
Maintaining Temporal Perspective

Ian Emmons and Douglas Reid

Raytheon BBN Technologies, Arlington, VA 22209, USA
{iemmons,dreid}@bbn.com

Abstract. We present methods for annotating data with the time when
it was learned and for answering queries according to what was known
at any point in time. Specifically, we present an RDF knowledge repre-
sentation that associates facts with their transaction times, and a query
mechanism that transforms a time-agnostic SPARQL query and a point
in time into a new, time-sensitive query. The transformed query yields the
subset of the results of the original query that were valid at the indicated
time. In addition, the methods presented here enable non-destructive
merging of coreferences. These techniques apply broadly to storage and
retrieval systems that require time-based versioning of data and are es-
sential for maintaining temporal perspective in rapidly-evolving analyt-
ical environments.

1 Background

There is a large body of work in the theory and construction of temporal data-
bases, as summarized in [4]. This paper describes an application of that body
of research to support the development of an operational, temporally-annotated
semantic database.

The solution presented here grew from a project to develop a risk analysis
application for assessing risks to one particular high-value resource. This system
continually gathers data from five relational databases (non-temporal) and stores
it as RDF in a triple store. The data includes events as well as latest current
state, both of which are time-sensitive.

Analysts use the application to perform daily risk assessments, and these
results are also placed in the triple store. Later review of these analyses is an
important part of the analysts’ work. This leads directly to the time-validity
requirement: the triple store must maintain the temporal perspective of the
data for subsequent review and inspection, because older analyses mean little in
the context of current data. Note that temporal perspective may also be useful
in the analysis task itself. For instance, the age of what we know and the order
in which we learned it sometimes affect the interpretation.

The solution consists of two primary components. First is the RDF knowledge
representation, which associates facts with the time intervals in which they were
known (traditionally referred to as the transaction time of a given fact[4]). The
second is the query rewriter, which transforms a time-agnostic SPARQL query
and a point in time into a new, time-sensitive query. The transformed query

STIDS 2010 Proceedings Page 5 of 135

yields the subset of the results of the original query that were known at the
given time.

This solution aims to track when facts were considered true. For that purpose,
we have chosen a linear, discrete temporal model (defined in [4]) that deals with
transaction times of facts. It is not intended to manage the explicit temporal
aspects of data, such as occurrence times of events. In this way, this solution
may be thought of as a form of provenance tracking.

2 The Knowledge Representation

We describe the knowledge representation through an example in which three
data imports occur (see the summary timeline shown in Table 1). The first
import yields the following statements:

:Person1 a :Person ;
:name "Robert Jones" ;
:ssn "123-45-6789" .

These describe a person with name and social security number (SSN). Iden-
tifiers preceded by colons are URIs whose base URI has been suppressed for
brevity. To this the system adds a proxy consisting of the following statements:

:Proxy1 a :Individual ;
:hasPrimitive :Person1 ;
:usesValue [:Person1 :name "Robert Jones"] ,

[:Person1 :ssn "123-45-6789"] ;
:temporalIndex :TmpIdx1 .

:TmpIdx1 a :KbProperInterval ;
:startedBy :Time1 ;
:finishedBy :EndOfTime .

:Time1 a :DateTimeInterval ; :xsdDateTime "2009-08-17T00:00:00" .
:EndOfTime a :DateTimeInterval ; :xsdDateTime "9999-12-31T23:59:59" .

Proxies represent the sum total of information known about an entity for a
specified time interval within our system. Borrowing from situation calculus, the
proxies provide a mechanism for encoding the history of knowledge (or situation)
and for resolving the truth values of properties (or fluents) of entities through-
out that history[3]. From a philosophical perspective (i.e., BFO[5]), proxies can
be viewed as Processual Entities that capture the time-specific Qualities and
Realizable Entities of a particular Independent Continuant within our system.

The example proxy is of type :Individual, one of two subclasses of :Proxy,
and points to the person entity via the hasPrimitive property. The choice of
terminology “primitive” here will make more sense when we discuss coreference
resolution below. The usesValue properties point to the attribute values of the
person that are known during the time period of this proxy. Note that they point
not to the objects of the person attribute statements, but rather to reifications
of those statements.

STIDS 2010 Proceedings Page 6 of 135

There is no usesValue for the type of the person entity. This reflects a
conscious design decision to avoid introducing time dependence into the RDFS
inference performed by our triple store, greatly simplifying the implementation.
One consequence of this decision is a restriction on the ontology: Classes must not
carry time-dependent meaning. For instance, :Person is a perfectly reasonable
class, but introducing a subclass of it like :CEO would be a mistake, because a
person who is a CEO holds that position for only a portion of their life.

The remainder of the proxy, from the :temporalIndex property on, encodes
the proxy’s transaction time. This extends from the time of import (the opening
second of August 17, 2009 in this case) until the end of time. If the representation
seems more complex than necessary, this is because it must comply with the
combined requirements of the OWL-Time ontology1 and of the temporal index
associated with our triple store,2 ParliamentTM[2]. The temporal index, based
upon Allen’s Interval Algebra[1], allows us to query efficiently for such things as
time intervals containing, intersecting, before, or after a given time interval.

Now suppose a second import, from a different data source the next day,
yields this data:

:Person2 a :Person ;
:name "Bob Jones" ;
:ssn "123-45-6789" .

Due to the matching SSN and the similar names, most would say that these
two data entities are “obviously” the same real-world entity, in other words that
they form a coreference that we want to resolve, or merge, into a single entity.
This is a common problem with multi-source data. It often arises simply because
there is no universal system of unique identifiers, but it might also happen when
entities are viewed from different domains. For instance, a bridge can be viewed
as a transportation resource, a maintenance responsibility, or a target.

When we merge the entities of a coreference, there are two non-obvious but
important requirements. First, merging should be reversible and non-destructive,
and second we must maintain temporal perspective. To accomplish this, we first
“retire” the original proxy created after the first import, which simply means
that we delete the single :finishedBy statement and add a new one so that the
proxy’s transaction time is a closed interval:

:Proxy1 a :Individual ;
:hasPrimitive :Person1 ;
:usesValue [:Person1 :name "Robert Jones"] ,

[:Person1 :ssn "123-45-6789"] ;
:temporalIndex :TmpIdx1 .

:TmpIdx1 a :KbProperInterval ;
:startedBy :Time1 ;
:finishedBy :Time2 .

:Time1 a :DateTimeInterval ; :xsdDateTime "2009-08-17T00:00:00" .
:Time2 a :DateTimeInterval ; :xsdDateTime "2009-08-17T23:59:59" .

1 http://www.w3.org/TR/owl-time/
2 http://parliament.semwebcentral.org/

STIDS 2010 Proceedings Page 7 of 135

Then we add a second proxy like so:

:Proxy2 a :Merge ;
:hasPrimitive :Person1, :Person2 ;
:usesValue [:Person1 :name "Robert Jones"] ,

[:Person2 :name "Bob Jones"] ,
[:Person1 :ssn "123-45-6789"] ;

:temporalIndex ["2009-08-18T00:00:00" .. "9999-12-31T23:59:59"] .

Here we have abbreviated the :temporalIndex for brevity. This proxy is of
type :Merge, the other subclass of :Proxy, and has two primitives, namely both
of the :Person entities imported so far. The :usesValue statements call out
both of the names and one of the SSNs. (The other SSN is left out because it
has the same value.)

Both :Proxy1 and :Proxy2 exist in the triple store at this point, and they
have disjoint time intervals. This allows us to choose the appropriate proxy
for any given point in time and then look up the corresponding state of the
associated entity. Prior to August 17, 2009, there is no proxy and so this person
is unknown. During August 17, 2009, the first proxy calls out just one name, and
after that day the second proxy calls out both names. In addition, the proxy has
effectively merged the coreference without changing the original two entities.

Now suppose that a third import from the original data source happens
at 9:35:20 Zulu time on August 18, 2009, and that this re-imports the same
“Robert Jones” record that we saw in our first import. However, suppose that
in the interim the SSN was changed to correct a typo:

:Person1 a :Person ;
:name "Robert Jones" ;
:ssn "123-45-6789" , "123-45-6798" .

Importing the same record from the same database results in the same
:Person1 entity, since the import process forms the URI from the primary key
of the record, but it creates a new :ssn property value, such that :Person1 now
has two SSN values associated with it. One comes from the third import itself,
and the other is left over from the first import. Naturally, we now need to expire
the second proxy and create new ones:

:Proxy2 a :Merge ;
:hasPrimitive :Person1, :Person2 ;
:usesValue [:Person1 :name "Robert Jones"] ,

[:Person2 :name "Bob Jones"] ,
[:Person1 :ssn "123-45-6789"] ;

:temporalIndex ["2009-08-18T00:00:00" .. "2009-08-18T09:35:19"] .

:Proxy3 a :Individual ;
:hasPrimitive :Person1 ;
:usesValue [:Person1 :name "Robert Jones"] ,

[:Person1 :ssn "123-45-6798"] ;
:temporalIndex ["2009-08-18T09:35:20" .. "9999-12-31T23:59:59"] .

STIDS 2010 Proceedings Page 8 of 135

:Proxy4 a :Individual ;
:hasPrimitive :Person2 ;
:usesValue [:Person2 :name "Bob Jones"] ,

[:Person2 :ssn "123-45-6789"] ;
:temporalIndex ["2009-08-18T09:35:20" .. "9999-12-31T23:59:59"] .

There are two new proxies because the new SSN indicates that these two
entities most likely do not represent the same person after all. The proxy for
:Person1 has :usesValue properties for the name and for the new :ssn, but
not for the old :ssn value. Thus just before the third import, :Proxy2 is valid
and we see a single entity with two names and SSN, but just after the import
we see two distinct entities with different names and SSNs.

Table 1. Summary timeline for example scenario illustrating knowledge store evolution

Date and Time Actions

2009-08-17 00:00:00 1. :Person1 added to the KB
2. :Proxy1 created for :Person1 and added to the KB

2009-08-18 00:00:00 1. :Person2 added to the KB
2. :Person2 discovered to be same person as :Person1
3. :Proxy2 created to merge :Person1 and :Person2
4. :Proxy2 added to the KB
5. :Proxy1 retired

2009-08-18 09:35:20 1. :Person1 re-imported with a different SSN value
2. :Person1 and :Person2 un-merged by Analyst
3. :Proxy3 created for :Person1 going forward
4. :Proxy4 created for :Person2 going forward
5. :Proxy2 retired

3 Query Rewriting

Writing time-sensitive queries according to the knowledge representation scheme
can be a complex, error-prone, and tedious chore. To alleviate the burden of com-
posing temporally-annotated queries, a query rewriting service was developed.
This service automatically transforms a time-agnostic SPARQL query and a pro-
vided time into a new, time-sensitive SPARQL query. The resultant query yields
a subset of the results from the initial time-agnostic query that are considered
valid for the submitted time.

The rewriting service does not alter the meaning of the original query bind-
ings to completely obscure the existence of proxies (merges and individuals)
within the system. Rather, the service leaves the original query bindings in-place
and adds variables to the result set to represent entity proxies. This behavior was

STIDS 2010 Proceedings Page 9 of 135

requested by our customer, as they wanted direct access to the unproxied enti-
ties in the query results. The alternative is to alter the meanings of the binding
variables to refer to the proxies and not return the primitive entities themselves.

Query rewriting takes place in three distinct phases. First, we make an ex-
act copy of the original query. Second, proxy representations are appended to
the original query to match the underlying knowledge representation, appropri-
ately following the structure of the submitted query. Finally, temporal selection
information is appended for each proxy added during the second step.

To demonstrate the query rewriting service, consider this example:

SELECT DISTINCT ?person ?name
WHERE {

?person a :Person ; :ssn "123-45-6789" .
OPTIONAL { ?person :name ?name . }

}

When submitted with the time 2007-08-17T12:00:00 to the query rewriting
service, the resulting time-sensitive query is:

SELECT DISTINCT ?person_proxy ?person ?name
WHERE {

?person a :Person ; :ssn "123-45-6789" .
?person_proxy a :Proxy ;

:hasPrimitive ?person .
:usesValue [rdf:predicate :ssn ;

rdf:object "123-45-6789"] .
OPTIONAL {

?person :name ?name .
?person_proxy :usesValue [rdf:predicate :name ;

rdf:object ?name] .
}

?person_proxy :temporalIndex ?interval1 .
?interval1 a :ProperInterval ;

:intervalContains [a :DateTimeInterval ;
:xsdDateTime "2009-08-17T12:00:00Z"^^xsd:dateTime] .

}

The primary reason for copying the original query exactly is that it improves
the baseline query performance of the modified translated query by providing
optimization hints to our system’s query optimizer. Our knowledge representa-
tion scheme relies heavily on statement reification to encode temporal validity.
During development, we discovered that our query optimizer is easily confused
by reification, often producing inefficient query clause orderings that result in
time-prohibitive query executions. Leaving the original clauses in place essen-
tially enables our optimizer to ignore the reified statements without altering the
validity of the query results. Retaining the original query structure also improves
readability, which can be invaluable for system development and testing.

Proxy expansion closely mirrors the knowledge representation scheme for
temporal annotation, with some noteworthy exceptions. Type clauses were ig-

STIDS 2010 Proceedings Page 10 of 135

nored in the proxy expansion step, as type information is considered invariant. In
transforming query clauses to match the knowledge representation scheme, indi-
vidual property clauses of a given entity are expanded to match the :usesValue
construction of the knowledge representation scheme. However, the rdf:subject
component of statement reification is dropped. This enables multiple underlying
primitive entities to provide clause matches when the proxied entity is a Merge
proxy in the knowledge store.

To add the proxy representation to the original query automatically, the
query rewriting system relies upon the underlying domain ontology for hints
about which query variables (and clauses) refer to entities (and properties) that
require the introduction of temporal sensitivity. Proxy representations are only
added for each entity that appears as the subject in a triple clause that in-
volves time-sensitive information. In the application domain, certain classes of
entities, such as countries, are considered non-varying entities. In these cases,
no additional proxy representation is required. In ambiguous cases (i.e., a clause
consisting solely of subject, predicate, and object variables), a clause is consid-
ered time-sensitive and treated appropriately. When an entity is proxied in this
phase of query rewriting, a new proxy variable representing that entity is added
to the variable bindings set for the query.

Care is taken when adding the proxy representation so as to not alter the
underlying query logic. Expansion exactly matches the original structure of the
query, respecting the original query block scoping for each entity and clause. For
example, if an entity is only referred to in an Optional block of a query, the
proxy expansion for that entity will only appear in the that Optional block. In
this manner, the original query logic is left intact.

The temporal selection block is appended to the query in the topmost query
block where the entity is proxied, respecting the original query logic as with
proxy expansion. The temporal block’s structure is dictated by the knowledge
store’s temporal index processor and incorporates the submitted time.

4 Example Scenario Query Results

To illustrate the impact of using our knowledge representation scheme and query
rewriting service, let us briefly consider the example first presented in Section 2.
Submitting the example query from Section 3 to the query rewriting service with
three different time instants and then issuing those queries to the underlying
knowledge store produces the results depicted in Table 2.

Note that, as mentioned in Section 3, the results of the rewritten query
leave the original query bindings in-place and add proxy variables to capture the
proxied state of an entity. This means that when considering the results of issuing
the original query with the date-time of 2009-08-18T09:00:00 (the second row
in the results table), the following interpretation is the correct one: There exists
one :Person in the knowledge store with an SSN of 123-45-6789. That person
has two known names (“Robert Jones”, “Bob Jones”) and represents the merge

STIDS 2010 Proceedings Page 11 of 135

of two primitives that were considered, for the given time, to be references to
the same real-world entity (represented by :Proxy2).

Table 2. Query results for the example scenario with different provided times

Provided Time Query Results
?person proxy ?person ?name

2009-08-17 12:00:00 :Proxy1 :Person1 “Robert Jones”
2009-08-18 09:00:00 :Proxy2 :Person1 “Robert Jones”

:Proxy2 :Person2 “Bob Jones”
2009-08-18 09:40:23 :Proxy4 :Person2 “Bob Jones”

5 Conclusion

As evidenced by the scenario presented in Section 4, the system allows users to
consider previous valid states of the knowledge store based on times of interest.
This feature enables analysts to explore previous analyses in the context of what
was known then, rather than what is known now.

Our system allows for evolution of knowledge while preserving all previous
states of a knowledge store for subsequent review and investigation. Additionally,
our knowledge representation scheme provides the additional benefit of non-
destructive, reversible coreference resolution. These features are essential for
conducting analysis in real-world, dynamically-evolving data environments.

References

1. Allen, J.F.: Towards a general theory of action and time. Artificial Intelligence 23(2),
123–154 (1984), http://www.sciencedirect.com/science/article/B6TYF-4811T47-
4R/2/27f611303bc842936faa7f168fdcb9da

2. Kolas, D., Emmons, I., Dean, M.: Efficient Linked-List RDF Indexing in
Parliament. In: Proceedings of the Fifth International Workshop on Scal-
able Semantic Web Knowledge Base Systems (SSWS2009). Lecture Notes in
Computer Science, vol. 5823, pp. 17–32. Springer, Washington, DC (Octo-
ber 2009), http://sunsite.informatik.rwth-aachen.de/Publications/CEUR-WS/Vol-
517/ssws09-paper2.pdf

3. McCarthy, J., Hayes, P.J.: Some Philosophical Problems from the Stand-
point of Artificial Intelligence. In: Meltzer, B., Michie, D. (eds.) Machine In-
telligence 4, pp. 463–502. Edinburgh University Press (1969), http://www-
formal.stanford.edu/jmc/mcchay69.html, reprinted in McC90

4. Özsoyoglu, G., Snodgrass, R.T.: Temporal and Real-Time Databases: A Survey.
IEEE Transactions on Knowledge and Data Engineering 7(4), 513–532 (August
1995), http://www.cs.arizona.edu/ rts/pubs/TKDEAug95.pdf

5. Smith, B., Grenon, P.: Basic Formal Ontology (BFO) (June 2010),
http://www.ifomis.org/bfo

STIDS 2010 Proceedings Page 12 of 135

