
GEFeWS: A Hybrid Genetic-Based Feature Weighting and 
Selection Algorithm for Multi-Biometric Recognition 

Aniesha Alford+, Khary Popplewell#, Gerry Dozier#, Kelvin Bryant#, John Kelly+,  
Josh Adams#, Tamirat Abegaz^, and Joseph Shelton# 

 
Center for Advanced Studies in Identity Sciences (CASIS@A&T) 

+Electrical and Computer Engineering Department,  
#Computer Science Department 

^Computational Science and Engineering Department 
 North Carolina A & T State University 

1601 E Market St., Greensboro, NC  27411 
aalford@ncat.edu, ktpopple@ncat.edu, gvdozier@ncat.edu, ksbryant@ncat.edu, jck@ncat.edu, 

jcadams2@ncat.edu, tamirat@programmer.net, jashelt1@ncat.edu   
 

Abstract  

In this paper, we investigate the use of a hybrid genetic 
feature weighting and selection (GEFeWS) algorithm for 
multi-biometric recognition.  Our results show that 
GEFeWS is able to achieve higher recognition accuracies 
than using genetic-based feature selection (GEFeS) alone, 
while using significantly fewer features to achieve 
approximately the same accuracies as using genetic-based 
feature weighting (GEFeW). 

 

Introduction 
A biometric system is a pattern recognition system that 
uses physiological and behavioral traits, characteristics that 
are unique for every individual, to perform recognition 
(Jain, Ross, and Prabhakar 2004). The value of a biometric 
system depends largely on its ability to accurately 
authenticate an individual. Thus, the recognition accuracy 
is a major concern and is a key area of research for the 
biometrics community (Deepika and Kandaswamy 2009). 
 Researchers have shown that biometric systems that use 
only one biometric modality can produce highly accurate 
results (Adams et al. 2010; Dozier et al. 2009; Miller et al. 
2010; Ross 2007).  However, when these systems are 
applied to real-world applications, their performance can 
be affected by numerous factors such as noisy sensor data 
due to dust or lighting conditions and spoofing.  Multi-
biometric systems that fuse multiple biometric modalities 
have been shown to be more robust, able to counter many 
of the aforementioned limitations, and are also capable of 
achieving higher recognition accuracies (Jain, 
Nandakumar, Ross 2005; Ross 2007; Eshwarappa and 
Latte 2010). 
 Feature selection and weighting have also been proven 
as successful methods of improving the accuracy rates of 
biometric systems (Adams et al. 2010; Dozier et al. 2009; 
                                                 
 

Gentile, Ratha, and Connell 2009; Mumtazah and Ahmad 
2007). The goal of feature selection is to reduce the 
dimensionality of a data set by discarding features that are 
inconsistent, irrelevant, or redundant; thus keeping those 
features that are more discriminative and contribute the 
most to recognition accuracy. Feature weighting is a more 
general case of feature selection, with each feature being 
assigned a weight based on its relevance (Yang and 
Honavar 1998).  
 Genetic and Evolutionary Computation (GEC) has been 
utilized by researchers to optimize feature selection and 
weighting (Hussein et al. 2001; Yang and Honavar 1998; 
Yu and Liu 2003; Tahir et al. 2006;  Raymer et al. 2000) 
and has also been used by the biometrics community to 
optimize the recognition accuracy (Dozier et al. 2009; 
Adams et al. 2010; Giot, El-Abed, and Rosenberger 2010).  
The goal of GEC is to find the optimal or near optimal 
solution to a problem, and typically works as follows.  A 
population of candidate solutions is generated randomly 
and assigned a fitness based on a user-defined function. 
Using this fitness, members of the population are chosen 
and reproduce.  The resulting offspring are then evaluated 
and typically replace candidate solutions within the 
population that have a lower fitness. This evolutionary 
process is continued until the population converges, a user-
specified number of evaluations have completed, or no 
solution can be found. 
 In this paper, we use a hybrid GEC-based feature 
weighting and selection (GEFeWS) technique for multi-
biometric recognition.  Our goal is to reduce the number of 
features necessary for biometric recognition and increase 
the recognition accuracy.  The performance of GEFeWS is 
compared with the performances of genetic-based feature 
selection (GEFeS) and weighting (GEFeW) techniques 
individually. The modalities tested were face and 
periocular biometrics.  The facial features were extracted 
using the Eigenface method (Turk and Pentland 1991; Lata 
et al. 2009), and the periocular features were extracted 



using Local Binary Patterns (LBP) (Adams et al. 2010; 
Miller et al. 2010). 
 This research is inspired in part by the proposal of a 
hierarchical two-stage system, presented by Gentile et al. 
for iris recognition (2009). This system used a reduced 
feature set size in an effort to reduce the total number of 
feature checks required for an iris-based biometric 
recognition system.  For a conventional biometric 
recognition system, a probe, p, is compared to every 
individual within a biometric database. The number of 
feature checks performed by a conventional biometric 
system, fc, is: 

fc = nm 

where n is the number of individuals in the database and m 
is the number of features used to represent an individual.  
A hierarchical biometric system reduces the number of 
feature checks performed by first using the reduced length 
biometric template to select a subset of the r closest 
matches to the probe p.  The subset is then compared to p 
using all of the m features.  The number of feature checks 
performed by a hierarchical system, fh, is the summation of 
the calculations of the two stages, represented by: 

fh = nk + rm 

where, once again, n represents the number of individuals 
in the database, k is the number of features in the reduced 
feature set, r is the subset of the closest r-individuals to the 
probe, p, and  m is the number of features used to represent 
an individual.  The savings gained by using the hierarchical 
biometric system, fs, instead of the conventional biometric 
system is: 
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 The remainder of this paper is as follows. In the 
following section, a brief overview of the feature extractors 
used for our experiments is given. GEFeS, GEFeW, and 
GEFeWS are then described, followed by a description of 
our experiments, the presentation of our results, and 
finally, our conclusions and future work.  

Feature Extraction 
Feature extraction is one of the essential tasks performed 
by a biometric system.  After a biometric sample is 
acquired from an individual, feature extraction is 
performed to extract a set of features, termed a feature 
template, which is used to represent the individual and is 
used in the comparisons to determine recognition (Jain, 
Ross, and Prabhakar 2004).   
 In this paper, we use two feature extraction schemes.  
The Eigenface method is used to extract features from the 
face (Turk and Pentland 1991; Lata et al. 2009).  Local 

Binary Patterns (LBP) is used to extract features from the 
periocular region (Adams et al. 2010; Miller et al. 2010). 
 Eigenface is based on the concept of Principal 
Component Analysis (PCA) and has been proven 
successful for facial recognition (Turk and Pentland 1991; 
Lata et al. 2009).  PCA is a method used to reduce the 
dimensionality of a dataset while retaining most of the 
variation found among the data (Jolliffe 2005). For the 
Eigenface method, PCA is used to find the principal 
components, or eigenfaces, of the distribution of the face 
images within the entire image space, which is called the 
face space.  
 LBP is a method used for texture analysis that has been 
used in many biometric applications, including the 
extraction and analysis of periocular features for 
identification (Adams et al. 2010; Miller et al. 2010).  LBP 
descriptors of each periocular region are formed by first 
segmenting the image into a grid of 24 evenly sized 
patches.  Every internal pixel within the patch is used as a 
center pixel.  The intensity change of the pixels around the 
center pixel is measured by subtracting the intensity value 
of the center pixel from each of the P neighboring pixels. 
For our experiments, the neighborhood size, P, was 8.  If 
the resulting value is greater than or equal to 0, a 1 would 
be concatenated to the binary string representing the 
texture, otherwise a 0.  The texture is then encoded into a 
histogram where each bin represents the number of times a 
particular binary string appears in a patch.  For 
optimization purposes, only uniform patterns are 
considered.  These are binary string patterns with at most 
two bitwise changes when the pattern is traversed 
circularly. Therefore, our histogram consisted of 59 bins 
(instead of 2P=256 bins), 58 for the possible uniform 
patterns and 1 for the non-uniform patterns.  

GEFeS, GEFeW, and GEFeWS 
The genetic and evolutionary techniques used within this 
paper are based on the eXploratory Toolset for the 
Optimization of Launch and Space Systems (X-TOOLSS) 
(Tinker, Dozier, and Garrett 2010), and are an instance of 
the X-TOOLSS Steady-State Genetic Algorithm (SSGA).  
 For GEFeS, a SSGA is used to evolve a feature mask 
that selects the most salient biometric features. For each 
real-valued candidate solution that is generated by the 
SSGA, a masking threshold of 0.5 is used to determine if 
the feature is used. If the values of the features within the 
mask are less than the masking threshold, the feature is 
turned off by setting the mask value to 0.  Otherwise, the 
feature is turned on by setting the mask value to 1, 
resulting in a binary coded feature mask. 
 For GEFeW, a SSGA is used to evolve a real-valued 
feature mask composed of values between 0.0 and 1.0.  
The resulting feature mask value is multiplied by each 
feature value to provide the weighted feature.   
 GEFeWS is a hybrid of GEFeW and GEFeS.  Like 
GEFeW, a SSGA is used to evolve the weight of the 
features. However, if the weight is less than the masking 



threshold of 0.5, then the feature is not included, basically 
being turned off as done by GEFeS. Otherwise, the feature 
is weighted as done by GEFeW. 
 Associated with each candidate feature mask, i, there 
were two weights, wip and wif, which are weights for the 
periocular and face feature submasks to allow for score-
level fusion. The weights ranged from [0..1] and were co-
evolved with the rest of the feature mask. 

Experiment 
To test our algorithms, we used a subset of 315 images 
taken from the first 105 subjects of the Face Recognition 
Grand Challenge (FRGC) dataset (Phillips et al. 2005).  
These images were used to form a probe set of 105 images 
(one of each subject) and a gallery set of 210 images (two 
of each subject).  For each of the images in the probe and 
gallery set, the Eigenface method was used to extract 210 
face features, and the LBP method was used to extract 
2832 periocular features (1416 features for each eye). 
 Three biometric modalities were tested: face, periocular, 
and face plus periocular.  For each of the three biometric 
modalities, GEFeS, GEFeW, and GEFeWS were used. The 
biometric modalities were also tested using all of the 
originally extracted features without the use of GECs. This 
served as a control/baseline for our experiments.  

Results 
For our experiments, the SSGA had a population size of 20 
and a Gaussian mutation range of 0.2.  The algorithm was 
run 30 times, and a maximum of 1000 evaluations were 
performed on each run.  
 In Table I, the average performance of the three 
experiments is shown. The first column represents the 
tested biometric modalities.  The second column represents 
the type of algorithm that was used.  The third column 
represents the average percentage of features used, and the 
last column represents the average accuracy of the 30 runs.  

 Table I shows the performance comparison of GEFeS, 
GEFeW, and GEFeWS.  The results using the feature 
extractors without the GECs were also included to serve as 
a baseline for the experiments. When the face and 
periocular biometrics were fused, they both were weighted 
evenly.  
 For the Face-Only experiment, GEFeW performed the 
best in terms of accuracy, having an average accuracy of 
87.59%. Based on the results of the ANOVA and t-test, 
GEFeWS was in the second equivalence class in terms of 
average accuracy, but there was only a 1.21% difference in 
the average accuracy for the two algorithms. In terms of 
the percentage of features used, GEFeWS was in the first 
equivalence class, along with GEFeS.  GEFeWS was able 
to obtain an average accuracy of 86.38%, while using only 
51.71% of the features.   
 For the Periocular-Only experiment, GEFeWS 
performed the best in terms of accuracy and the percentage 
of features used, having an average accuracy of 96.15% 
while using only 45.39% of the features.  These results 
were confirmed using an ANOVA and t-test.  GEFeW was 
in the second equivalence class in terms of average 
accuracy.  In terms of the percentage of features used, 
GEFeS and GEFeW were in the second and third 
equivalence classes respectively.   
 For the Face + Periocular experiment, GEFeW 
performed the best in terms of accuracy, while GEFeWS 
was in the second equivalence class.  However, in terms of 
the percentage of features used, GEFeWS was in the first 
equivalence class, using only 46.24% of the features to 
achieve an average accuracy of 98.48% (only a 0.5% 
difference when compared to GEFeW).   GEFeS and 
GEFeW were in the second and third equivalence classes 
respectively. 
 The Face + Periocular experiment performed the best in 
terms of accuracy for all the algorithms used, followed by 
the Periocular-Only experiment and the Face-Only 
experiment. 

 

Modalities 
Tested Algorithms Used Average % of  

Features Used 
Average 
Accuracy 

Face  
Only 

Eigenface 
Eigenface + GEFeS  
Eigenface + GEFeW 
Eigenface + GEFeWS 

100.00% 
51.03% 
87.71% 
51.71% 

64.76% 
77.87% 
87.59% 
86.38% 

Periocular  
Only 

LBP 
LBP + GEFeS  
LBP + GEFeW  
LBP + GEFeWS  

100.00% 
48.03% 
86.22% 
45.39% 

94.29% 
95.14% 
95.46% 
96.15% 

Face +  
Periocular 

Eigenface + LBP [evenly fused] 
Eigenface + LBP + GEFeS 
Eigenface + LBP + GEFeW 
Eigenface + LBP + GEFeWS 

100.00% 
48.18% 
87.59% 
46.24% 

90.77% 
97.40% 
98.98% 
98.48% 

Table 1. Comparison of the performances of GEFeS, GEFeW, and GEFeWS. 
 
 

 



 For the percentage of features used, GEFeWS used the 
least amount of features for the Periocular-Only and Face 
+ Periocular experiments, and there was no statistical 
significance between GEFeWS and GEFeS for the Face-
Only experiment.  GEFeW used the highest percentage of 
features for all three experiments. 

Conclusion 
Our results show that the hybrid GEC, GEFeWS, is able to 
achieve higher recognition accuracies than GEFeS, while 
using about the same amount of features.  GEFeWS is also 
able to use a significantly lesser amount of features than 
GEFeS while achieving approximately the same average 
recognition accuracy.   Overall, the Face + Periocular 
performed better in terms of accuracy when compared to 
the Face-Only and Periocular-Only experiments. Our 
future work will include investigating additional multi-
biometric fusion techniques as well as additional GECs in 
an effort to further improve the performance of multi-
biometric recognition.  In addition, we will investigate 
applying these algorithms to a larger dataset to see how 
well they generalize. 
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