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Abstract 

Clustering techniques have been used on educational data 

to find groups of students who demonstrate similar learning 

patterns.  Many educational data are relatively small in the 

sense that they contain less than a thousand student records. 

At the same time, each student may participate in dozens of 

activities, and this means that these datasets are high 

dimensional.  Finding meaningful clusters from these 

datasets challenges traditional clustering algorithms. In this 

paper, we show a variety of ways to cluster student grade 

sheets using various clustering and subspace clustering 

algorithms. Our preliminary results suggest that each 

algorithm has its own strength and weakness, and can be 

used to find clusters of different properties.  We also show 

that subspace clustering is well suited to identify 

meaningful patterns embedded in such data sets. 

Introduction 

Traditional data mining projects deal with datasets 
containing thousands or millions of records. Educational 
data mining tends to deal with much smaller datasets, 
normally in the range of several hundred student records. 
Even though a course may be offered multiple times, it is 
difficult to merge all these data records because every 
offering of the same course may involve different set of 
activities. On the other hand, many educational datasets 
are by nature high dimensional. For example, students’ 
learning in a course may be assessed by utilizing an 
aggregation of several assignments, quizzes and tests. It is 
typical to have more than a dozen activities that contribute 
to a student’s final grade. The log data from online 
teaching courses contain even more features describing the 
activities participated by each individual student.  

Clustering is a very useful technique that finds groups of 
students demonstrating similar performance patterns. Since 
the number of students for each dataset rarely goes beyond 
a thousand and the number of features tends to be 
comparable to the number of students, finding coherent 
and compact clusters becomes difficult for this type of 
data. It is difficult because the pair-wise distance between 
students using the full-dimensional space becomes 
indistinguishable when the number of features becomes 
high. This problem is described as the curse of 
dimensionality, and it makes traditional clustering 
algorithms, such as k-means, unsuitable to be directly 
applied to high dimensional datasets.   

Subspace clustering was proposed as a solution to this 
problem (Agrawal et al. 1998). Subspace clustering 
algorithms search for compact clusters embedded within 
subsets of features, and they have shown their effectiveness 
in domains that have high dimensional datasets similar to 
educational data. One specific example is its application to 
microarray data analysis. Microarray datasets tend to have 
similar sizes as educational datasets, mostly in the range of 
several hundred instances (genes or students) and several 
hundred features (samples or activities). Subspace 
clustering algorithms find subsets of genes that show 
similar expression levels under subsets of samples (Cheng 
et al. 2000; Madeira et al. 2004).  

In this paper, we present some preliminary results from 
applying a variety of different clustering techniques, 
including subspace clustering, to student grade sheets. We 
show that clustering this type of datasets can provide the 
instructor a tool to predict who are likely to fail the course 
at very early stage as well as a possible explanation why 
they are failing. 

Related Research 

Over the last decade, many data mining techniques have 
been applied to educational data (Bravo et al. 2009; Dekker 
et al. 2009; Merceron et al. 2009). Research has shown that 
some techniques are more suitable for educational data than 
others, mainly because of the inherent characteristics of the 
datasets in this domain. For example, support and 
confidence, the two commonly used interestingness 
measurements for association rules, are not suitable for 
pruning off association rules when applied to educational 
data (Merceron et al. 2009). Instead, the authors have 
found that cosine and added value (or equivalently lift) are 
better measurements for educational data. One possible 
reason is that educational data have much smaller number 
of instances than the market basket data. Therefore, support 
and confidence tend to fall short in catching the real value 
of a good association rule in educational context.  

Subspace clustering was first introduced to cluster students 
skill sets in (Nugent et al. 2009). The authors proposed to 
start with a “value-hunting” scanning for each individual 
feature to find out all features that contain meaningful and 
well-separated single-dimensional clusters. Those features 
that contain no good clusters were disregarded from further 
consideration. Then using all remaining features, 
conventional clustering algorithms such as hierarchical 
clustering and k-means were applied to identify clusters 



resided in higher-dimensional spaces. In their research, 
subspace is used to prune off uninteresting features before 
the actual clustering process starts, and it is very similar to 
a feature selection procedure. 

In general, a subspace cluster is a group of similar 
instances within their own subset of features. After the first 
subspace clustering algorithm for data mining was 
proposed (Agrawal et al. 1998), many different algorithms 
have been proposed. These algorithms can be classified 
into two categories: partition based approaches (Agrawal 
et al. 1999; Agrawal et al. 2000) and grid based 
approaches (or density-based approaches) (Agrawal et al. 
1998; Cheng et al. 2000; Kriegel et al. 2009).  

Partition-based algorithms partition all instances into 
mutually exclusive groups. Each group, as well as the 
subset of features where this group of instances show the 
greatest similarity is reported as a subspace cluster. Similar 
to k-means, most algorithms in this category define an 
objective function to guide the search. The major 
difference between these algorithms and the k-means 
algorithm is that the objective functions of subspace 
clustering algorithms are related to the subspaces where 
each cluster resides in. Notice that in subspace clustering, 
the search is not only on a partition on the instance set, but 
also on subspaces for each instance group. For example, 
PROCLUS (Agrawal et al. 1999) is a variation of the k-
medoid algorithm. In PROCLUS, the number of clusters k 
and the average number of dimensions of clusters are 
specified before the running of the algorithm. This 
algorithm also assumes that one instance can be assigned 
to at most one subspace cluster or classified as an outlier, 
while a feature can belong to multiple clusters. Unlike 
PROCLUS that finds only axis-parallel subspace clusters, 
ORCLUS (Agrawal et al. 2000) finds clusters in arbitrarily 
oriented subspaces.  

Grid-based (density-based) algorithms consider the data 
matrix as a high dimensional grid, and the clustering 
process is a search for dense regions in the grid. In 
CLIQUE (Agrawal et al. 1998), each dimension is 
partitioned into intervals of equal-length, and an n-
dimensional unit is the intersection of intervals from n 
distinct dimensions. An instance is contained in a unit if 
the values of all its features fall in the intervals of the unit 
for all dimensions of the unit. A unit is dense if the fraction 
of the total instances contained in it exceeds an input 
parameter δ. CLIQUE starts the search for dense units 
from single dimensions. Candidate of n-dimensional dense 
units are generated using the downward closure property: 
if a unit is dense in k dimensions, all its k-1 dimensional 
projection units must all be dense. This downward closure 
property dramatically reduces the search space. Since the 
number of candidate dense units grows exponentially in 
the highest dimensionality of the dense units, this 
algorithm becomes very inefficient when there are clusters 
in subspaces of high dimensionality. Research has been 
done to extend CLIQUE by using adaptive units instead of 
rigid grids (Kriegel et al. 2009), as well as to use other 

parameters such as entropy in addition to density to prune 
away uninteresting subspaces ( Cheng et al. 2000).  

Clustering Student Grade Sheets 

We assume that datasets are in the following format: each 
row represents one student record, and each column 
measures one activity that students participate in the 
course. An example is shown in Table 1, where dij denotes 
the ith student’s performance score in the jth activity. Most 
clustering and subspace clustering algorithms allow dij to 
take real values. 

 

 Activity 1  …… Activity m 

Stu 1 d11 …… d1m 

Stu 2 d21 …… d2m 

…… …… …… …… 

Stu n dn1 …… dnm 

   
Table 1 Dataset Format 

 

 

Figure 1.  Clusters on Student Activity Data 

Figure 1 shows three different clusters and subspace 
clusters that can be identified from the above data using 
different clustering and subspace clustering algorithms. 
Properties of each type of cluster as well as the process to 
find it will be presented in the following subsections.  

The example dataset 

We will use the grade sheet for a computer science service 
course as the example for this study. This dataset contains 
30 students and 16 activities plus the final grade. The score 
of each activity as well as the final grade are in the range of 
[0, 1]. All students whose final composite grade is below .6 
(60%) are marked as failing the course.  In this dataset, 7 
out of 30 students are marked as failed using this standard. 
Activities 1 through 12 are weekly in class labs in 

chronological order. Activities 13 and 14 are two large 



projects due at mid semester and the end of the semester. 

Activities 15 and 16 are mid-term and the final 

examinations. 

 

Each individual feature shows positive covariance with the 

final grade variable. Several features are highly correlated 

to the final grade, such as activities 6, 8, 9, 10 and 11. The 

least predictive features include activities 1, 13 and 15.  It 

is not surprising for us to see that the first lab (activity 1) is 

not a good indicator of a student’s performance in the 

course. But an interesting observation is that the mid-term 

exam (activity 15) and the mid-term project (activity 13) 

are both as bad as the first lab to tell whether a student will 

pass the course or not.  

 

Another interesting observation is that activity 6 (lab 6) 

alone can predict with 100% accuracy about whether a 

student will pass the course or not. We later found out that 

the topic that was in that week was loops, which is 

considered challenging for most students.  This suggest 

that if a student can grasp the concept of loop structure 

very well, he might as well be able to pass the course as a 

whole. Therefore, it would be worthwhile for the instructor 

to spend more time and effort on this subject matter.  

  

Feature     Covariance  Feature     Covariance 

Activity 1   .5044   Activity 9     .9075 

Activity 2   .7758   Activity 10   .9089 

Activity 3   .6097   Activity 11   .9067 

Activity 4   .7415   Activity 12   .8137 

Activity 5   .7125   Activity 13   .5283 

Activity 6   .9787   Activity 14   .8427 

Activity 7   .8670   Activity 15   .5613 

Activity 8   .9065   Activity 16   .8046 

 

Student clusters 

Here we focus on identifying groups of students who 
demonstrate similar performances throughout the whole 
course. This type of clusters can be useful for the instructor  
to identify key activities that differentiate successful 
students from those who fail the course.  

We have tried a wide variety of clustering algorithms’ 
available from Weka (Weka URL) on the example dataset, 
and the results show that the simple k-means algorithm 
achieves at least comparable results as other more 
complicated algorithms in almost all cases.  

Using the simple k-means algorithm, we started with k=2, 
that is, to find two clusters (Cluster0 and Cluster1) from 
this dataset. Cluster0 contains 6 out of 7 students who 
actually failed the course, and cluster1 contains 24 students 
among whom 23 are marked as passing the course. There 
is one failing student who is clustered into cluster1. We 
found out that this student’s composite final score is .58, 
which lies right on the boundary of passing/failing 

threshold. This suggests that choosing 0.6 as the 
passing/failing threshold seems rather arbitrary.  

Figure 2 shows the centroids of the two clusters. We can 
see that some activities are better in differentiating the two 
clusters than others, such as activities 6, 8, 9, 10 and 11. 
This result is consistent with the result from individual 
feature’s covariance with the final grade variable, 
suggesting that the clusters that were identified from the 
algorithm may have captured some real characteristics of 
the dataset. 

We have also tried k=3 to find three clusters from this 
dataset. It resulted in cutting the failing cluster (cluster0) 
into two even smaller clusters, leaving cluster1 remain 
unchanged.  

 
Features    Full Data(30)    cluster0(6)     cluster1(24)                    

=======================================          

Activity1            0.76         0.475      0.8313        

Activity2            0.7533     0.3208      0.8615                       

Activity3            0.7908     0.3333      0.9052    

Activity4            0.785       0.3333      0.8979    

Activity5            0.815       0.3792       0.924    

Activity6            0.7767     0.0708      0.9531    

Activity7            0.79         0.3083      0.9104    

Activity8            0.7983          0      0.9979    

Activity9            0.7683          0      0.9604 

Activity10       0.7308             0      0.9135 

Activity11       0.7833     0.1667      0.9375 

Activity12       0.7667     0.1667      0.9167 

Activity13       0.7647     0.5767      0.8117 

Activity14       0.667          0      0.8338 

Activity15       0.7693     0.7844      0.7656 

Activity16       0.5674     0.2278      0.6523 

Figure 2.  Centroids of Student Clusters (K = 2)  

Activity clusters 

In this section we take a different view on the same dataset. 
Here we focus on finding groups of activities in which all 
students demonstrate similar performance patterns. For 
example, we may find a group of activities on which all 
students demonstrate consistently high performance. This 
suggests that these activities involve relatively easy-to-
grasp concepts. We may also find a group of activities 
where all students show worst than average performance. 
This suggests that the instructor may want to spend more 
time on these activities to cope with the difficulty.  

To find this type of clusters, we would need to transpose 
the original data matrix as shown in Table 1 into Table 2. 

 

  

 Student 1  …… Student n 



Activity 1 d11 …… dn1 

Activity 2 d12 …… dn2 

…… …… …… …… 

Activity m d1m …… dnm 

 

Table 2. Transposed Dataset 

 

Similar as above, we applied the SimpleKMeans from 
Weka to the transposed example dataset. We tested five k 
values in the range of 2 to 6, and we tried to find the best 
value of k by looking at curve of within-group-variance as 
a function of k. The result is shown in Figure 3. As we can 
see, four clusters seems to be the best because the slope of 
the curve reduced significantly after k=4. 

Among four clusters of activities, cluster3 is the most 
challenging group of activities because its cluster centroid 
is consistently lower than the other three clusters. Cluster3 
contains three activities including activity 13, activity 15 
and activity 16. Out of 30 students, 13 students showed 
significant lower than average performance on these three 
activities.  An interesting observation is that in previous 
sections we have pointed out that activities 13 and 15 are 
also considered as insignificant in differentiating passing 
students from failing ones.  This mean that these two 
activities maybe too hard to be used as criteria to predict 
the student overall performance of the course. On the other 
hand, activity 1, which is also considered as a bad feature 
to tell the difference between passing students from those 
who failed, might be too easy to be used as a criterion for 
that purpose. 

 

 

Figure 3. Within Group Variances 

Subspace clusters  

In this section, we show that subspace clustering 
algorithms can be used to find clusters embedded in 
subspaces. In earlier section, we have shown that student 

clusters contain groups of students who demonstrate 
similar performance throughout the whole course. Here we 
relax the constraint to allow any groups of students who 
demonstrate similar learning patterns in any subsets of 
activities to become candidates for clusters.   

We will first show the results from partition-based 
subspace clustering algorithm. We chose to use PROCLUS 
because it reports clusters in axis-parallel subspaces, which 
makes the final interpretation of the clusters easier. The 
PROCLUS implementation is from the open source 
subspace clustering package (OpenCluster URL). 

Similar to K-means, PROCLUS needs a pre-determined 
number of clusters (k) before running. In addition, it also 
requires knowing the average subspace dimensionality (l). 
We set k=4, and tried several values of l between 2 and 5, 
and found out that the results are highly similar for all 
cases. For the example dataset, PROCLUS finds the 
following four clusters when we set k = 4 and l = 3:  

 

SC_0: [0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 ] #13 {2 5 7 8 10 13 
14 15 17 21 23 27 29 } 

SC_1: [0 0 1 0 0 0 0 1 1 1 0 0 0 0 0 0 ] #11 {0 1 4 12 16 19 
20 24 25 26 28 } 

SC_2: [0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 ]  #4  {3 6 9 22 } 

SC_3: [0 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 ]  #2  {11 18 } 

 

Each line describes one subspace cluster. For example, the 
first subspace cluster (SC_0) lies in a subspace that 
contains two features: activity 8 and activity 12. SC_0 
contains 13 students, and they are: stu2, stu5, stu7, and etc.  

A simple investigation shows that SC_2 and SC_3 contain 
all failing students. In SC_2, 4 out of 6 students who fail 
this class have difficulty in doing activity 6 and activity 7, 
and SC_3 shows that the other two failing students showed 
difficulty in doing activity 2 and activities 8, 9 and 10. We 
later found out the activity 6 was a lab on loop structure 
and labs 8 and 9 are labs on Classes and Objects. This 
suggests that the majority of the students who failed this 
course started to fall behind when loops were introduced. 
The other half who failed the class failed to catch up when 
the concept of objected oriented programming were 
introduced.  Therefore, the instructor may want to spend 
extra time to help students complete these three activities. 

We can also see that SC_1 and SC_3 are two clusters that 
are best contrasted by activities 6, 7 and 8. Since all 
students in SC_1 passed the course while SC_3 students 
failed the course, these three activities may be crucial for 
students to pass the course.  

We have also tried partition-based subspace clustering 
algorithm on the sample data. Grid-based algorithms 
produce more than a thousand subspace clusters, and the 
large number of reported clusters makes the interpretation 
of clusters very difficult. We will look into the possibility 
to prune off insignificant clusters based on domain 
knowledge. Similar research has been done in bio-medical 



data analysis, where domain knowledge is used to measure 
the significance of each bi-cluster. 

 

Comparisons between the three 

Student clusters represent groups of students showing 
similar performance patterns throughout the whole course, 
while subspace clusters shows clusters of students who 
demonstrate similar performances in subsets of activities. 
Activity clusters is helpful in finding out difficult tasks for 
all students, while subspace clusters can identify subsets of 
activities that challenge different groups of students. Since 
not all students experience the same difficulty in all 
activities, subspace clustering seems to be well suited for 
this purpose. We can see from the example data that 
activity 6 may be a good feature to tell why some students 
failed this course, but it is not the only indicator. SC_3 
suggests that there are some students who had no problem 
finishing activity 6 but still failed the course due to their 
unsatisfactory performance in activities 8, 9 and 10. 

 

Conclusions and Future Work 

This paper is our first attempt to adopt a rich collection of 
subspace clustering algorithms on educational data. Our 
preliminary results show that clustering and subspace 
clustering techniques can be used on high dimensional 
education data to find out interesting student learning 
patterns. These cluster patterns are helpful for the 
instructor to gain insights into the different learning 
behaviors and adapt the course to accommodate various 
students’ needs. We will test and validate all presented 
clustering schemes on more educational data of larger size. 
We will also look into the possibility of applying grid-
based subspace clustering algorithms to educational data 
guided by domain knowledge.  
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