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Abstract 

Evolutionary computation (EC) is the sub-discipline of 

artificial intelligence that iteratively derives solutions using 

techniques from genetics.  In this work, we present a 

genetic algorithm that evolves a heuristic static evaluation 

function (SEF) function to be used in a real-time search 

navigation scheme of an autonomous agent.  This coupling 

of algorithmic techniques (GAs with real time search by 

autonomous agents) makes for interesting formalistic and 

implementation challenges.  Genetic evolution implies the 

need for a fitness function to guide a convergence in the 

solution being created.  Thus, as part of this work, we 

present a fitness function that dictates the efficacy of a 

generated static evaluation function. In this work, we 

present algorithmic and formalistic designs, 

implementation details, and performance results of this 

multi-layered software endeavor. 

Introduction 

The A* Algorithm is a greedy best-first  search algorithm 
that is used to calculate an optimal path between two 
points, or nodes, on a graph (Hart et. al 1968)   The 
algorithm can be adapted to a run in real-time by way of 
restarting execution as new environment information 
becomes available, called a Dynamic A* (D*) search. The 
A* search uses a static evaluation function (SEF) that uses 
heuristics to find a path of state transformations from a 
start state to a goal state. The SEF assesses the merit of 
each child state as it is generated by assigning it a numeric 
value based on information about that state. The score 
allows the A* to direct its search by prioritizing the 
expansion of child nodes that could potentially expand into 
a goal state while neglecting child nodes that are less likely 
to lead to a goal. 
 
In a real time environment, information about the actual 
goal state is unavailable and unobtainable for any given 
iteration of the search for an agent (because it is out of 
range of the agent’s sensors).  Therefore, the SEF must 
direct the search to the most appropriate state that 
anticipates system information as it becomes available.  In 
our work, the SEF seeks to maximize some aspects of an 
agent’s state while minimizing others.  By evolving  a 
weight on each “aspect-variable”,  we are able to create 
offline  a highly effective  SEF that can predict obstacles 
and challenges that occur in real time during the execution 
of D*.  In this paper we present the offline pursuit of using 
a genetic algorithm as a mechanism to evolve an optimal 
SEF to be used in the real-time execution of A*.  

Additionally, we use the simulator that will eventually 
benefit from this optimized SEF to provide feedback in the 
evolution process.  That is, the simulator serves as the 
fitness function for the evolving SEF. 
 
This work is novel in that it combines techniques of 
evolutionary computation using genetic algorithms and the 
use and refinement of a heuristic for the D* algorithm.    
There are many applications of genetic algorithms in 
diverse domains such as bioinformatics (Hill 2005), 
gaming (Lucas 2006), music composition (Weale 2004), 
and circuit optimization (Zhang 2006).  Additionally, work 
in D* has been studied and developed in theory 
(Ramalingam 1996) as well as specific applications such as 
robotics (Koenig 2005).  We are using the all-inclusive 
examination that genetic algorithms affords us to find the 
perfect (or near perfect) heuristic function for a derivative 
of the very traditional AI search, A*. 

The A* and D* Algorithms 

In this work, the evolution of a static evaluation function 
using a genetic algorithm is applied to an autonomous 
agent operating in an environment provided by Infinite 
Mario Bros., an open-source, faithful recreation of 
Nintendo’s Super Mario World. The agent (Mario) uses a 
realtime execution of an A* search, called D*, to direct its 
movement through the environment to ultimately reach the 
goal (the end of the level). Mario may use information 
about what is currently visible onscreen, but beyond that 
nothing is known, making a calculation of an actual path to 
the goal impossible. Therefore, the SEF of the D* must 
direct Mario towards states that are on the path to the goal. 
 
Mario has a total of thirteen distinct action combinations 
that allow him to negotiate the environment. These are 
move left, move right, duck, and two others—jump and 
speed—that can be used in combination with the other 
actions and each other.  Jump allows movement along the 
y-axis, and can be used in combination with right, left, and 
duck. Speed allows for faster movement left or right, and 
higher jumps.  This means that from any state, there could 
be up to thirteen child nodes. Since the agent must operate 
at 24 frames per second, the agent is allotted approximately 
40 milliseconds to perceive its current state, decide what to 
do next, and return a chosen action. With up to thirteen 
child nodes from any node in the search tree, any algorithm 
that decides what Mario is going to do next must do so 
quickly and efficiently. A “brute force” approach that 
analyzes all possible children was infeasible given 
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available computing machinery, and therefore a dynamic 
D* search is more appropriate. 
 
The SEF of a D* search uses information about a state to 
direct the search efficiently. For Mario, much information 
is immediately available from each percept provided by 
the environment. This information includes the position of 
Mario, the amount of damage Mario has taken, the 
positions and types of enemies onscreen, and position and 
types of obstacles onscreen. Other information can be 
tracked over time, like number of kills, X velocity, Y 
velocity, coins collected, time remaining, etc. The task of 
our system was to discover what effects, if any, the values 
of these variables should have on the valuation performed 
by the SEF of a node in the search graph. A high value for 
a variable might proportionally increase the cost to 
transition to that state, or conversely could proportionally 
decrease the transition cost. 

The System 

In 2009 and 2010 Julian Togelius of the ICE-GIC held a 
competition for entrants to create an autonomous agent 
(bot) that would play Markus Persson’s Infinite Mario 
Bros. the best. “Best” in this sense means the distance a 
bot could travel within a given level and time limit. If two 
bots finished a level they were awarded equal scores, but if 
neither finished, the bot that travelled furthest was deemed 
better.  In both iterations of the competition, the same bot 
was victorious. This bot was written by Robin Baumgarten 
(Baumgarten). Robin’s bot used a D* search coupled with 
an accurate method for expanding child nodes, and a 
human-generated static evaluation function for the D*. Our 
system is a heavily modified version of Robin’s, with the 
majority of the A* rewritten for legibility and efficiency 
while the means to produce child nodes was mostly 
preserved. 
 
Every 24 frames, the environment provides the agent with 
a percept that includes the locations and types of all sprites 
on the screen, including Mario. The agent must return an 
action to the environment that the environment then effects 
upon Mario. For each percept received, the agent runs an 
A* search for 39ms or until the agent has planned out to 15 
levels of the search tree. The agent keeps an internal 
representation of the world, and tracks Mario’s x and y 
velocities among other things not provided by each 
percept. 
 
After ensuring that its internal representation is consistent 
with the environment-provided one, the agent begins an 
A* search from Mario’s current position and velocity. 
Children are generated by considering which actions are 
available to Mario at any node. That is, a child state 
reflects where Mario would be and how fast he would be 
moving if performed action A from node M. (Figure 1) A 
child state also informs the search of whether Mario would 
take damage, die, kill an enemy, collect a coin, etc. upon 

performing action A from node M. A static evaluation 
function provides weights on Mario’s X position, X 
velocity, Y position, Y velocity, Mario’s damage taken, 
whether Mario is carrying a shell, Mario’s X position 
multiplied by X velocity, and Mario’s Y position 
multiplied by Y velocity. These weights are values between 
-1 and 1. After multiplying weights to their associated state 
variables, the sum of products forms the final SEF score for 
that node.  

 

 

Figure 1 

 
This SEF score is an estimation of the amount of work 
required to reach a goal state from the current node, and as 
such nodes with lower SEF scores are preferable. As an A* 
algorithm dictates, the level of the search tree at which the 
node was discovered is also added to the score. This is the 
“greedy” part of an A* search where not just a solution is 
desired, but the best solution. For Mario, the cost to 
transition from one state to another is uniform; all 
neighboring states have the same arc cost to travel to a 
neighbor. Adding the sum of arc costs into the SEF score 
for a node is a means by which the “work” required to 
reach a node in the graph is represented, so that if the same 
node is reached by two separate paths, the shortest path is 
favored.  Since the D* search operates in a partially 
observable world, an admissible heuristic is difficult to 
discern, hence the motivation for a Genetic Algorithm to 
search for the optimal weights to apply in the SEF. 
 
During the D* search, children nodes are generated from 
the current state of the agent. Generated children are placed 
on an open list sorted from lowest to highest scores. The 
child with the lowest score is taken from that list, and its 
children are generated. This process repeats until the agent 
has searched for 39ms or has searched 14 states (empirical 
number), at which point it returns the action that leads to 
the most optimal path for the current available information. 
 
The values for the weights used in the agent’s SEF 
mentioned above are deemed to be “unknown” to the 
system, and are provided via parameters supplied by an 
external entity, in this case a Genetic Algorithm. The 



genetic algorithm is implemented as defined in (Russell 
and Norvig 2003). The chromosome being evolved is an 
array of 8 floating point values, each between -1.0 and 1.0. 
The mutation rate was 1%. 
 
Each generation of chromosomes was tested for fitness by 
running a simulation on a training level where the agent 
used the chromosome’s genes as the weights on state-
variables evaluated by the SEF in a D* search. The fitness 
of the chromosome was a summation of Mario’s distance 
travelled, and if he completed the level, also the remaining 
time Mario had to complete the level. A higher fitness 
score indicates a better, or more fit, chromosome. This is 
in contrast to the Static Evaluation function where a lower 
score indicates a more ideal state.  
 
The test level that each bot was scored on had a variety of 
characteristics. The most important of these is that the 
level was short. As each chromosome needed to be used in 
an actual bot, a single fitness test could last upwards of a 
minute even if the bot could finish the level successfully. 
A short level guaranteed that if a bot was going to finish a 
level, it could do so without much time spent. The second 
characteristic of the level was an imposed time limit. This 
time limit places an upper bound on the possible time a bot 
could spend in a level. Slow bots, bots that stood still, or 
bots that got stuck therefore all required a maximum of N 
seconds to evaluate.  
 
An ideal level must also contain challenges and obstacles 
that a full level will have on its maximum difficulty. These 
challenges include portions with a high volume of 
enemies, some which that cannot be destroyed by landing 
on their heads; portions with Bullet Bill towers of varying 
heights; gaps of varying width; pipes with Piranha Plants 
leaping out of them; and portions with mixtures of these 
scenarios. 

Optimization to D* and GA 

The D* search still performed sub-optimally given 
computing hardware, so the search tree needed to be pared 
down. Paring the tree followed a simple formula: if two 
child nodes generated the same score from the SEF, the 
first child node was kept and the other discarded. In a 
further endeavor to pare the tree, the maximum degree for 
a node was reduced from 13 to 11 by discounting nodes 
reachable through the action of ducking by the Agent.  In 
an effort to avoid a bias in the reproduction phase of the 
genetic algorithm, a generated and tested chromosome was 
only added to the population if either its fitness score was 
unique or, failing that, the genes on the chromosome were 
unique among the chromosomes with the same fitness. If 
this precaution was not taken, a glut of identical 
chromosomes with the same score could skew the parental 
selection process unfairly. 
 

The Experiment 

The Experiment was conducted across two iterations of the 
Genetic Algorithm. For the initial one, a starting population 
of 10 chromosomes instantiated with random values was 
created. A total of 800 generations were iterated over, with 
five children produced per generation. The test level had a 
time limit of 36 in-game seconds (~26 seconds in realtime), 
and a length of 300 blocks (~4800 pixels). The level’s 
“seed” used by the level generation engine was 4 and the 
difficulty was set to 15. The program execution lasted over 
20 hours. 

After this initial iteration completed, five of the top-scoring 
agents were used as the starting population for the second 
iteration of the Genetic Algorithm. The level length was 
increased three-fold to a length of 900 blocks (~14400 
pixels), the time limit set to 100 in-game seconds, the 
“seed” to 65, and the difficulty retained at 15. 320 
generations were evaluated, again with five children 
produced for each generation. As this test level’s length 
and time were much larger than the first iteration of the 
GA, the execution time prolonged to about 30 hours. 

Results 

The technique of using a GA to evolve the SEF of a D* 
search allowed a system to generate an effective SEF in the 
absence of a priori knowledge about what makes one agent 
state more desirable than another. The results of this 
experiment demonstrate little to no direct correlations 
between individual weights and bot scores, implying a 
trial-and-error search for a human would be difficult and 
time-consuming. 
 
For the initial iteration of the GA, over three thousand 
unique bots were evaluated over the course of 800 
generations. 285 of those tied for the top score of 3955. An 
interesting note is that the first bot to score this amount was 
produced during the 11

th
 generation of the GA.  

 
The weights used in the bot’s SEF that the GA iterated on 
varied greatly. Figures 2 and 3 show typical scatter plots 
for the values of weights over the course of the GA’s 
execution.  
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 

 

The weights on state-variables may appear to quickly 
converge to a few values and remain there.  However, over 
time the amount of variance for any weight does not 
decline linearly. Figure 4 shows a plot of the amount of 
variation for each weight grouped by 50 generations. No r 
declination of the standard deviation among populations of 
weight values is present. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 4 

 

The scores that bots received likewise reached a local 
maximum early (generation 11), and were unable to 
improve thereafter (Figure 5). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 

 

Upon examining the possible correlation between weight 
values and bot scores, a similar quandary is encountered 
where bots received top scores despite the weight values 
(Figures 6 and 7), save for the case of the weight on X 
Position multiplied by X Velocity (Figure 8). In the case of 
the value of the weight on the agent’s X Position multiplied 
by the agent’s X Velocity, a negative weight positively 
correlates to a higher score, and every single positive 
weight has a score of 0.0 or less (a negative score indicates 
the agent travelled backwards). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6 

 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 
 

For the second iteration of the GA, similar results to the 
first iteration were obtained. However, only 3 bots out of a 
population of over a thousand shared the top score. Figure 
9 presents the distribution of scores that bots received 
during the course of execution. Since the initial population 
of this iteration comprised top-scoring bots of the first 
iteration, it is understandable that so many bots scored so 
well so early, however a clear ceiling to the scores is 
visible, indicating the algorithm likely could not escape a 
local maxima. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 9 

 

Figures 10 and 11 almost perfectly mirror Figures 6 and 7 
in their distribution of scores for weight values on X 
Position and Y Position. Figure 12 likewise mirrors the 
data in Figure 8 that indicates negative weights on the 
agent’s X Position multiplied by the Agent’s X Velocity 
correlate to higher scores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 11 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 

Figure 12 

 
Although the weight values produced by the Genetic 
Algorithm for the top bots were distributed across the 
gamut of possible values, the end result was in fact bots 



that performed roughly as well as Robin Baumgarten’s bot 
that won the ICE-GIC competition two years in a row.  
 
Table 1 displays a comparison of bot scores between 
Robin’s Bot (AStarAgent) and our bot 
(AStarAgentEvolved) for a variety of levels whose 
difficulties were set to 15. 
 
 
 
 
 
 

      

      Table 1 

Conclusions 

In this work, we presented the novel technique of using a 
genetic algorithm as an offline meta-search for an optimal 
static evaluation function to be used by the D* search of a 
real-time autonomous agent. The end results were Static 
Evaluation Function parameters that, upon use in the SEF 
for a real-time agent, enabled the agent to perform as well 
as the current best in its environment. 
 
The fact that our agent performed as well as the current 
best is significant because we made very few assumptions 
about the valuation of agent states in a static evaluation 
function. That is, the algorithms presented in this paper 
automated this task. The implication is that similar 
techniques could be employed for autonomous agents in 
other, possibly real-world, environments with high 
confidence in the end result. 

Future Work 

The work presented here has much potential for expansion. 
Future work should include utilizing parallel computing 
clusters like Beowulf to take advantage of the natural 
independence between the analyses of members in a 
population by the GA’s fitness function, as well as the 
evaluation of nodes in the open list of the D* algorithm by 
the algorithm’s SEF. This sort of capability will allow for 
not only a deeper D* search, but shorter generations in the 
Genetic Algorithm and therefore the ability to run the 
algorithm for more generations in the same amount of 
time. 
 
Potential future work could also include employing pattern 
matching techniques to identify a discrete set of distinct 
scenarios an agent would encounter. An agent could then 
utilize a separate SEF for each scenario. 
 
Under the notion of pattern-matching, even further future 
research would focus on generating probability tables for 
the likelihood of scenarios occurring after each other. 
Knowing the probability of a scenario to occur next would 

allow an agent to make an accurate prediction of an optimal 
path before receiving its next percept. 
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