. 4. a) PIM and b) PSM of one-to-many relationship

key must refer from the table representing the entity with higher multiplicity
(source) to the table representing the entity with maximal multiplicity of one
(target). Transformed PSM for the situation in Fig. 4a is shown in Fig. 4b.

Maximal multiplicity /=1 is ensured by the foreign key mechanism. To enable
maximal multiplicity of the other side n=%* the foreign key is not unique, so many
source rows can refer the same target row. If the target entity is required in the
relationship (i.e. the minimal multiplicity of target is k=1), the foreign key must
be not null to ensure the requirement of being related to at least one target
record. Finally, if the source entity type is required in the relationship (i.e. the
minimal multiplicity of source entity is m—1), additional constraint must be
defined and realized as shown in section 4.1.

The constraint can be realized in PSM for relational database by the following
view selecting records that violate the required multiplicity:

CREATE VIEW violating_years AS
SELECT y.yearID FROM Year y
WHERE NOT EXISTS (SELECT 1 FROM Term t WHERE t.yearID = y.yearID);

4.3 Transformation of many-to-many relationship

It has been said before that relationships in relational databases are realized by
using foreign key which is unidirectional and always refers only to a single row in
a table. To realize many-to-many relationship we need to decompose the relation-
ship into two one-to-many relationships and an entity to represent the original
relationship (association entity) [11]. Minimal and maximal multiplicities of the
original relationship become minimal and maximal multiplicities of the associa-
tion entity in the appropriate one-to-many relationship. Minimal and maximal
multiplicity of the original related entities become one in the relationship to the
association entity.

Example of the decomposition of the relationship in PIM level is shown in
Fig. 5a and 5b. The many-to-many relationship of entities Class and Registration

Transformation of Binary Relationships with Particular Multiplicity 33

class ManyToMany PIN / class OneToMany PIM As / class ManyToMany PSM /

Registration Registration Registration B

«cclumna
“PK registrationlD: NUMBER(S)

sreg | 0.0 +reg (1.1 P K

+ PH_ UMBER)
. - Haa)
s | 1.0 “oin |1 e~ JoinRegistrationToClass 5]

«FKaz 1.°
JoinRegistraionClass «columns

+Registration | *FK classID: NUMBER(E)

Class

- title: sting “FK registrationiD: NUMBER(E)
~Class

— - . _ \ 0.-| «FKs

“jain | 0. Class B (class|D = classD) + ClassNUMBER]

vats | 11 1.1 <FKa ~ Registrstion{NUMBER)

scolumns
title: VARCHARZ2{50)
o | #PE_CI.
EEED “Pi classiD: MUMBER(E) -

- title: sting
wPHa
+ PK_Class(NUMBER)

a) PIM b) decomposed PIM c) PSM

Fig. 5. PIM of many-to-many relationship

has been decomposed to an entity JoinRegistrationClass representing the rela-
tionship between a class and a registration and two one-to-many relationships
of Class and JoinRegistrationClass and Registration and JoinRegistrationClass.

After this decomposition the transformation for both one-to-many relation-
ships can be applied as shown in section 4.2. The resulting realization of the
many-to-many relationship is shown in Fig. 5c.

5 Binary relationship with particular multiplicity

We have presented methods to transform typical cases of binary relationships
from PIM to PSM for relational database. We have defined constraints for typical
minimal and maximal multiplicities of relationships and their transformation to
SQL views to select rows violating multiplicity constraints.

class LimitedMultiplicity PIM /

Year Term
+year +terms

- year int - term_number: int

Fig. 6. PIM of one-to-many relationship with particular multiplicity

In many practical modeling situations the multiplicities of relationships in
PIM are not restricted to those typical situations mentioned before. The multi-
plicities can be more restrictive to define exact number of instances being related
together. We use the term particular multiplicity for minimal multiplicity greater

34 Zdenék Rybola, Karel Richta

than one or for maximal multiplicity other than * or 1. An example of such sit-
uation of strongly restricted multiplicities is shown in Fig. 6. The figure presents
the situation of years and terms again, but this time a year consists of exactly
two terms.

The type of relationship and its transformation is still defined by the maxi-
mal multiplicities as shown in Section 4. To restrict the particular multiplicity,
additional constraints must be defined for minimal and maximal multiplicities.
Using the notation shown in Fig. 1 with perspective of unidirectional realization
of relationships these constraints can be defined in OCL as follows:

context a:ClassA inv minA:
ClassB.allInstances()->count(b | b.a = a) >=m

for the minimal multiplicity restriction and

context a:ClassA inv minA:
ClassB.allInstances()->count(b | b.a = a) <= n

for the maximal multiplicity restriction. If both minimal and maximal mul-
tiplicity of one side of a relationship are restricted to particular values, both
constraints can be joined together into single constraint:

context a:ClassA inv minA:

ClassB.allIlnstances()->count(b | b.a = a) >=m
&
ClassB.allInstances()->count(b | b.a = a) <= n

5.1 Transformation of particular multiplicity constraints

Relationships with particular multiplicities are transformed to PSM for relational
database the same way as binary relationships with typical multiplicities as
defined and shown in section 4. Additionally, the defined constraints must be
realized in SQL to ensure required multiplicity values. This can be done for
situation from Fig. 6 by defining views selecting records violating the restricted
multiplicities as follows:

CREATE VIEW violating years_minimal AS
SELECT y.yearID FROM Year y
WHERE 2 > (SELECT count(*) FROM Term t WHERE t.yearID = y.yearID);

for the minimal multiplicity m=2 and

CREATE VIEW violating_years_maximal AS
SELECT y.yearID FROM Year y
WHERE 2 < (SELECT count(*) FROM Term t WHERE t.yearID = y.yearID);

for the maximal multiplicity n=2. In this situation, both minimal and max-
imal multiplicities are restricted to particular values, so a single view can be
defined selecting records of years violating the restricted multiplicities generally:

Transformation of Binary Relationships with Particular Multiplicity 35
CREATE VIEW violating_years AS

SELECT y.yearID FROM Year y
WHERE 2 <> (SELECT count(*) FROM Term t WHERE t.yearID = y.yearlID);

6 Example transformation

class Conceptual Model
Student Address
- name: string - city: string
- usermame: string 1 0.11_ street: string
1
1.8
Registration Term
- term_number: int
0.~ 1
o 2
4.10 !
Class Year
- itle: string - year int

Fig. 7. PIM of the example

To illustrate binary relationships between entities and their transformations
to PSM for relational database we prepared an example of a small school system
for evidence of students and their registrations of classes to set of terms. Students
make a registration of four to ten classes each term they study while each school
year consist of exactly two terms. Each student can make eight registrations at
most but, on the other hand, it must be registered at least into one term to
appear in the system. Students may have address assigned but there might be
no addresses without a student assigned. Fig. 7 presents UML class diagram][1]
for the PIM of the example.

We chose transformation of PIM to PSM using the single foreign key to rep-
resent binary relationships between entities with additional constraints defined
in OCL a realized in SQL as views as shown in this paper. The PSM is shown
in Fig. 8 and the constraints defined as follows:

context s:Student inv countRegistrations:
Registration.allInstances()->count(r | r.std
&

Registration.allInstances()->count(r | r.std = s) <= 8

s) >= 1

36

Zdenék Rybola, Karel Richta

class Psm

Student

«columns
name: VARCHARZ(S

“PK student/D: NUMBER(S)

username:. VARCHARZY

+PK_Student

Address =]

+FK_Address_Student

(studentlD = studentiD)

«ocolumnz
city: VARCHAR2(50)
street: VARCHAR2(50)
*PK addressiD: NUMBER(8)
“FK studentlD. NUMBERE]

«FKx

<Pi»
+ PK_Student{NUMBER)

+PK_Student/|\ 1

[studentlD = studentiD)
'
«FKa

+FI_Registration_Student[1..8

Registration

«ocolumnz
“PH registration|D:
“FK studentlD: HUMBES

NUMEER{E)

+FK_Registration_Term

auniques

+ U@ Address_studentiD(NUMEER)

«PHa
+ PK_Address(NUMBER)

«FKa

+PK_Term

+ FK_Address_StudentNUMBER)

E|

<columnz
term_number.
“PK termiD: NUMBER(E)

NUMEBER{1)

*FK termiD: NUMBER(S) ftermID = termiD) “FK yearlD: NUMBE
0.~ «FKa 1
«PKa -
o — q «PHa
+ PK_Registration{NUMBER) 2Rk TermpumBER)
«FKa =
+ FK i UMBER;) | +PHK, —
- -) + FK_Term_Yesr(NUMBER)
+ FK_Registration_Term{NUMBER) 1 e
+FK_Term_Yesr | 2
fregistration!D = registrationiD) (yesriD = yeariD)
«FKa Pk
410 JoinRegistrationToClass [5] +PK _Yeary /1
Class =] scolumna = =]
~ | *P¥ registrationiD: NUMBER(S)
xoolumnz +PK_Glass +Class | ¢ oD, NUMBERY =columns
title: VARCHARZ {classiD = classiD) year: NUMBER{4)
*PK classiD: NUMBER{S) [, FKe 0~ “PK yearlD: NUMBER(S)
-] aFKe
+ Class(NUMBER)
«Pla + Registrstion(NUMBER] cRE .
+ PK_Class(NUMBER) + PK_YearNUMBER)
= = «PHa
+ PK_Join{NUMBER, NUMBER)

Fig. 8. Transformed PSM of the example

Transformation of Binary Relationships with Particular Multiplicity 37

for multiplicity from 1 to 8 of relationship between Student and Registration,

context y:Year inv countTerms:
Term.alllnstances()->count(t | t.year = y) = 2

for multiplicity 2 of relationship between Year and Term, and

context r:Registration inv countClasses:
Class.allInstances()->count(c | c.reg = r) >= 4
&

Class.allInstances()->count(c | c.reg = r) <= 10

for multiplicity from 4 to 10 of relationship between Registration and Class.
In PSM the defined constraints are realized by views selecting records vio-
lating multiplicity restrictions as follows:

CREATE VIEW violating_countRegistrations AS
SELECT s.studentID FROM Student s
WHERE (SELECT count(*) FROM Registration r
WHERE r.studentID = s.studentID) NOT BETWEEN (1,8);

for multiplicity from 1 to 8 of relationship between Student and Registration,

CREATE VIEW violating_countTerms AS
SELECT y.yearID FROM Year y
WHERE (SELECT count(*) FROM Term t WHERE t.yearID = y.yearID) <> 2;

for multiplicity 2 of relationship between Year and Term, and

CREATE VIEW violating_countClasses AS
SELECT r.registrationID FROM Registration r
WHERE (SELECT count(*) FROM JoinRegistrationToClasses j
WHERE j.registrationID = r.registrationID) NOT BETWEEN (4,10);

7 Conclusions

In this paper we presented transformations of binary relationships from PIM to
PSM for relational databases. We presented basic principles of transformations
of relationships according to their multiplicities to relational tables with the
mechanism of foreign and primary keys. We also suggested restrictions associated
with the relationship realization in PSM to ensure required minimal multiplicities
in relationships. We defined these restrictions in PIM using OCL constraints
so automated tools can use them for their transformations. We also presented
examples of transformation of such constraints to PSM for relational databases
as views selecting rows that violate the required multiplicities.

We also defined particular multiplicities of relationships and their expression
using OCL constraints. We suggested its transformations to PSM for relational
database and showed examples for illustration. We also presented a full example
of PIM transformation to PSM for relational database with required constraints
as suggested and defined in this paper.

38 Zdenék Rybola, Karel Richta
References
1. Arlow, J., Neustadt, I.. UML 2.0 and the Unified Process: Practical Object-

10.

11.

12.

13.

Oriented Analysis and Design (2nd Edition). Addison-Wesley Professional (2005)

. Demuth, B.: DresdenOCL. http://www.reuseware.org/index.php/DresdenOCL

(Jan 2011)

OMG: Object constraint language, version 1.3.
http://www.omg.org/spec/OCL/2.2/PDF (Feb 2010)

OMG: Object management group - UML. http://www.uml.org (Feb 2011)

OMG: UML 2.3. http://www.omg.org/spec/UML/2.3/ (Feb 2011)

OMG, Miller, J., Mukerji, J.: MDA guide version 1.0.1. http://www.omg.org/cgi-
bin/doc?omg/03-06-01.pdf (Jun 2003)

Richta, K.: Jazyk OCL a modelem fizeny vyvoj. In: Moderni databaze - Architek-
tura modernich IS 2010 (2010)

Richta, K.: Rekonstrukce OCL z SQL. In: Datakon 2010 (2010)

Richters, M., Biittner, F., Gutsche, F., Kuhlmann, M.: USE - a UML-based spec-
ification environment. http://www.db.informatik.uni-bremen.de/projects/USE/
(Jan 2011)

Richters, M., Gogolla, M.: OCL: syntax, semantics, and tools. In: Object Modeling
with the OCL, The Rationale behind the Object Constraint Language. pp. 42-68.
Springer-Verlag (2002)

Rob, P., Coronel, C.: Database Systems: Design, Implementation, and Manage-
ment. Boyd & Fraser, 2nd edn. (1995)

Sparx Systems: Enterprise architect - UML design tools and UML CASE tools for
software development. http://www.sparxsystems.com.au/products/ea/index.html
(Mar 2011)

Wilke, C., Thiele, M., Freitag, B.: Dresden OCL: manual for installation, use and
development (Oct 2010)

